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SPIN STRUCTURES OF FLAT MANIFOLDS OF DIAGONAL TYPE

RAFA L LUTOWSKI, NANSEN PETROSYAN, JERZY POPKO and

ANDRZEJ SZCZEPAŃSKI

(communicated by Graham Ellis)

Abstract
We give a novel and purely combinatorial description of

Stiefel-Whitney classes of closed flat manifolds with diagonal
holonomy representation. Using this description, for each inte-
ger d at least two, we construct non-spin closed oriented flat
manifolds with holonomy group Zd

2 with the property that all
of their finite proper covers have a spin structure. Moreover, all
such covers have trivial Stiefel-Whitney classes. In contrast to
the case of real Bott manifolds, this shows that for a general
closed flat manifold the existence of a spin structure may not
be detected by its finite proper covers.

1. Introduction

In this paper, we shall give a characterization of spin structures on closed flat
manifolds with a diagonal holonomy representation. In general, it is a difficult problem
to classify spin structures on oriented flat manifolds. If one is successful in defining
a spin structure, it naturally leads to the definition of spinor fields, a Dirac operator
and η-invariants on the manifolds (see, e.g., [4, 10]).

Until now, the main direction of research in this area has been on the relation
between the existence of a spin structure and properties of the holonomy group and
its representation. For example, an oriented flat manifold has a spin structure if and
only if its cover corresponding to a 2-Sylow subgroup of the holonomy has a spin
structure. Hence, from this point of view, more interesting flat manifolds are the ones
with 2-group holonomy. From this class of manifolds, the simplest to describe are the
flat manifolds with holonomy group isomorphic to an elementary abelian 2-groups
with representation of diagonal type. In fact, one of the first examples of oriented flat
manifolds without a spin structure is of this type (see [9]). For more information on
this, we refer the reader to [12, §6.3].

Let us recall that every closed flat Riemannian manifold M can be realized as
a quotient of a Euclidean space by a discrete subgroup of the group of isometries
Γ ⊆ Iso(Rn) called a Bieberbach group. More explicitly, considering the isomorphism
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Iso(Rn) ∼= Rn ⋊ O(n), any element of Γ acts on Rn by a rotation and by a translation
in a canonical way.

By the classical Bieberbach theorems (see [2, 3]), Rn ∩ Γ is a lattice and the
quotient G = Γ/(Rn ∩ Γ) is a finite group called the holonomy group of M . This
leads to an exact sequence:

0→ Zn ι
−→ Γ

π
−→ G→ 1,

where π is the quotient map. M is said to be of diagonal (holonomy) type if the induced

representation ρ : G→ GL(n,Z) is diagonal. The composition Γ
π
−→ G →֒ O(n) is just

the holonomy representation (see [12, Ch. 2, (2.6)]).
It follows that the holonomy group of any finite cover M ′ of M is a quotient of a

subgroup G′ of G. If, in addition, G′ is a proper subgroup of G, we say that M ′ is a
proper cover.

We denote by Spin(n) the spin (double covering) group of SO(n). We also write
λn : Spin(n)→ SO(n) for the covering homomorphism. A spin structure on a smooth
orientable manifold M is an equivariant lift of its frame bundle via the covering λn.
It is well-known that M has a spin structure if and only if the second Stiefel-Whitney
class w2(M) vanishes (see [6, pp. 33–34]).

Let us point out that every closed oriented flat manifold with holonomy group Z2

has a spin structure (see [8, Theorem 3.1(3)], [10, Proposition 4.2]). For any d ∈ N,
set

n(d) =

(
d + 1

2

)

+







2 d = 0 mod 2,
1 d = 1 mod 4,
3 d = 3 mod 4.

Our main result is the following theorem.

Theorem. For any integer d > 2, there exists a closed oriented flat manifold Md

of rank n(d) with holonomy group Zd
2 and with the second Stiefel-Whitney class

w2(Md) 6= 0 such that every finite proper cover of Md has all vanishing Stiefel-Whitney
classes.

The key ingredient of the proof is a purely combinatorial description of Stiefel-
Whitney classes of flat manifolds of diagonal holonomy type (see Section 3).

This result is in stark contrast to the case of real Bott manifolds which in part
motivated our discussion. Real Bott manifolds are a special type of flat manifolds
with diagonal holonomy. By a result of A. Ga֒sior (see [7, Theorem 1.2]), it follows
that a real Bott manifold with holonomy group of even Z2-rank has a spin structure
if and only if all its finite covers with holonomy group Z2

2 have a spin structure.
Our examples show that the general case of diagonal flat manifolds is much more
complicated.

We do not know whether all the finite proper covers of the manifolds Md are
parallelizable. Therefore, we ask the following question.

Question. For any integer d > 2, does there exist a closed oriented non-spin flat
manifold Md with holonomy group Zd

2 such that every finite proper cover of Md is
parallelizable?

Of course, the manifolds constructed in the main theorem are potential candidates.
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2. Characterizing diagonal flat manifolds

In this section we give a combinatorial description of diagonal flat manifolds. This
language will be essential in our analysis of the Stiefel-Whitney classes of such man-
ifolds.

Suppose we have a short exact sequence of groups

0 −→ Zn ι
−→ Γ

π
−→ G −→ 1. (1)

We shall call Γ diagonal or diagonal type if the image of the holonomy representation
ρ : G→ GL(n,Z):

ρ(g)(z) = ι−1(γι(z)γ−1), ∀g ∈ G, π(γ) = g, γ ∈ Γ, ∀z ∈ Zn

is a subgroup of the group of diagonal matrices D ∼= Zn
2 ⊆ GL(n,Z) where

D = {A = [aij ] ∈ GL(n,Z) | aij = 0, i 6= j; aii = ±1, 1 6 i, j 6 n}.

It follows that G = Zk
2 for some 1 6 k 6 n− 1.

Let S1 be the unit circle in C. As in [11], we consider the automorphisms gi : S1 →
S1, given by

g0(z) = z, g1(z) = −z, g2(z) = z̄, g3(z) = −z̄, ∀z ∈ S1.

Equivalently, with the identification S1 = R/Z, for any [t] ∈ R/Z we have:

g0([t]) = [t], g1([t]) =

[

t +
1

2

]

, g2([t]) = [−t], g3([t]) =

[

− t +
1

2

]

. (2)

Let D = {gi | i = 0, 1, 2, 3}. It is easy to see that D ∼= Z2 × Z2 and g3 = g1g2. We
define an action Dn on Tn by

(t1, . . . , tn)(z1, . . . , zn) = (t1z1, . . . , tnzn), (3)

for (t1, . . . , tn) ∈ Dn and (z1, . . . , zn) ∈ Tn = S1 × · · · × S1

︸ ︷︷ ︸
n

.

Any subgroup Zd
2 ⊆ D

n defines a (d× n)-matrix with entries in D which in turn
defines a matrix A with entries in the set S = {0, 1, 2, 3} under the identification
i↔ gi, 0 6 i 6 3. Note that the group action in S is defined by this correspondence:

∀i,j,k∈Si + j = k ⇔ gigj = gk,

hence we can add distinct rows of A to obtain a row vector with entries in S.

Remark 2.1. Note that if Γ is a diagonal Bieberbach group then it can be realized as
a subgroup of GL(n + 1,Q) of matrices of the following form

Γ =

{[
ρ(g) s(g) + z

0 1

]

| g ∈ G, z ∈ Zn

}

,

where ρ : G→ GL(n,Z) is the holonomy representation defined above and s : G→
{0, 1

2}
n is a map called vector system. If G ∼= Zd

2 is generated by b1, . . . , bd, In is the
identity matrix of degree n and ei is the i-th column of In, for i = 1, . . . , n, then Γ is
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generated by the following elements

γj =

[
ρ(bj) s(bj)

0 1

]

,

[
In ei
0 1

]

,

where j = 1, . . . , d, i = 1, . . . , n.
The rows of the matrix A generate a transversal of Zn in Γ as follows: let 1 6 j 6 d,

ρ(bj) = diag(X1, . . . , Xn) and s(bj) = [x1, . . . , xn]T , where Xi ∈ {±1} and xi ∈ {0,
1
2}

for i = 1, . . . , n. Then the corresponding element of Dn is an n-tuple (t1, . . . , tn) of
maps from (2) defined by

∀16i6n∀t∈Rti([t]) = [Xit + xi].

We get that (t1, . . . , tn) = (gi1 , . . . , gin) where i1, . . . , in ∈ S and hence the j-th row
of the matrix A is equal to (i1, . . . , in).

The sum of rows j1 and j2 of the matrix A corresponds, by the above construction,
to the element

[
ρ(gj1gj2) s(gj1gj2)

0 1

]

∈ Γ.

From the discussion in Remark 2.1 we obtain the following.

Lemma 2.2. Using the notation of Remark 2.1 we get that

∀16k6nik ∈ {0, 1} ⇔ Xk = 1 and ik ∈ {2, 3} ⇔ Xk = −1.

Example 2.3. Let Γ be a group generated by

γ1 =







1 0 0 1
2

0 −1 0 1
2

0 0 −1 0
0 0 0 1






, γ2 =







−1 0 0 0
0 1 0 1

2
0 0 −1 1

2
0 0 0 1






.

Then the corresponding matrix A, given by the construction in Remark 2.1 is equal
to

[
1 3 2
2 1 3

]

.

The sum of the two rows
[
3 2 1

]
corresponds to the matrix

γ =







−1 0 0 1
2

0 −1 0 0
0 0 1 1

2
0 0 0 1






∈ Γ.

Note that

γ = γ1γ2







1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1






.

So, as stated in Remark 2.1, γ and γ1γ2 differ by a lattice element of Γ.

We have the following characterization of the action of Zd
2 on Tn and the associated

orbit space Tn/Zd
2 via the matrix A.
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Lemma 2.4. Let Zd
2 ⊆ D

n and A ∈ Sd×n. Then,

(i) the action of Zd
2 on Tn is free if and only if there is 1 in the sum of any distinct

collection of rows of A;

(ii) Zd
2 is the holonomy group of Tn/Zd

2 if and only if there is either 2 or 3 in the
sum of any distinct collection of rows of A.

Proof. Part (i) follows from the fact that g1 (which corresponds to 1 in S) is the only
element in D that has no fixed points.

For part (ii), let Γ be a group defined by A that fits into the short exact sequence (1).
Let ϕ : D → GL(1,Z) be a homomorphism defined by Lemma 2.2, i.e. ϕ(g2) = ϕ(g3) =
−1. We have the following diagram

D ⊃ Zd
2

ϕn

−→ ρ(G)
ρ
←− G,

where ϕn = ϕ× · · · × ϕ. Since the holonomy representation ρ is faithful, Zd
2 is the

holonomy group of Tn/Zd
2 = Rn/Γ if and only if every its n-tuple contains g2 or g3.

This is equivalent to the statement that the sum of any distinct collection of rows of
A contains 2 or 3.

When the action of Zd
2 on Tn defined by (3) is free, we will say that the associated

matrix A is free and we will call it the defining matrix of Tn/Zd
2. In addition, when

Zd
2 is the holonomy group of Tn/Zd

2, we will say that A is effective.

3. Combinatorial Stiefel-Whitney classes

We use defining matrices of diagonal flat manifolds to express their characteristic
algebras and Stiefel-Whitney classes using the language introduced in the previous
section.

To simplify notation, we identify i↔ gi for i = 0, 1, 2, 3. Let us consider the epi-
morphisms

α, β : D → F2 = {0, 1},

where the values of α and β on D are given in Table 1.

0 1 2 3

α 0 1 1 0
β 0 1 0 1

Table 1: α and β on D.

For j = 1, . . . , n, and Zd
2 ⊆ D

n we define the epimorphisms:

αj : Zd
2 ⊆ D

n prj
−→ D

α
→ F2, βj : Zd

2 ⊆ D
n prj
−→ D

β
→ F2

by

αj(t1, . . . , tn) = α(tj), βj(t1, . . . , tn) = β(tj).

Using definitions of α, β and the translations given in equation (2), we obtain the
following lemma.
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Lemma 3.1. Suppose a subgroup Zd
2 ⊆ D

n acts freely and effectively on Tn. Then a
holonomy representation ρ : Zd

2 → GL(n,Z) of the flat manifold Tn/Zd
2 is given by

∀x∈Z
d
2

ρ(x) = diag
(
(−1)(α1+β1)(x), . . . , (−1)(αn+βn)(x)

)
.

Proof. It is enough to note that the map ϕ defined in the proof of Lemma 2.4 is given
by the formula

g 7→ (−1)(α+β)(g)

for every g ∈ D.

Since H1(Zd
2;F2) = Hom(Zd

2,Z2) we can view αj and βj as 1-cocycles and define:

θj = αj ∪ βj ∈ H2(Zd
2;F2), (4)

where ∪ denotes the cup product. It is well-known that

H∗(Zd
2;F2) ∼= F2[x1, . . . , xd],

where {x1, . . . , xd} is a basis of H1(Zd
2,F2). Hence, the elements αj and βj correspond

to:

αj =

d∑

i=1

α(prj(bi))xi, βj =

d∑

i=1

β(prj(bi))xi ∈ F2[x1, . . . , xd], (5)

where {b1, . . . , bd} is the standard basis of Zd
2 and j = 1, . . . , n (cf. [4, Proposi-

tion 1.3]).
Moreover, from definition of the matrix A ∈ Sd×n we have Ai,j = prj(bi) and hence

we can write (5) and (4) as:

αj =
d∑

i=1

α(Ai,j)xi, βj =
d∑

i=1

β(Ai,j)xi, θAj = αj ∪ βj = αjβj . (6)

Next, we will make use of the Lyndon-Hochschild-Serre spectral sequence {Ep,q
r , dr}

associated to the group extension of (1). Since Γ is of diagonal type, we have:

Ep,q
2
∼= Hp(Zd

2;F2)⊗Hq(Zn;F2).

There is an exact sequence

0→ H1(Zd
2;F2)

π∗

−→ H1(Γ;F2)
ι∗
−→ H1(Zn;F2)

d2−→ H2(Zd
2;F2)

π∗

−→ H2(Γ;F2), (7)

where d2 is the transgression and π∗ is induced by the quotient map π : Γ→ Zd
2

(e.g., [5, Corollary 7.2.3]).

Proposition 3.2. Suppose Zd
2 acts freely and diagonally on Tn. Let M = Tn/Zd

2 and
Γ = π1(M) be associated to the group extension (1). Then,

(i) θl = d2(εl), ∀1 6 l 6 n, where {ε1, . . . , εn} is the basis of H1(Zn,F2) dual to
the standard basis of Zn ⊗ F2.

(ii) The total Stiefel-Whitney class of M is

w(M) = π∗

( n∏

j=1

(1 + αj + βj)

)

∈ H∗(Γ;F2) = H∗(M ;F2).
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Proof. By Theorem 2.5(ii) and Proposition 1.3 of [4] and using (2), it follows that

d2(εl) =
∑

Ail=1

x2
i +

∑

i6=j

xixj ,

where the second sum is taken for such i, j that

(Ail, Ajl) ∈ {(1, 2), (2, 1), (1, 3), (3, 1), (3, 2), (2, 3)}.

On the other hand

θl = αlβl =

d∑

i=1

α(Ail)β(Ail)x
2
i +

∑

16i<j6d

(
α(Ail)β(Ajl) + α(Ajl)β(Ail)

)
xixj .

Comparing coefficients of the above two polynomials finishes the proof of (i).
For the second part of the proposition, note that the image of the holonomy rep-

resentation ϕ of M , defined in Lemma 3.1, is a subgroup of the group D of diagonal
matrices of GL(n,Z). Now, let {x′

1, . . . , x
′
n} be the standard basis of H1(D,Z2) (i.e. x′

j

checks whether the j-th entry of the diagonal is ±1). Using Proposition 3.2 of [4] (see
also (2.1) of [9]), we have

w(M) = π∗

( n∏

j=1

(1 + ϕ∗(x′
j))

)

.

Furthermore, for every 1 6 l 6 d and 1 6 j 6 n, we have

ϕ∗(x′
j)(bl) = x′

j(ϕ(bl)) = (αj + βj)(bl)

and the result follows.

We observe that by part (i) of Proposition 3.2, the image of the differential d2 is
the ideal generated by θj-s:

〈Im(d2)〉 = 〈θ1, . . . , θn〉 ⊆ F2[x1, x2, . . . , xd].

Given A ∈ Sd×n, using (6), we will set IA = 〈θA1 , . . . , θ
A
n 〉 and call it the characteristic

ideal of A. The quotient CA = F2[x1, . . . , xd]/IA will be the characteristic algebra of A.
Whenever there is no confusion, we will suppress the subscripts.

Corollary 3.3. Suppose Zd
2 acts freely and diagonally on Tn. There is a canon-

ical homomorphism of graded algebras φ : C → H∗(Tn/Zd
2;F2) such that φ([w]) =

w(Tn/Zd
2) where [w] is the class of

w =
n∏

j=1

(1 + αj + βj) ∈ F2[x1, x2, . . . , xd]. (8)

Moreover, φ is a monomorphism in degree less than or equal to two.

Proof. This follows directly from the exact sequence (7), with φ induced by the
algebra homomorphism π∗ : H∗(Zd

2;F2)→ H∗(Γ;F2).

Definition 3.4. Given a matrix A ∈ Sd×n, using (6), we define the (combinatorial)
Stiefel-Whitney class of A, denoted w(A), to be the class [w] ∈ CA defined by (8).
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Corollary 3.5. Suppose A ∈ Sd×n is free and Tn/Zd
2 is the corresponding flat man-

ifold. Then φ(w(A)) = w(Tn/Zd
2).

Next, we derive several properties of the Stiefel-Whitney classes and of character-
istic ideals which will be key to our discussion later on.

Lemma 3.6. Let A ∈ Sd×m, B ∈ Sd×n and [A,B] ∈ Sd×(m+n). Then,

(i) w([A,B]) = w(A)w(B);

(ii) I[A,B] = IA + IB ;

(iii) if j-th column of A has only elements {0, 2} or {0, 3}, then θAj = 0.

Proof. By Definition 3.4, we have:

w([A,B]) =
m∏

j=1

(1 + αj + βj)
m+n∏

j=m+1

(1 + αj + βj) ∈ F2[x1, x2, . . . , xd],

where

αj =

d∑

i=1

α(Ai,j)xi, βj =

d∑

i=1

β(Ai,j)xi, ∀ 1 6 j 6 m

and

αj =

d∑

i=1

α(Bi,j)xi, βj =

d∑

i=1

β(Bi,j)xi, ∀ m + 1 6 j 6 m + n.

Therefore, w([A,B]) = w(A)w(B).

To prove (ii), recall that I[A,B] = 〈θ
[A,B]
1 , . . . , θ

[A,B]
n 〉 with θ

[A,B]
j = αjβj . Note that,

θ
[A,B]
j = θAj when 1 6 j 6 m and θ

[A,B]
j = θBj−m when m + 1 6 j 6 m + n. Hence,

I[A,B] = IA + IB .

Part (iii) follows from that fact that θAj = αjβj and that αj = 0 on {0, 2} and
βj = 0 on {0, 3}.

4. Proof of main theorem

To define minimal non-spin manifolds we will make use of the following matrices:

1. A0 =

[
I(d−1)

r

]

∈ Sd×(d−1), where I(d−1) is the identity matrix and r = (1, . . . , 1).

2. A1 =
[
c1, . . . , cd(d−1)/2

]
∈ Sd×d(d−1)/2 with columns ck = 2ei + 3ej for all i < j

ordered in lexicographical order. Here, ei denotes the column vector with 1 in the
i-th coordinate and 0 everywhere else.

3. Let A = [A0, A1], B = 2(e1 + e2 + · · ·+ ed) ∈ Sd×1, and C = 2e1 ∈ Sd×1.

4. Let E be the free matrix

E =







[A,B,C,C] d = 0 mod 2,
[A,B,B] d = 1 mod 4,

A d = 3 mod 4.
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5. Finally, let F ∈ Sd×n(d) be the free and effective matrix defined by

F =

{
E d 6= 3 mod 4,
[E,C,C,C,C] d = 3 mod 4.

Note that

n(d) =

(
d + 1

2

)

+







2 d = 0 mod 2,
1 d = 1 mod 4,
3 d = 3 mod 4.

Example 4.1. For d = 2 and d = 3 the matrix F is equal to
[
1 2 2 2 2
1 3 2 0 0

]

and




1 0 2 2 0 2 2 2 2
0 1 3 0 2 0 0 0 0
1 1 0 3 3 0 0 0 0



 ,

respectively.

Let σi be the i-th elementary symmetric polynomial on variable {x1, . . . , xd}. Con-
sider the ideal J ⊆ F2[x1, . . . , xd] generated by the polynomials

x2
i + x2

j and xixj ,

where i 6= j.

Lemma 4.2. The matrix A is free, IA = J and

w(A) =
[
(1 + σ1)d−1

]
∈ CA = F2[x1, . . . , xd]/J.

Proof. The matrix A is clearly free by definition. To see that J = IA, note that, by
Lemma 3.6, we have IA = IA0

+ IA1
. Recall that IA0

= 〈θA0

1 , . . . , θA0

d−1〉 with θA0

l =
αlβl for 1 6 l 6 d− 1. Now, we have:

θA0

l = αlβl

=
d∑

i=1

α(A0il)β(A0il)x
2
i +

∑

16i<j6d

(
α(A0il)β(A0jl) + α(A0jl)β(A0il)

)
xixj

= x2
l + x2

d.

Similarly, IA1
= 〈θA1

1 , . . . , θA1

d(d−1)/2〉 and θA1

l = xixj for all 1 6 i < j 6 d. It is easy

to see now that J = IA0
+ IA1

.
To prove the last claim, we write:

w(A) = w(A0)w(A1)

= w(A1)

=
[∏

i<j

(1 + xi + xj)
]

=

[

1 + (d− 1)σ1 + d(d− 2)σ2 +

(
d− 1

2

)

σ2
1

]

.
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Since σ2 ∈ J , it follows that

w(A) =

[

1 + (d− 1)σ1 +

(
d− 1

2

)

σ2
1

]

=
[
(1 + σ1)d−1

]
.

Let ϕ : P2 → F2 be the linear extension of the map given by ϕ(x2
i ) = 1 and

ϕ(xixj) = 0, for i 6= j, where P2 denotes the space of homogeneous polynomials of
degree two. We make the following observations.

Lemma 4.3. Let J2 = {x ∈ J | x is an element of degree 2}. Then J2 = Ker(ϕ).

Proof. The spaces J2 and Ker(ϕ) have the same basis.

Lemma 4.4. We have:

(i) IB = 0 and w(B) = [1 + σ1].

(ii) IC = 0 and w(C) = [1 + x1].

(iii) The matrix E is free and IE = J .

Proof. The first two claims follow from Lemma 3.6 (iii) and the formula (8) applied
to the matrices B and C. For the proof of the last claim, note that, by parts (i), (ii)
and Lemma 3.6 (ii), we have that IE = IA. This finishes the claim, since IA = J .

Proposition 4.5. The flat manifold M defined by the matrix E has w(M) = [1 +
x2
1] ∈ C. In particular, M is oriented, it does not have a spin structure and wi(M) = 0

for all i > 2.

Proof. First, let us observe that dim CE2 = 1 and CEi = 0 for i > 2. In fact, the first
formula can be seen from the definition C2 = P2/J2. The second formula follows from
noting that any homogeneous polynomial in F2[x1, . . . , xd] of degree greater than two
is in the ideal J .

Let us now calculate the Stiefel-Whitney class w(M) = w(E) of M . We shall con-
sider the following cases:

Case 1 (d is even). We have

w(E) = w(A)w(B)w(C)2 = [(1 + σ1)d−1(1 + σ1)(1 + x1)2]

= [(1 + σ1)d(1 + x2
1)] = [(1 + σ2

1)d/2(1 + x2
1)].

Since d is even, σ2
1 is a sum of even number of squares. Hence, σ2

1 ∈ J and
w(E) = [1 + x2

1]. Therefore, wi(M) = 0 for i 6= 2 and w2(M) = [x2
1]. But x2

1 /∈ J
because ϕ(x2

1) 6= 0.

Case 2 (d = 1 mod 4). We have

w(E) = w(A)w(B)2 = [(1 + σ1)d+1] = [(1 + σ1)2] = [1 + σ2
1 ].

As above, M is orientable and has no spin structure since ϕ(σ2
1) = d = 1.

Case 3 (d = 3 mod 4). We have

w(E) = [(1 + σ1)d−1] = [(1 + σ1)2] = [1 + σ2
1 ].

Hence, as above, M is orientable and has no spin structure.



SPIN STRUCTURES OF FLAT MANIFOLDS OF DIAGONAL TYPE 343

Proposition 4.6. Let M = Tn/Zd
2 be the flat manifold defined by the matrix E. Let

M ′ be a finite proper cover of M , Γ = π1(M), Γ′ = π1(M ′) and i : Γ′ → Γ be the
inclusion corresponding to the covering. Suppose Γ′/(π1(Tn) ∩ Γ′) ∼= Zk

2 with k < d.
Then M ′ has trivial Stiefel-Whitney classes.

Proof. Let C = F2[x1, . . . , xd]/J be the characteristic algebra of M (equivalently, of
E) and C′ be the characteristic algebra of M ′ with characteristic ideal IM ′ . We claim
that C′l = 0 for l > 2.

To see this, we note that there is a commutative diagram with exact rows

π1(Tn) ∩ Γ′ Γ′ Zk
2

π1(Tn) Γ Zd
2.

ι′

i

π′

j

ι π

Combining this with equation (7), yields the commutative diagram

H1(π1(Tn);F2) H2(Zd
2;F2)

H1(π1(Tn) ∩ Γ′;F2) H2(Zk
2 ;F2).

i∗

d2

j∗

d′

2

This shows that

j∗(J) = j∗(〈Im(d2)〉) ⊆ 〈Im(d′2)〉 = IM ′ ⊆ H∗(Zk
2 ;F2).

Therefore, we get an induced epimorphism of algebras j∗ : C → C′.

Recall that by Proposition 4.5, C2 = {0, [x2
1]}. For any y ∈ C1 r {0} there is z ∈ C1

such that yz = [x2
1]. Suppose otherwise and let y = [a], a ∈ F2[x1, . . . , xd]1. If yC1 =

{0}, then for any 1 6 m 6 d, axm ∈ J2 = Ker(ϕ). This is impossible since ϕ corre-
sponds to a non-degenerated symmetric two linear map.

Since dim C1 = d > k > dim C′1, there exists y ∈ C1 such that j∗(y) = 0. We can find
z ∈ C1 so that yz = [x2

1] ∈ C2. Because j∗ is an epimorphism and C2 is one-dimensional,
j∗(yz) generates C′2. But j∗(yz) = j∗(y)j∗(z) = 0 and therefore, C′2 = 0.

Finally, since Cl = 0 for l > 2 and j∗ is surjection, we obtain the triviality of C′l for
l > 2. This proves our claim and together with Proposition 4.5 finishes the proof.

We are now ready to prove our main result.

Theorem 4.7. Suppose M is the flat manifold defined by the matrix F . Then, M is
orientable with holonomy group Zd

2, w2(M) 6= 0 and every finite proper cover of M
has all vanishing Stiefel-Whitney classes.

Proof. Since the matrix F is effective, by Lemma 2.4, we know that the holonomy
group is Zd

2. By Lemmas 3.6 and 4.4, it follows that IF = J , CF = CE , and w(F ) =
w(E) = [1 + x2

1]. Hence, M is orientable, but non-spin. The last claim follows from
applying the proof of Proposition 4.6 to the manifold M defined by the matrix F in
place of E.
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