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Abstract 

Hiss, G. and A. Szczt I- fiski, On torion free crystallographic groups, Journal of Pure and 
Applied Algebra 74 (1991) 39-56. 

The torsion free crystallographic groups arise as fundamentai groups of compact flat Rieman- 
nian manifolds. Let R be a crystallographic group with point group G and translation group T. 
In this paper we consider the QG-module TO, Q, for which we prove: If R is torsion free, 
then G does not act irreducibly on T @X)X Q. A proof of this theorem for solvable groups G was 
first given by G. Cliff. The theorem proves a conjecture made by the second author. The proof 
of the theorem uses the classification of the finite simple groups. 

1. Results 

Let G be a finite group and let X be a ZG-lattice. An element a) E H’(G, X) is 
called special, if resz cy # 0 for all nontrivial cyclic subgroups C 5 G. In this paper 
we prove the following theorem: 

Theorem. Let G be a nontrivial finite group. Suppose X is a ZG-lattice such that G 
is faithfully represented on X and that X Q9= Q is irreducible. Then there is no 

special element in H’(G. X). 

A proof of this theorem for solvable groups G was first given by Ck Cliff. 
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ul. Majakowskiego 11 / 12. SO-952 Gdansk, Poland. 

0022-4049/91/$03.50 Q 1991 - Elsevier Science Publishers B.V. (North-Holland) 



40 G. Hiss, A. Srczepariski 

Corollary. Let R be a crystallographic group with point groug G and translation 
group T. If R is torsion free, i.e., has no elements of finite nontrivial order, then G 

does not act irreducibly on T & Q. 

Proof. The extension of T by G, giving the torsion free crystallographic group R, 
is described by a special element in H’(G, 7). q 

The torsion free crystallographic groups are exactly the fundamental groups of 
compact flat Riemannian manifolds. So the Theorem proves Conjecture 1.2 made 
by the second author in [27]. 

The proof of the theorem uses the classification of the finite simple groups. 

2. Reductions 

In this section we shall show how to reduce the proof of the theorem to the 
study of certain properties of characters of finite simple groups. 

Throughout this section let G be a finite group. For any prime p, we let Z, 
denote the ring of p-adic integers and Q, the field of p-adic numbers. For any 
field K let K denote a fixed algebraic closure. Tensor products will always be 
taken over the integers Z. A ZG-lattice X is called irreducible if X BB Q is an 
irreducible 69 G-module. 

Lemma 2.1. Let X be an irreducible ZIG-iattice. Suppose that X 03 iz, contains an 
indecomposable direct summand in the principal Z,G-block. Then every irreduc- 
ible constituent of XC3 @ is in the principal p-block of G. 

Proof. Let 5 be a primitive ]G]-th root of unity and let K = Q!( 5) C a C @. Then 
K is a splitting field for G and the K-characters of G are the same as the 
@-characters. Since X8 Q is irreducible, any two distinct irreducible constituents 
of X8 K are conjugate under an element of the Galois group of K/Q (see [ 18, 

Theorem 9.21(c)]). This group permutes the p-blocks of Irr,(G) fixing the 
principal block (see [6, Lemmas IV.4.9 and IV.4.121). It is therefore enough to 
show that one of the constituents of X8 K is in the principal p-block. 

Let cp : K--, a,, be an embedding over 0. Let L = cp( K)Q,. Then q induces a 
bijection between Irr,(G) and Irr,(G) which preserves p-blocks (see [12, 
(7. lo)]). In order to finish the proof, it suffices to show that X @ L has a 
constituent in the principal p-block. This, however, follows from our assumption 
that X8 Z, has a direct summand in the principal block (see the introductory 
discussion of [6, Section VI.11). Cl 

Lemma 2.2. Let X be an irreducible ZG-lattice such that H’(G, X) contains a 
special element. Let ($3 denote the set of irreducible characters of G arising from 



rons!i!wnts of X 8 @. Let S dCiiOiP ta Jirrrple component m the socle (the product of 
all minimal normal subgroups) of G. Finally, Iet Af denote the set of irreducible 
characters of S arising from constituents of 8-S, for 6 E 3. Then we have: 

(a) Ij 9 E 23, then 6 is in the prirlcipal p-block for every prime p dividing 1 GI. 
(b) If 9 E 9, then @ is in the principal p-block of S for every p dividing j G]. 
(c) Let p be a prime dividing ISI such that a Sylow p-subgroly of S is cyclic. 

Then there is 0 E 9 which has the following position on the oriented Brauer tree: 

1 s 

Proof. (a) Let p be a prime dividing 1 GI. Since H’(G, X) contains a special 
element, it follows from [24, Remark II.l(ii)], that H’(G, X&Z,) #O. Write 
X@E, = U, C3 l l l 89 U,I with indecomposable ?!#,,G-lattice s Ui. Then H’(G, Ui) # 
0 for some i. By [16, Lemma 2.2.251, Ui is in the principal Z,G-block. Lemma 2.1 
now shows that the irreducible constituents of X8 C lie in the principal p-block. 

(b) The result follows from (a) and an iterated application of [6, Lemma 
IV.4.101, since S is a subnormal subgroup of G. 

(c) We shall use the terminology of [24]. Let ar be a special element in 
H’(G, X). Then p = res:cu is a special element in H’(S, X). Since a Sylow 
p-subgroup of S is cyclic, this implies that the p-adic S-extension with kernel 
X@Z, corresponding to p is p-torsion free (see 124, Remark II. l(ii)j j. By 
choosing a minimal subextension we obtain a Frattini S-extension (see [24, 
Proposition 11.21). The kernel of this Frattini S-extension contains an irreducible 
C&-character which has the position of 0 on the Brauer tree (of the principal 
Z,S-block). This assertion is proved in Section III of [24]. An irreducible 
L-constituent of this character gives rise to an element in 9, which has the same 
position on the Brauer tree. This completes the proof of the lemma. Cl 

3. The simple groups 

In this section we shall use the classification of the finite simple groups to show 
that there is no finite nonabelian simple group which has a character satisfying 
conclusions (b) and (c) of Lemma 2.2. 

Let us shortly describe the strategy we are going to follow. Let S be a 
nonabelian finite simple group and Sp the subset of those irreducible characters x 
of S satisfying: 

(i) X is in the principal p-block of S for every prime p dividing j S] . 
(ii) For every prime p dividing ]Sl such that a Sylow p-subgroup of S is cyclic, x 

has the position of 0 on the Brauer tree (1) of the principal p-block. 
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In particular, if there is a prime p as in (ii), the set 9’has at most 1 element. We 
intend to show that 9’ in fact is empty. By the classification theorem, S is a 
sporadic group, an alternating group or a finite group of Lie type. For each such S 
we find a prime r such that a Sylow r-subgroup of S is cyclic. The Brauer tree of 
the principal r-block is not known in all cases. However, sufficient information on 
the ordinary irreducible characters of S is available to restrict the number of 
possibilities for the character 0 in (1). 

We then determine a prime r’ with the property that none of these possible O’s 
is in the principal &block. In most of the cases this is done by showing that 0 is 
of r’-defect 0, i.e., that ISI /O( 1) is not divisible by r’. Hence 9 is empty. 

3.1. The sporadic groups 

The Brauer trees for these groups are almost all completely known [ 151. In any 
case it is possible to determine the character 0 of (1) for suitable primes r for 
which S has a cyclic Sylow r-subgroup. For each sporadic group the prime r, the 
degree of the character 0 and the prime r’ are given in Table 1. Except for J, and 
He, 0 is always of r’-defect 0. In J2 and He, 0 is in a 3-block of defect I, as can 

Table 1 
Primes and characters for sporadic groups 

Group r @(l) r’ 

4, 11 45 5 

Ml, 5 176 I! 

J, 5 76 19 

4, 5 231 7 

J, 7 288 3 

MY 11 1035 23 
HS 11 2520 7 

J3 17 3078 19 

M2.l 11 3312 23 
McL 11 1750 7 
He 17 22050 3 
Ru 7 81432 13 
SW 7 168960 11 
O’Nan 11 175770 31 

c, 23 5544 11 

c, 23 37422 11 

F,, 7 2555904 13 
Ha 7 267520 11 

LY 7 38734375 37 
Th 31 30507008 19 

F,, 7 166559744 13 

C, 23 4 100096 11 

J4 5 1183406741 23 

F2-l 11 9100908180 13 
BM 11 422966584586250 13 
M 17 50572542024949598403750000 19 
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be seen from the tables in [15]. Since these two groups have order divisible by 9, 
0 is not in the principal 3-block. This completes the proof for the sporadic 
groups. 

3.2. The alternating groups 

We start with some small examples. The results for these small alternating 
groups are collected in Table 2. The symbols have the same meaning as in Table 
1. The Brauer trees for these examples are well known and easily calculated. (See 
also [20, Theorem 6.1.46j.) 

Now let S = A,, , n > 11. Let x E 9 and let Y be the largest prime less than n. It 

easily follows from Bertrand’s Postulate (see [ll, p. 4201) that r 2 (n + 3) 12. 
Then a Sylow r-subgroup of S is cyclic, and x has the position of 0 on the Brauer 
tree (1) of the principal r-block. Before we deal with the general case, we have to 

consider some extreme cases first. 
As in the results of Table 2, we use the description of the r-blocks of A,, via the 

Nakayama conjecture for S,, (see [20, Theorem 6.1.461). The Brauer trees for S,, 
can easily be determined using [19, Corollary 12.21. From this description it 

follows that the Young diagram corresponding to the character 0 is distinct from 

its conjugate. Hence the restriction of x to A,, is irreducible. 
CaseA: r=n- 1. Then the Young diagram corresponding to x is 

Since n - 6 is even, the 2-core of (2) is 

iience x is not in the principal 2-block of A,, . 

Table 2 
Primes and characters for small alternat- 
ing groups 

Group r O(1) r’ 

(2) 

4 3 4 2 
A, 5 8 2 
A, 7 15 5 
A, 5 56 7 
A9 7 142 3 
A 

10 

7 288 +\ L 
AI, 11 45 7 
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Case B: 

Let r’ be a 
(3) is 
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r = rt - 2. Then the Young diagram corresponding to x is 

prime dividing r - 6. Then r’ # 3, since r # 3. Therefore, the r’-core of 

Hence x is not in the principal r’-block of A,, . 

Case C: r = n - 4. Since n > 11 and r is the maximal prime <n, we have r 2 13. 
The Young diagram corresponding to x is 

Suppose first that r - 8 = 3” is a power 
suppose r - 7 = 2h. Then 3” = 2b - 1. It 
two integral solutions, namely a = 0, 
r 2 13. 

of 3. Then r - 7 is not a power of 2. For 
is easy to see that this equation has on!y 
b = 1 and Q = 1, b = 2. This contradicts 

So let r’ be an odd prime dividing r - 7. Then r’ 2 5. If r’ > 5, the r’-core of (4) 

(4) 

since r’ # 7. If r’ = 5, the 5-core of (4) is 

F 

In neither case is x in the principal r’-block. 
Suppose now that r - 8 is not a power of 3. Let r’ # 3 be a prime dividing r - 8. 

If r’ # 5, the r’-core of (4) is 



The 5-core of (4) is 

In neither case is x in the principal r’-block. 
CaseD: (n+3)/2S5n- 3, r # n - 4. The Young diagram corresponding to 

x is of shape 

n -r 

Suppose first that n - r = 2”, a 2 3. Let r’ be an odd prime dividing II - r - 2, 

which exists since a 2 3. Beginning from the right, we first remove r’-hooks from 
the second row of (5) and then from the first, until we obtain the diagram 

where s’ < r’. This has the following hook lengths: 

s’+S s’+3 s’+2 s’s’-1 *a- 1 

4 2 1 

1 

If this is not the r’-core, r’ is one of the numbers s’ + 5, s’ + 3, s’ + 2. If 
r’ = s’ + 5, the r’-core of (5) is 

m (6) 

If r’ = s’ + 3, the r’-core of (5) is 

and if r’ = s’ + 2, and r’ > 3, the r’-core of (5) is 

Finally, if r’ = s’ + 2 = 3, the r’-core of (5) is again given by (6). 
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TO conclude that x is not in the principal r’-block, we have to show that (6) is 
not an r’-core of (5) (so that several of the above possibilities do not occur at all). 
If (6) is the r’-core of (5), we have n = 2 (mod r’). On the other hand, by the 

definition of r’, n - r = 2 (mod r’). This implies r’ = I’, which is impossible, since 

r > n12. 
We finally consider the case that n - r is not a power of 2. Let r’ be an odd 

prime dividing n - r. By successively removing r’-hooks from (5), we end up with 

the following diagram 

. . . 
I 1 

* / - 
s’ b 

with s’ c r’. This has hook lengths 

s’ + 3 s) s’ - 1 l l l 1 

2 

1 

If (7) is not the r’-core of (5) we have r’ = s’ + 3. But this means that the r’-core 

of (5) is the empty partition, and so r’ 1 n. On the other hand, r’ 1 n - r, hence 
r’ = r, contradicting r > n 12. Thus (7) is indeed the r’-core of (5), showing that x 

is not in the principal &block. 

3.3. The simple groups of Lie type 

A simple group of Lie type is either the Tits simple group or else of the 
G/Z(G), where G = G’ is the set of fixed points of a Frobenius map F 
simple, simply connected linear algebraic group G (see [3, Section 1.191). 

The Brauer tree for the Tits simple group in characteristic 13 is given in 
The character 0 has degree 2048, hence is of 2-defect 0. 

form 
on a 

WI . 

Now let G/Z(G) be a simple group of Lie type, which is neither the Tits group 
nor a Suzuki or Ree group. To G is associated a positive integer q = pa, where p 
is a prime number, the so-called defining characteristic of G (see [3, Section 1.9, 
p. 351; q is an integer, since we have excluded the Suzuki and Ree groups from 
our consideration). The order of G = G(q) may be found in [3, p. 75ff]. It can be 
written as a product of a power of q and cyclotomic polynomials, evaluated at q. 
We shall write @,# for the nth cyclotomic polynomial. A primitive divisor of Gs( q) 
is a prime r such that r 1 @J q) but r@Dr( q) if t < s. Primitive divisors exist for all 
pairs (4, s) of positive integers, except %r (q, s) = (2b - 1,2), b P 1 and (q, S) = 
(2,6) (see [17, Theorem 8.31). 

Given G, let m, be the largest integer such that Q&q) divides ] G( q)l for all 

q. If (q, m,) + (2,6) and (q, m,) If (26 - 1,2), let r be a primitive divisor of 
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@,,,,;( 4). Such a prime is called a Coxeter prime for G( q). If G = %,( q’), 
$ = 22n1+ I, m P 1, a Coxeter prime for G by definition is a prime divisor of 
q’ - fiq + 1. For the Ree groups ‘G(q’), q’ = 3”7*c1, 122 11 and %‘J q’). 
q? = 2?t77+ 1, 

m 2 1 9 Coxeter primes are defined to be the prime divisors of 
q2 - V3q + 1 respectively qJ - tiq3 + q’ - tiq -f- 1. If r is a Coxeter prime, a 
Sylow r-subgroup of G is cyclic (see [14]). 

When considering unipotent characters of G, it does no harm to pass from G to 
the adjoint group G,,. Unipotent characters of G have Z(G) in their kernel (see 
[3, Section 12.1, p. 3801). Let 

be a surjective homomorphism of algebraic groups. Then ker( & = Z(G) (cf. [3, 
p. 251). Let G, be the image of G in (Gad)F. Then G, z G/Z(G). The unipotent 
characters of G, are exactly the restrictions to G,, of the unipotent characters of 
(G.JF (see [5, Proposition 7.101). 

In the following, let S = G/Z(G) be the simple nonabelian component of a 
simple group of Lie type G. Let x E tsP and let I’ be a Coxeter prime for G (if it 
exists). Then a Sylow r-subgroup of S is cyclic and nontrivial, and x has the 
position of 0 in the Brauer tree (1) of the principal r-block. If x is unipotent we 
can think of it as a character of G or (GaJF. We are now going to describe the 
possible characters x for the classical groups. Again we consider some small cases 
first, mainly the cases where no Coxeter primes exist. These results are collected 
in Table 3. We start the general investigation with a preliminary result. 

Lemma 3.1. Let G = G( q) be a classical group, defined over the field with q 

elements. Let r be a prime such that a Sy!ow r-subgroup of G is cyclic. Suppose 

also that for any fundamental reflection s in the Weyl group W of G, r# 1 Ps 1, where 

P, denotes the correspopding standard parabolic subgroup. We assume further- 
more, that W has rank at least 2. Let x be an irreducible character in the position of 

Table 3 
Primes and characters for some small 
classical groups 

Group r @W r’ 

A 5(2) 31 6480 

A em 127 5208 

‘A ,W 5 81 

ktw 11 1024 

‘A 5W 11 8064 

B,(2) 7 120 

B,(2) 17 4200 

D,(2) 7 4096 

D,(2) 17 9300 

2&c2) 17 1344 

5 . 
31 

3 
2 
7 
5 
5 
2 
5 
7 
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(3 oil the Brayer tree ( 1) of the priircipal r-biock of G. Thea3 x is ittt the priilcipal 
series. i.e.. ( x. 1:) # 0, if B denotes the Bowl subgroup of G. 

Proof. By a result of Robinson [25. Theorem 101, the Brauer tree is an open 

polygon 

. . . 

Let cp be the irreducible Brauer character corresponding to the edge of the tree 

connecting $ and x. We extend 9 by 0 to all of G. Then rp = (x - + + l)y, if y 
denotes the characteristic function on the r-regular classes of G. If P is a subgroup 
of G with r$j PI, then 1: is a projective character, and we have: 

o+p, 1;) 

= ((x - $ + 1)y. 1;) 

= (x - + + I, 1;) 

=(x, 1;) - (tjb, 18) + 1. 

In particular, we have (x, 1:) 1: (JI, 1:) - 1. We proceed to show that (+, II;‘) > 

1. With the same arguments we have used so far, we can show that (#. 15;‘) > 0. 
Thus + li,s in the principal series. By [4, Theorem 68.241, we have (& 1:) = A(l), 

where A is the character of W which corresponds to JI. 
Suppose A( 1) = 1. Choose a fundamental reflection s E W such that h(s) # 1. 

This is possible since A is a nontrivial homomorphism of W, and IV is generated by 
a set of fundamental reflections. Set P = &. Then, by [4, Theorem 68.241, we 

have (1:. 9) = (lri,, A) = (l,,,, A,,, ) = 0. This is a contradiction, since by as- 
sumption 1: is a projective character. This completes the proof of the lemma. Cl 

Suppose G = A [(q), q 2 4. Let r be an odd prime dividing q’ - 1. Then the 
Sylow r-subgroup of G is cyclic. We distinguish two cases: 

Case I: r 1 q - 1. Then the Brauer tree of the principal r-block of G is 

1 q+l 4 

Hence x( 1) = q and x is of p-defect 0. 
Case II: r 1 q + 1. Then the Brauer tree of the principal r-block of G is 

4 V-1 



If q - 1 is a power of 2. let r’ = 2. Otherwise. let T’ be an odd prime dividing 
(I - 1. Then x is of r’-defect 0 (for G/Z(G) = S = PSL,(q)). 

Let G = A,( (I). I? 2. Since ill,; = f 1, a Coxeter prime r exists except for 
I=5. (I= 2. So ret us assume (9.1) # (2.5) in the following. By [8], the Brauer 
tree of the principal r-block of G is completely known. The partition labelling x is 

(l,lJ-- 1). We have by (7, p. IIs] 

x(I)=9 
3 (q/- l)(&’ - 1) 

(4q)(q_l) l 

If I = 2, let rv = p. If I > 2 and (4, I) # (2,6), let r’ be a primitive divisor of e!(q). 
Then x is of r’-defect 0. 

how let G be of type ‘A,( q), I 2 2. We consider the case of ‘A -,( q) first. Since 
PSU,(2) is not simple, we may assume that q > 2. Let c’ be a primitive divisor of 
@Jq). Then a Sylow r-subgroup of G is cyclic. and the Brauer tree of the 
principal r-block is 

1 q3 (4-I)(q+ I)? 9(4-I) 

(see [lo]). Thus x is one of the exceptional characters and x( 1) = ( q .- 1 )t q + 1)‘. 
Thus x is of 2-defect 0 for S = G/Z(G). 

Next let G be of type ‘A,(q), I? 3, odd. Suppose that (4, I) # (2.3). Let r be a 
primitive divisor of a>,( 4). By the description of the r-blocks of G given by Fong 
and Srinivasan in [7]. two unipotent characters of G lie in the same r-block, if and 
only if their corresponding Young diagrams have the same e-core, where e is the 
order of q’ modulo r. By our choice of Y, we have e = 1. The I-core of the 
partition (l’+ ’ ). which corresponds to the trivia1 character, is the partition (1). 
Thus x is either the Steinberg character, or else has one of The following 

diagrams: 

with s 2 0. We may assume that x is not the Steinberg character. since otherwise 
we are done with r’ = p. We claim that the diagram (8) for x has no (! - 2)- 

hooks. For suppose it has such a hook. Then it must be the diagram 
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But then x is not in the principal series, since the number of odd respectively even 
hook lengths in (9) differ by more than 1 (cf. [3. Section 13.8, p. 4661). This 
contradicts Lemma 3.1. Hence the diagram for x has no (I - 2)-hooks, and so 

@~(I-&?)1 x(l)* 
If I = 3, the Brauer tree of the principal r-block given below is easily de- 

termined. 

Thus x is the Steinberg character and we are done. Suppose now that I> 3 and 
that (q, I) # (2,5). Let T’ be a primitive divisor of @2&q). Then x is of 
r’defect 0. This follows f?om @2cr-2,( q) 1 ,y( 1) and r’kgcd(@2(,_21( q), QzI( q)). 

NOW let G be of type ‘A,(q), i ~4, even. Let r be a primitive divisor of 
@ z{/+*,(q)* S ince x is in the principal series by Lemma 3.1, it is unipotent. This 
time the order of q’ modulo r equals I + 1. Therefore, the Young diagram of x is 
an (I + Q-hook, i.e., of shape . . . t r . . s . 

(10) 

We may suppose that s > 0 and t 0 y 0. Then the diagram (10) has no (I - 1)-hooks. 

For otherwise this diagram would be 

so that x is not in the principal series for the same reason as above. Hence 
@2cr_ 1 ,( q) 1 x( 1). Let r’ be a primitive divisor of @$,- Ij( q) if (q, I) # (2,4). Then 
x is of r’-defect 0 which follows from the above and r’#gcd( G2(,+, ,( q), 42t1- 1 ,( 4)). 

We now consider the remaining classical, i.e., the symplectic and orthogonal 
groups. Let G be such a group and r a Coxeter prime for G. We may assume that 
the Weyl group of G has rank at least 2. The hypotheses of Lemma 3.1 are clearly 
satisfied, so that a character x E Z? is in the principal series, hence unipotent. The 
unipotent characters of G are parametrized by symbols. For the definition of 
symbols, their basic properties and all other facts we are going to use here, we 
refer the reader to [3, Section 13.81. 

For our purposes, a symbol is an array of integers 

A=(;;:::;). 
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satisfying certain additional conditions, e.g.: 

A, ,pr not both equal to 0 . 

If x,, is the unipotent character corresponding to A, then the degree of x,, is given 
by a rather complicated formula, which we do not need to reproduce here. A 
simplified version of this formula can be found in [23, Proposition 51. We shall, 
however, need the notion of a cohook of a symbol A. Let e denote a positive 
integer. A cohook of A of length e is a pair of integers (K, V) such that 0 5 K < V, 

K-V= e and either K E {A,, . . . , A,} and v${ I_c,, . . . , pI,} or K E (p!, . . . , ph} 

and v$?{A,, . . . , A(,}. 
Let us first consider the cases of B,(q) i ?d C,( 4). Here, the symbols paramet- 

rizing the unipotent characters in the prmcipal series satisfy: 

6=a-120, (16) 

i Ai + i r_Ci = 1 + (a - 1)’ . 
i=l j=l 

Lemma 3.2. Let A be a symbol satisfying 

has a cohooh of length 1. Then A is one of the following symbols: 

(17) 

(13)~( 17). Suppose furthermore that A 

1 0 c 0 C.rn--1 1 

’ 129-a m ) 
, lsrnd. (18) 

Proof. (a) We first show that A, 5 1, C_L~ 5 1. Suppose that A, f 0. Then 

a-l 

C Ai + i ~j 2 $ ((a - I)a + (b - 1)h) = (a - 1)' , (19 
r=l j=l 

i Ai+bgl ,uj&((a+l)a+(b-2)(b-l))=(a-1)‘+2. 
i=l j=l 

(20) 

Suppose now that A, = 0. Then, by (15) pcl # 0 and we have 

a-1 

2 Ai+~ pjZ$((a-2)(a-l)+(b+l)b)=(a-l)‘, 
i=l j=l 

i Ai-tb~’ ,>;((a-l)a+(b-l)b)=(a-1)‘. 
i=l j=l 

In any case we have A, 5 1 and &, 5 1 by (17). 
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(b) Since A has a cohook of length I, we must have A, = I or pb = 1. We start by 

investigating the case A, = 1. Suppose first that A, #O. If a = 1, then A = (‘). 

Suppose now that a > I. Then, from A, = I and (19) we obtain 

a-l 

(a-l)‘= 2 Ai+ag’ pjZ(a-1)‘. 
i=l j-1 

Thisimplieshi=i, lsira-l,pi=j-l, lrjsa-l.Butthissymbolhasno 

cohook of length 1. So we must have A, = 0, p, # 0. This leads to the symbols 
(18), which do have cohooks of length 1. 

(c) Now suppose A, < 1. Then, in order to get a cohook of length I, we must 
have p* = I, A, # 0. In this case we get a contradiction by using (20). 0 

Remember that r is a Coxeter prime for G and that x E 9. Then x is in the 
principal series by Lemma 3.1. Let e be the order of q2 modulo r. Then e = I, 
since r is a Coxcter prime. By [23, Corollary 71, a unipotent character x_\ is of 
r-defect 0, unless A has a cohook of length 1. Thus x is of the form x.~, where A is 
one of the symbols (18). 

If I = 2, then, as is easy to see, the position of 0 on the Brauer tree is occupied 
by the Steinberg character. Hence we may assume 1> 2 in the following. Now 
x E Y is neither the trivial nor the Steinberg character. The symbol ( ’ ) corre- 
sponds to the trivial, the symbol 

to the Steinberg character. The remaining symbols have no cohooks of length 
I - 1. Hence, if r’ is a primitive divisor of @zcr_l ,( q), then x,, is of r’-defect 0, and 
we are done. The method fails for the pairs (q, I) E {(2,3), (2,4)}. These are 
considered in Table 3. 

Now let G = D,(q), I? 4. Here, the symbols parametrizing the unipotent 
characters in the principal series are exactly those which satisfy: 

b=azl, (21) 

i hi + $ pj = 1-k a(a - 1) . 

i=l j=l 

(22) 

Furthermore, symbols with the arrays of A’s and $s interchanged, represent the 
same unipotent character. We note the following: 

Lemma 3.3 Let A be a symbol satisfying (13)-(15) (21) and (22). Suppose 
furthermore that A has a cohook of length I- 1. Then A is one of the foDowing 
symbols : 
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(23) 

Proof. The proof is omitted, since it is similar to the proof of Lemma 3.2. Cl 

Let A be one of the symbols (23), such that x,, is neither the trivial nor the 
Steinberg character. Then A has no cohooks of length I - 2. Thus x., is of 
&defect 0, if r’ is a primitive divisor of @z(,_zJ( q). The method fails for the pairs 
(4, I) E ((2,4), (2,s)). These are considered in Table 3. 

We finally have to consider the case of G = ‘D,(q), I? 4. The symbols we are 
interested in satisfy: 

b=a-220, (24) 

~ hi+~ pj=l+(a-2)(a-1). 
i= 1 j=l 

(25) 

We note the following: 

Lemma 3.4. Let A be a symbol satisfying (13)-(15), (24) and (25). Suppose 
furthermore that A has a cohook of length 1. Then A is one of the following 
symbols: 

co ‘), (ii::::“, m ‘), lsrnmll-1. P-9 

Proof. Omitted. Cl 

Let r be a primitive divisor of $,(q). Now a symbol of type (26) has no cohook 
of length 2 - 1, unless it corresponds to the trivial or the Steinberg character. So 
we are done except in the case (q, I) = (2,4), which is considered in Table 3. This 
completes the proof for the classical groups. It should be remarked that in a 
classical group G(q), where q is odd, all Brauer trees are known by [9]. 

It remains to investigate the exceptional groups of Lie type. We start with the 
following lemma: 

Lemma 3.5. Let G be an exceptional group of Lie type arising from a simple, 
simply connected algebraic group G such that S = Gl Z(G) is simple. Let r be a 
Coxeter prime for G. Then the nonexceptional characters in the principal r-block of 
S are unipotent. The exceptional characters in this block are of r-defect 0 for some 
prime r’ 1 ISi. 

proof. Let 3 = (Ga$ Then S is the commutator subgroup of 3. We shall show 
that the assertions are true for 2. Since the unipotent characters of s restrict 
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irreducibly to the unipotent characters of S as we have already remarked above, 
the same will be true for the exceptional characters in the principal r-block, and 
hence the assertions are also true for s. 

Consider the set of characters Z?@, 1) (see [l] for a definition). This is a union 
of r-blocks, which follows from [I] if 3 is neither a Suzuki nor a Ree group. If 3 is 
one of the latter, it easily follows from the Jordd decomposition of characters by 

considering character degrees. Hence Z#, 1)’ := 8@, l)\(defect 0 characters} 
contains the principal block. We remark that G is the dual group of G,,. Since the 
r-elements in G, the dual group of 3, are regular, Z’$?, 1)’ contains only 
unipotent characters and exactly one further family of characters, which all have 
the same restriction to the r-regular classes. Thus the first assertion follows. 

Let x be an exceptional character. Then x E 8#, 1)‘\8(.$ 1). This means that 
;\I E 8@, t) for some r-element t in G. We then have 

where ? is the maximal torus containing t, and p is the defining characteristic of 
G. Now take any prime r’ # p with r’ ] 1 G], r’$] ~1. It is easy to see, using the 
theory of primitive divisors, that such a prime always exists. In a Suzuki or Ree 
group we even have gcd( 1 G : ~1, I TJ), = 1. This completes the proof of the 
lemma. q 

x(1) = IG: C&l,. = IG: 7-1,. , 

If G is a simple Suzuki group and r a Coxeter prime for G, then ;he position of 
0 in the Brauer tree (1) of the principal r-block is occupied by the exceptional 
characters (see [2]). We are done in this case by Lemma 3.5. If G is of type G, or 
3D4, then this position is occupied by the Steinberg character. For G, this is 
proved in [26], for 3D, it is very easy to see. In the remaining cases we proceed as 
follows. The degrees of the unipotent characters are given in Lusztig’s book [21]. 
We exclude those which are of r-defect 0. Now let x be one of the unipotent 
characters we are left with. Then x is of r’-defect 0 for suitable primes r’. We may 
choose r’ as a primitive divisor of a certain cP,( q), @i(q), respectively G:(q) 
according to Table 4. ‘Ye leave the details to the reader. 

Here, @;2( q) = q2 + c3q + 1, @;4(q)=q4+tiq3+q2+fiq+1. Thus 

Table 4 

Group I’ divides one of 

F,(q) 
Ki( q) 
%( 4) 
E7( 4) 
&(c;) 
‘G?( q’) qz = 3?‘“+‘, m L 1 
‘F,(q’), q’=22m+1,m>1 

@,( 91, @J q) (r’ = 7 for q = 2) 
@9( q), @8( 4’ 
%( q), @I”( 4) 
@*4(q)* @E( 4) 
%( q)v @zo( 4) 
@L(q), @4(q) 
@&i(q)7 @L(q)7 @12(q) 
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every nontrivial character in the principal r-block is of P’-defect 0 for some prime 
Y’ dividing the group order. This completes the proof for the simple groups of Lie 

type- 

4. The proof of the theorem 

In this section we complete the proof of the theorem. Let X be an irreducible 
ZG-lattice such that H’(G. X) contains a special element. Suppose furthermore 
that G is faithfully represented on X. Choose a minimal normal subgroup N of G 
and a simple direct factor S of N. It follows from Lemma 2.2 and the results of the 
preceding section, that S is abelian. Hence N is an elementary abelian p group for 
some prime p. 

Now let x = c Ye I xi be the character of X 8 C. Suppose there is a prime q 11 Cl 
and q Zp. By Lemma 2.2(a), each xi is in the principal q-block, and so has 
N 5 O,(G) in its kernel (see [6, Lemma IV.4.121). But then N is in the kernel of 
x, which contradicts the fact that G is faithfully represented on X. 

Finally suppose that G is a p-group. Let C = ( g) be a cyclic subgroup of order 
p in the center of G. Let Xc = {x E X 1 xc = x for all c E C} the set of fixed points 
of C in X and X’ = X(1 + g + l l l + f-l). 

Then H’(C, X) s Xc/X’ (see [22, Theorem IV.7.11). Since C is central, Xc is a 
EG-submodule of X. But X 8 Q is irreducible and represents G faithfully, which 
implies Xc = 0, and so H”(C, X) =O. Then H’(G, X) can have no special 

element, a final contradiction. 
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