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1 Introduction

Let M denote a compact, connected, flat Riemannian manifold (flat manifold
for short) of dimension n with fundamental group Γ. Then Γ is a Bieberbach
group of rank n, i.e., Γ is torsion free and there is a short exact sequence of
groups

0 → Λ → Γ
π
→ G → 1, (1)

where G is finite, the holonomy group of Γ, and Λ is a free abelian group of
rank n. Moreover, Λ is a maximal abelian subgroup of Γ, called the translation
subgroup or translation lattice of Γ.

The conjugation action of Γ on Λ yields a linear, faithful action of G on Λ,
and the Riemannian structure on M induces a G-invariant scalar product on Λ.
We thus obtain a homomorphism ρ : Γ → O(n), the holonomy representation
of Γ. The manifold M is oriented if and only if ρ maps Γ into SO(n), in which
case we also say that Γ is oriented.

In this paper we are interested in spin structures on flat oriented mani-
folds M . It is well known (see [3]), that the spin structures on M are classified
by the lifts of ρ to Spin(n), i.e., by the homomorphisms ε : Γ → Spin(n) satis-
fying ρ = λ ◦ ε, where λ denotes the vector representation of Spin(n). If such a
lift exists, we also say that the pair (ρ, Γ) has a spin structure.

Different G-invariant scalar products on Λ may lead to different holonomy
representations ρi of Γ, i = 1, 2, which are of course conjugate by an element of
GL(n, R), but not necessarily by one of O(n). In Proposition 2.1 we show that
in this situation there is a natural correspondence between the spin structures
of (ρ1, Γ) and those of (ρ2, Γ) . As a consequence we generalize a result of
Dekimpe, Sadowski and Szczepański [2]. If the holonomy representation of Γ is
a direct sum of two R-equivalent oriented representations, then M has a spin
structure (Corollary 2.2).

Let π : Γ → G denote the natural epimorphism and let G2 be a Sylow 2-
subgroup of G. Then Γ2 := π−1(G2) is a Bieberbach group and it is known
that (ρ, Γ) has a spin structure if and only if (ρ|Γ2

, Γ2) has one (see, e.g., [2,
Proposition 1]). So in order to investigate the existence of spin structures, we
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may restrict to the case that G is a 2-group. Also, if H is any subgroup of G
(or of G2) and (ρ|π−1(H), π

−1(H)) does not have a spin structure, then (ρ, Γ)
does not have one either.

In Section 3 of our paper we consider the case that G is a cyclic 2-group.
Under this hypothesis we show that (ρ, Γ) has a spin structure unless G has
order 4 (Theorem 3.1). Using the Heller-Reiner classification of indecomposable
integral representations of Z4, and the subsequent classification of the flat Z4-
manifolds due to Hiller, we obtain a necessary and sufficient condition for the
exixtence of a spin structure on a Z4-manifold, based on the embedding of its
holonomy group G into SO(n) and the cocycle describing the fundamental group
Γ as and extension of G by Λ (Theorem 3.2).

In the final section we consider flat oriented manifolds with Klein four holon-
omy groups. Our main result here asserts that such a manifold always has a
spin structure provided its first Betti number is 0 (Theorem 4.1). This theo-
rem is based on the classification of these manifolds due to Tirao. Examples
show that one cannot drop the assumption on the first Betti number, and that
for elementary abelian holonmy groups of order greater than four an analogous
result does not hold.

2 Spin structures on flat oriented manifolds

Here we introduce our notation and some basic, well known facts about spin
structures. The cyclic group of order m is denoted by Zm. As usual, we write
O(n) = O(n, R) for the orthogonal group of Rn with respect to the standard
scalar product; SO(n) = SO(n, R) is the special orthogonal group and Spin(n) =
Spin(n, R) its universal covering group. We also write λ : Spin(n) → SO(n) for
the natural homorphism, also called the vector representation of Spin(n).

Let A(n) and E(n) denote the affine group and the group of rigid mo-
tions, respectively, acting from the left on n-dimensional euclidean space. Thus
A(n) = GL(n, R) n Rn, and E(n) = O(n) n Rn, viewed as a subgroup of A(n).
We write (A, v) with A ∈ GL(n, R) and v ∈ Rn for an element of A(n).
For two elements (A, v) and (B, w) of A(n) we have the multiplication rule
(A, v)(B, w) = (AB, Aw + v). Every Bieberbach group Γ as in (1) can be em-
bedded into E(n) in such a way that Λ = Γ ∩ Rn.

Let F be a group and
ρ : F → SO(n) (2)

a homomorphism. Following [2, Definition 1], we say that the pair (ρ, F ) has
a spin structure, if ρ lifts to Spin(n), i.e., if there exisits a homomorphism
ε : F → Spin(n) such that ρ = λ◦ ε. If F = Γ is the fundamental group of a flat
oriented n-manifold M , then M has a spin structure if and only if (ρ, Γ) has a
spin structure, where ρ : Γ → SO(n) is the holonomy representation of Γ (see
[3]). The existence of a spin structure on M is independent of the particular
Riemannian structure on M (see [10, Remark 1.9]). This can be made more
precise as follows.
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Proposition 2.1 Suppose that n ≥ 2. Let Mi be flat oriented n-manifolds
with fundamental groups Γi, i = 1, 2. Suppose that Γ1 is isomorphic to Γ2 (as
abstract groups). Then M1 has a spin structure if and only if M2 has one.

Proof. We may assume that Γ1 and Γ2 are subgroups of E(n), and that Mi =
Rn/Γi, i = 1, 2. By Bieberbach’s second theorem (see [1, Theorem I.4.1]), there
is an element α ∈ A(n) such that Γ2 = αΓ1α

−1.
Let ρi : Γi → SO(n) denote the holonomy representations of Γi, i = 1, 2.

Suppose that α = (X, v) with X ∈ GL(n, R) and v ∈ Rn. Then

ρ2(αγα−1) = Xρ1(γ)X−1, for all γ ∈ Γ1.

Let ML(n) denote the metalinear group, a twofold covering of the general
linear group GL(n, R), and let λ : ML(n) → GL(n, R) denote the covering homo-
morphism. Then, λ−1(SO(n)) = Spin(n). Choose X̃ ∈ ML(n) with λ(X̃) = X .

Suppose that π1 : Γ1 → Spin(n) is a spin structure of (ρ1, Γ1). Define
π2 : Γ2 → Spin(n) by π2(αγα−1) := X̃π1(γ)X̃−1 for γ ∈ Γ1. Then π2 is a spin
structure of (ρ2, Γ2). By symmetry, this completes the proof. �

The above proof shows in fact that there is a natural one-to-one correspon-
dence between the spin structures on M1 and those on M2. Moreover, the proof
can easily be translated to the more general situation of Pin or Pin− structures
(using a twofold covering of the general linear group containing the Pin− group)
on flat manifolds which are not oriented.

Corollary 2.2 Let M be a flat oriented n-manifold, n ≥ 4, with fundamental
group Γ and holonomy group G. Suppose that the translation lattice Λ of Γ is
of the form Λ = Λ1 ⊕ Λ2 with G-invariant sublattices Λ1 and Λ2, such that the
R-representations ρ′

i of G afforded by Λi map into SO(m), i = 1, 2, and that ρ′

1

and ρ′2 are equivalent (over R). Then M has a spin structure.

Proof. We may assume that Γ ∈ E(n) and that M = Rn/Γ. Our hypothesis
implies that Γ is conjugate in A(n) to a Bieberbach group Γ̃ ∈ E(n) with
translation lattice Λ̃ = Λ̃1 ⊕ Λ̃2, such that the representations ρ̃′

i : G → SO(m)
afforded by Λ̃i are in fact equal.

The “double construction” in the proof of [2, Theorem 1] implies that M̃ :=
Rn/Γ̃ has a spin structure. By Proposition 2.1, the manifold M also has a spin
structure. �

We recall a well known criterion, due to Griess [6] and Gagola and Garrison
[4], for the non-existence of a spin structure of the pair (ρ, F ) from (2) in
case F is finite. The criterion was used by these authors to construct non-trivial
double covers for certain groups. We are indebted to Klaus Lux for pointing out
reference [4]. The criterion is based on the following lemma. By |x| we denote
the order of the element x of some group.

Lemma 2.3 (Griess [6], Gagola-Garrison [4]) Let A ∈ SO(n) be of order 2 and
let a ∈ λ−1(A). Then |a| = 4 if and only if

1

2
(n − Trace(A)) ≡ 2 (mod 4).
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Proof. Let d denote the dimension of the (−1)-eigenspace of A. Then d is
even. By [4, Corollary 4.3], there is an inverse image a ∈ Spin(n) of A with
a2 = (−1)d(d−1)/2. Now d = (n − Trace(A))/2 and the result follows. �

Proposition 2.4 (Griess [6], Gagola-Garrison [4]) Let F be a finite group and
ρ : F → SO(n) a homomorphism with character χ.

Let g ∈ F have order 2. If

1

2
(χ(1) − χ(g)) ≡ 2 (mod 4),

then there is no ε : F → Spin(n) such that ρ = λ ◦ ε.

Proof. This is a direct consequence of Lemma 2.3. �

Example 2.5 Consider the flat oriented manifold M̃1 of [11, Table 1, p. 327].
Its holonomy representation is a “double” one (each irreducible component has
multiplicity two), but the sum of the three distinct irreducible components yields
a representation of Z2 × Z2 into O(3) but not into SO(3).

The fundamental group Γ of M̃1 is generated by its translation subgroup Z6

and the two generators (copied from [11, Table 1, p. 327])

γ1 = ([1, 1, 1,−1,−1, 1], (0, 0, 1/2, 0, 0, 0)t)

and
γ2 = ([1, 1,−1, 1, 1,−1], (1/2, 1/2, 0, 0, 0, 0)t).

Here the first bracket denotes a diagonal (6 × 6)-matrix with the given entries.
Let A2 and A3 denote the linear parts of γ2 and γ1γ2 respectively. Then

(6−Trace(A2))/2 = 2 and (6−Trace(A3))/2 = 4. Thus, by Lemma 2.3, inverse
images of A2 and A3 in Spin(6) have orders 4 and 2 respectively. Hence a spin
structure ε : Γ → Spin(6) would map γ2 and γ1γ2 to elements of order 4 and
2, respectively. But γ1γ2 = ([1, 1,−1,−1,−1,−1], (1/2, 1/2, 1/2, 0, 0, 0)) and
(γ2)

2 = (γ1γ2)
2. Thus there is no spin structure on M̃1.

This example shows that the hypothesis of Corollary 2.2, namely that the ρ′

i

map into SO(m) cannot be dropped.

3 Cyclic holonomy

In this section we study spin structures on manifolds with cyclic holonomy
groups of 2-power order.

Let A ∈ SL(n, Z) have order 2m, m ≥ 1, and let G := 〈A〉. Choose an
embedding ρ′ : G → SO(n). We want to investigate Bieberbach groups with
holonomy group G and translation lattice Λ = {(id, v) | v ∈ Zn} ≤ E(n). We
identify the (multiplicatively written) group Λ with the natural ZG-module Zn.
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Any element δ ∈ Qn gives rise to a derivation δ̂ : G → Qn/Zn by sending A
to δ + Zn. Extending the above convention, we identify Qn/Zn with the ZG-

module Q ⊗Z Λ/Λ. If the cohomology class of δ̂ in H1(G, Q ⊗Z Λ/Λ) is special,
then δ defines a Bieberbach group

Γ = 〈(A, δ), Λ〉 ≤ A(n) (3)

with holonomy group G and translation lattice Λ. Composing ρ′ with the canon-
ical map π : Γ → G, we obtain the holonomy representation ρ := ρ′ ◦ π : Γ →
SO(n). The natural action of G on Zn gives Zn/2Zn the structure of an F2G-
module, isomorphic to the F2G-module Λ̄ := Λ/Λ2 arising from the conjugation
action of Γ on Λ. We write v̄ for the image of v ∈ Zn in Zn/2Zn, which we
identify with Λ̄. Recall that the radical of a module is the intersection of its
maximal submodules.

Theorem 3.1 Let Γ and δ be as in (3). Then the following holds.
(1) If λ−1(ρ(A)) contains an element of order 2m = |A|, then (ρ, Γ) has a

spin structure.
(2) λ−1(ρ(A)) contains an element of order 2m = |A| if and only if

1

2

(

n − Trace(A2m−1

)
)

≡ 0 (mod 4).

(3) If m = 1 or m ≥ 3, then (ρ, Γ) has a spin structure.
(4) Suppose that m = 2 and that λ−1(ρ(A)) does not contain elements of

order 4. Put δ′ := A3δ + A2δ + Aδ + δ. Then δ′ ∈ Λ and (ρ, Γ) has a spin
structure if and only if δ̄′ is not contained in the radical of Λ̄.

Proof. Let a ∈ λ−1(A).
(1) Since |a| = |A|, the isomorphism ε : Γ → Spin(n) defined by sending

(A, δ) to a and Λ to 1 defines the required spin structure.
(2) Clearly, λ−1(ρ(A)) contains an element of order 2m = |A|, if and only if

λ−1(ρ(A2m−1

)) contains an involution. This is equivalent to the given condition
by Lemma 2.3.

(3) First consider the case m = 1. Using the well known integral repre-
sentation theory of the group of order 2, we may assume that Λ = Λ1 ⊕ Λ2

with G-invariant sublattices Λ1 and Λ2 such that A acts diagonally on Λ1 and
H1(G, Q ⊗Z Λ2/Λ2) = 0. Write δ = δ1 + δ2 with δi ∈ Q ⊗Z Λi, i = 1, 2. Then
δ2 ∈ Λ2 and we may assume that δ2 = 0, i.e., δ ∈ Λ1.

Put δ′ := Aδ + δ. The fact that δ 7→ δ + Λ defines a nonzero element of
H1(G, Q ⊗Z Λ/Λ) implies that δ̄′ ∈ Λ̄ is non-zero, i.e., δ′ 6∈ Λ2

1. Let Λ0 be a
sublattice of index 2 in Λ with Λ2

1 + Λ2 ≤ Λ0 and δ′ 6∈ Λ0. Then Λ0 is normal
in Γ since G acts trivially on Λ1/Λ2

1. Hence Γ/Λ0 is a cyclic group of order 4,
generated by the image of (A, δ). It follows that (ρ, Γ) has a spin structure.

Now suppose that m ≥ 3. Let χ denote the character of the embedding
G → GL(n, C). Let s denote the multiplicity of an irreducible complex faithful
character ζ of G in χ. Then the multiplicity of ζj in χ equals s for all odd
integers 1 ≤ j ≤ 2m − 1 since χ is rational valued.
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The matrix A is equivalent to a block diagonal matrix with (1 × 1)-blocks
containing the entries ±1, and (2 × 2)-blocks of the form

(

cosα − sin α

sin α cosα

)

,

where 0 < α < π with 2mα ∈ 2πiZ. Such a matrix contributes the value −2
to the trace of A2m−1

, if and only if 2m−1α /∈ 2πiZ. By the above, the matrix
contains exactly s2m−2 such blocks. Hence n−Trace(A2m−1

) = 2ms. The result
follows from (1) and (2).

(4) In this case, |a| = 2|A| = 8 and thus a4 = −1. Consider the F2G-module
Λ̄ = Λ/Λ2. Suppose first, that (ρ, Γ) has a spin structure ε. Then ε(id, δ′) = −1
since (A, δ)4 = (id, δ′). Hence (id, δ′) 6∈ K := ker(ε) ≤ Λ. On the other hand,
Λ2 ≤ K and K̄ is a maximal F2G-submodule of Λ̄. Thus δ̄′ is not contained in
the radical of Λ̄.

Suppose now that δ̄′ is not contained in the radical of Λ̄. Then there is a
normal subgroup K of Γ with Λ2 ≤ K ≤ Λ and |Λ: K| = 2 such that (id, δ′) 6∈ K.
Clearly, Γ/K is cyclic of order 8, and we obtain a spin structure by sending (A, δ)
to a and K to 1. �

Using the description of flat Z4-manifolds of Hiller [8], we further investi-
gate this case. The classification of the (finitely many) isomorphism classes of
indecomposable integral representations of a cyclic group G of order 4 is due to
Heller and Reiner, and is reproduced in [8, Theorem 1.3]. The corresponding
low degree cohomology is computed in [8, Propositions 2.2, 2.3]. For the con-
venience of the reader, these results are presented in Table 1. The notation for
the ZG-lattices is taken from Hiller’s paper. On M1, M2, and M4 the subgroup
of order 2 of G acts trivially, the other modules afford faithful representations
of G. If X is an indecomposable ZG-lattice, then either H2(G, X) is trivial or
has two elements. In the latter case, the last column of Table 1 describes the
non-trivial element in H2(G, X). These elements are special only for X = M1,
M4 or M9(0) (see [8, Proposition 2.7]).

Theorem 3.2 Let A ∈ SL(n, R) be of order 4, satisfying (n − Trace(A2))/2 ≡
2 (mod 4). Put G = 〈A〉, and let δ and Γ be as in (3). Choose an embedding
ρ : Γ → E(n).

Write Λ = ⊕m
i=1Λi with indecomposable ZG-lattices Λi, i = 1, . . . , m. De-

compose δ accordingly as δ =
∑m

i=1 δi with δi ∈ H1(G, Q ⊗Z Λi/Λi).
Then (ρ, Γ) has a spin structure if and only if, for some 1 ≤ i ≤ m, (Λi, δi)

is equivalent to (M9(0), (1/4, 0, 0, 0)t).

Proof. By Theorem 3.1(4) we have to investigate when δ̄′ lies in the radical of
Λ̄ (viewed as an F2G-module). The radical of a direct sum of modules is the
direct sum of their radicals. Hence δ̄′ lies in the radical of Λ̄, if and only if δ̄′i
lies in the radical of Λ̄i := Λi/Λ2

i for all 1 ≤ i ≤ m.
Note that δ′i ∈ Λi is a fixed vector of A. Hence if there are no nonzero fixed

vectors in Λi, we have δ̄′i = 0 and hence it lies in the radical of Λ̄i. This is the
case for the lattices M2, M3 and M8(0).
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Table 1: Indecomposable integral representations of Z4

Name Matrix Cocycle

M1 (1) ( 1
4 )

M2 (−1)

M3

(

0 −1

1 0

)

M4

(

0 1

1 0

) (

1
2

0

)

M5







1 0 1

0 0 −1

0 1 0













1
4

0

0







M6(0)











0 1 0 0

1 0 0 1

0 0 0 −1

0 0 1 0











M6(1)











0 1 0 1

1 0 0 −1

0 0 0 −1

0 0 1 0





















1
2

0

0

0











M8(0)







−1 0 1

0 0 −1

0 1 0







M9(0)











1 0 0 1

0 −1 0 1

0 0 0 −1

0 0 1 0





















1
4

0

0

0
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Next suppose that Λ̄i has a unique nonzero fixed vector vi. Then vi lies in
the radical of Λ̄i. Moreover, either δ̄′i = 0 or δ̄′i = vi. This is the case for the
lattices M1, M4, M5, and M6(0).

Suppose next that Λi is equivalent to M6(1). In this case, δ′ = (1, 1, 0, 0)t.
Observe that Λ̄i = U1 ⊕ U2 as F2G-modules with

U1 = 〈(0, 0, 1, 0)t, (0, 0, 0, 1)t, (1, 1, 1, 0t〉 and U2 = 〈(1, 0, 1, 1)t〉.

Hence the radical of Λ̄i equals the radical of U1 which is spanned by the fixed
vector (1, 1, 0, 0)t. Thus, again, either δ̄′i = 0 or lies in the radical of Λ̄i.

It remains to consider the case that Λi is equivalent to M9(0). Here, as in the
M6(1) case, δ̄′i ∈ 〈(1, 1, 0, 0)t〉. But contrary to that case, Λ̄i = 〈(1, 1, 0, 0)t〉 ⊕
〈(0, 0, 1, 0)t, (0, 0, 0, 1)t, (1, 1, 1, 0t〉 as F2G-modules. Hence if δ̄′i 6= 0, it does not
lie in the radical of Λ̄i. This completes the proof. �

Example 3.3 (a) Let

A :=





















0 1

1 0

1 0 0 1

0 1 0 1

0 0 0 −1

0 0 1 0





















∈ SL(6, Z).

Then A has order 4 and
(

6 − Trace(A2)
)

/2 = 2. (Observe that Z6 is a direct
sum of the Z〈A〉-modules M4 and M9(0) of Table 3.2.

(1) Let δ := (1/2, 0, 0, 0, 0, 0)t ∈ Q6. Then δ gives rise to a special cocycle,
and we let Γ be defined as in (3). By Theorem 3.2, there is no spin structure
on Γ.

(2) Now let δ := (0, 0, 1/4, 0, 0, 0)t ∈ Q6. Then, again, δ gives rise to a
special cocycle, and we let Γ be defined as in (3). By Theorem 3.2, Γ has a spin
structure.

This yields another example of two Bieberbach groups with the same holon-
omy representation, one with and one without spin structure. The first example
appears in [11, Table 1, p. 327].

(b) A 5-dimensional Z4-manifold without a spin structure is provided by the
module M2 ⊕M3 ⊕M4 and the special cocyle arising from M4. In this case we
may take

A :=

















−1 0 0 0 0

0 0 −1 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 1 0

















∈ SL(5, Z),

and δ = (0, 0, 0, 1/2, 0)t.
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Let G be a finite group. As in [2, Definition 2], we let s(G) denote the minimal
dimension of a flat oriented spin manifold with holonomy group G.

Corollary 3.4 Let m be a positive integer. Then s(Z2m) = 2m−1 + 1 if m > 1,
and s(Z2) = 3.

Proof. The smallest degree of a flat oriented Z2-manifold equals 3, so that the
result for m = 1 follows from Theorem 3.1.

Assume that m > 1. Let r be minimal such that there is an (r×r)-matrix B
over Z of order 2m. Then r = 2m−1 and there is no Bieberbach group of
dimension r with holonomy group isomorphic to 〈B〉 (see [7]). The minimal

polynomial of B is the 2mth cyclotomic polynomial X2m−1

+ 1, and thus B has
determiant 1.

Now put n := r + 1 and

A =

(

1 0

0 B

)

,

and let δ ∈ Qn have entry 1/2m−1 in the first coordinate, and zeroes elsewhere.
Then δ gives rise to a special cocycle and we define Γ as in (3). In this case δ′

is the first standard basis vector. Clearly, δ̄′ is not contained in the radical of
the F2G-module Zn

2 , so that Γ has a spin structure by Theorem 3.1. �

4 Flat oriented manifolds with holonomy Z2
2

In [12] Tirao has given a classification of all oriented Bieberbach groups with
holonomy groups isomorphic to the Klein four group and first Betti number
equal to 0. We use this classification to show that all the corresponding flat
oriented manifolds have spin structures. We begin with a more general result.

Theorem 4.1 Let Γ be an oriented Bieberbach group with translation sub-
group Λ and holonomy group G = Z2

2. Suppose that there is a decomposition of
Λ into a direct sum of Γ-invariant sublattices

Λ = Λ1 ⊕ Λ2

with rk(Λ1) = 3 and rk(Λ2) = n − 3, such that Γ/Λ2 is the Hantzsche-Wendt
Bieberbach group (the fundamental group of the flat oriented 3-dimensional man-
ifold with non-cyclic holonomy). Then M has a spin structure.

Proof. Let G = 〈a1, a2〉 with a2
1 = a2

2 = a2
3 = 1, where a3 = a1a2. Let us

write ρ′ and ρ′1 for the homomorphism of G induced by the conjugation actions
of Γ on Λ and Λ1, respectively. Since Γ/Λ2 is the Hantzsche-Wendt Bieberbach
group, we may and will assume that Λ1 = Z3, and that

ρ′1(a1) =







1 0 0

0 −1 0

0 0 −1






and ρ′1(a2) =







−1 0 0

0 1 0

0 0 −1






.
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Let δ̂ ∈ H1(G, Q ⊗Z Λ/Λ) be the cocycle defining the extension

0 → Λ → Γ → G → 1.

Then δ̂ = δ̂1 + δ̂2 with δ̂i ∈ H1(G, Q ⊗Z Λi/Λi), i = 1, 2. More specifically, we
may assume (see [12, Definition on p. 229]) that

δ̂1(a1) =







1/2

0

1/2






+Λ1, δ̂1(a2) =







0

1/2

0






+Λ1, δ̂1(a3) =







1/2

1/2

1/2






+Λ1.

Now let Bi := ρ′(ai), and let ui ∈ Spin(n) be such that λ(ui) = Bi, i = 1, 2, 3.
Then u3 = ±u1u2. Also, u2

i = ±1, i = 1, 2, 3. Let γi := (Bi, δ(ai)), i = 1, 2, 3.
Then γ2

i = (id, ei), i = 1, 2, 3, where ei := e′i + 0 with the standard basis vector
e′i of Λ1 = Z3, i = 1, 2, 3.

Thus there exist a G-invariant sublattice Λ0 ≤ Λ with Λ2 ≤ Λ0, |Λ/Λ0| = 2
such that

|γ̄2
i | = |u2

i |, i = 1, 2, 3.

Here, ¯ : Γ → Γ/Λ0 denotes the natural homomorphism. This implies that there
is an isomorphism ε̄′ : Γ/Λ0 → λ−1(ρ(G)) mapping γ̄i to ui, i = 1, 2, 3. Hence
there is an epimorphism ε′ : Γ → λ−1(ρ(G)) mapping γi to ui, i = 1, 2, 3. Thus
if ε denotes the composition of ε′ with the embedding of λ−1(ρ(G)) into Spin(n),
we have λ ◦ ε = ρ. �

Corollary 4.2 Let M be a flat oriented manifold with first Betti number equal
to 0 and holonomy group G = Z2

2. Then M has a spin structure.

Proof. Let Γ denote the fundamental group of M . By [12, Theorems 2.7, 4.5],
there is a decomposition of translation subgroup Λ of Γ as in Theorem 4.1 and
the result follows. �

Remark 4.3 By varying the lattice Λ in the above corollary, we get all possible
2-fold coverings of G = Z2

2 as inverse images λ−1(ρ(G)). By [12, Theorem 2.7],
there is a decomposition of Λ into a direct sum of Γ-invariant sublattices

Λ = m1H1 ⊕ m2H2 ⊕ m3H3 ⊕ k1R1 ⊕ k2R2 ⊕ k3R3 ⊕ sM ⊕ tN, (4)

with non-negative integers mi ≥ 1, ki, s, and t. Here, Hi and Ri are of rank 1
and 2, respectively, i = 1, 2, 3, and M and N of rank 3. With the notation of
the proof of Theorem 4.1 we have

Λ1 = H1 ⊕ H2 ⊕ H3

and

Λ2 = (m1 − 1)H1 ⊕ (m2 − 1)H2 ⊕ (m3 − 1)H3⊕ k1R1 ⊕ k2R2 ⊕ k3R3 ⊕ sM ⊕ tN.
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Using the fact that |ui| = 4 if and only if (n − Trace(Bi))/2 ≡ 2 (mod 4), we
get the following table.

Case m1 m2 m3 k1 k2 k3 s t ρ′(ai) |ui|

B1 4

I 1 1 1 0 0 0 0 0 B2 4

B3 4

B1 2

II 2 2 1 0 0 1 0 0 B2 2

B3 4

B1 4

III 2 2 1 0 0 1 1 0 B2 4

B3 2

B1 2

IV 1 2 1 0 1 0 0 0 B2 2

B3 2

In Case I, which just gives the usual Hantzsche-Wendt manifold, we have λ−1(ρ(G)) ∼=
Q8, the quaternion group of order 8. In Case II we obtain λ−1(ρ(G)) ∼= D8,
the dihedral group of order 8. Case III yields λ−1(ρ(G)) ∼= Z4 × Z2. Finally, in
Case IV we have λ−1(ρ(G)) ∼= Z2 × Z2 × Z2.

Example 4.4 (a) Example 2.5 already shows that we cannot drop the assump-
tion of the first Betti number being equal to 0. Here we shall give an example
of a Bieberbach group with holonomy Z2

2 of dimension 5 without spin structure
and with the first Betti number equal to 1.

Let Γ be the Bieberbach group generated by Z5 and the following two ele-
ments of E(5):

γ1 := ([1,−1,−1,−1,−1], (1/2, 0, 0, 0, 0)t)

and
γ2 := ([1, 1, 1,−1,−1], (0, 1/2, 0, 0, 0)t).

Here, γ2
1 = (γ1γ2)

2. Using Lemma 2.3 we can show as in Example 2.5, that the
manifold corresponding to Γ does not have a spin structure.

(b) Im and Kim have constructed (see [9, Theorem on p. 270]), for every
integer k ≥ 3, a flat oriented manifold with holonomy group Zk

2 , first Betti
number equal to 0, without a spin structure. It follows that the case of the
Klein four group is different.
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