Flat manifolds with holonomy group \mathbb{Z}_{2}^{k} of diagonal type

A. Ga̧sior, A. Szczepański

October 11, 2012

1 Introduction

Let M^{n} be a flat manifold of dimension n. By definition, this is a compact connected, Riemannian manifold without boundary with sectional curvature equal to zero. From the theorems of Bieberbach ([2]) the fundamental group $\pi_{1}\left(M^{n}\right)=\Gamma$ determines a short exact sequence:

$$
\begin{equation*}
0 \rightarrow \mathbb{Z}^{n} \rightarrow \Gamma \xrightarrow{p} G \rightarrow 0 \tag{1}
\end{equation*}
$$

where \mathbb{Z}^{n} is a torsion free abelian group of rank n and G is a finite group which is isomorphic to the holonomy group of M^{n}. The universal covering of M^{n} is the Euclidean space \mathbb{R}^{n} and hence Γ is isomorphic to a discrete cocompact subgroup of the isometry group $\operatorname{Isom}\left(\mathbb{R}^{n}\right)=O(n) \times \mathbb{R}^{n}=E(n)$. Conversely, given a short exact sequence of the form (1), it is known that the group Γ is (isomorphic to) the fundamental group of a flat manifold if and only if Γ is torsion free. In this case Γ is called a Bieberbach group. We can define a holonomy representation $\phi: G \rightarrow G L(n, \mathbb{Z})$ by the formula:

$$
\begin{equation*}
\forall g \in G, \phi(g)\left(e_{i}\right)=\tilde{g} e_{i}(\tilde{g})^{-1}, \tag{2}
\end{equation*}
$$

where $e_{i} \in \Gamma$ are generators of \mathbb{Z}^{n} for $i=1,2, \ldots, n$, and $\tilde{g} \in \Gamma$ such that $p(\tilde{g})=g$. In this article we shall consider only the case

$$
\begin{equation*}
G=\mathbb{Z}_{2}^{k}, 1 \leq k \leq n-1, \text { with } \phi\left(\mathbb{Z}_{2}^{k}\right) \subset D \subset G L(n, \mathbb{Z}), \tag{3}
\end{equation*}
$$

where D is the group of all diagonal matrices. We want to consider relations between two families of flat manifolds with the above property (3): the family $\mathcal{R B M}$ of real Bott manifolds and the family $\mathcal{G H} \mathcal{W}$ of generalized HantzscheWendt manifolds. In particular, we shall prove (Proposition 1) that the intersection $\mathcal{G H} \mathcal{W} \cap \mathcal{R B M}$ is not empty.

In the next section we consider some class of real Bott manifolds without Spin and Spin ${ }^{\mathbb{C}}$ structure. There are given conditions (Theorem 1) for the existence of such structures. As an application a list of all 5-dimensional oriented real Bott manifolds without Spin structure is given, see Example 2. In this case we generalize the results of L. Auslaneder and R. H. Szczarba, [1] from 1962, cf. Remark 1. At the end we formulate a question about cohomological rigidity of $\mathcal{G H} \mathcal{W}$ manifolds.

2 Families

2.1 Generalized Hantzsche-Wendt manifolds

We start with the definition of generalized Hantzsche-Wendt manifold.
Definition 1 ([16, Definition]) A generalized Hantzsche-Wendt manifold (for short $\mathcal{G H} \mathcal{W}$-manifold) is a flat manifold of dimension n with holonomy group $\left(\mathbb{Z}_{2}\right)^{n-1}$.

Let $M^{n} \in \mathcal{G H} \mathcal{W}$. In [16, Theorem 3.1] it is proved that the holonomy representation (2) of $\pi_{1}\left(M^{n}\right)$ satisfies (3).
The simple and unique example of an oriented 3 -dimensional generalized Hantzsche-Wendt manifold is a flat manifold which was considered for the first time by W. Hantzsche and H. Wendt in 1934, [8].
Let $M^{n} \in \mathcal{G H} \mathcal{W}$ be an oriented, n-dimensional manifold (a HW-manifold for short). In 1982, see [16], the second author proved that for odd $n \geq 3$ and for all $i, H^{i}\left(M^{n}, \mathbb{Q}\right) \simeq H^{i}\left(\mathbb{S}^{n}, \mathbb{Q}\right)$, where \mathbb{Q} are the rational numbers and \mathbb{S}^{n} denotes the n-dimensional sphere. Moreover, for $n \geq 5$ the commutator subgroup of the fundamental group $\pi_{1}\left(M^{n}\right)=\Gamma$ is equal to the translation subgroup $\left([\Gamma, \Gamma]=\Gamma \cap \mathbb{R}^{n}\right)$, [15]. The number $\Phi(n)$ of affine non equivalent HW-manifolds of dimension n growths exponetially, see [13, Theorem 2.8], and for $m \geq 7$ there exist many isospectral manifolds non pairwise homeomorphic, [13, Corollary 3.6]. The manifolds have an interesting connection with Fibonacci groups [17] and the theory of quadratic forms over the field \mathbb{F}_{2}, [18]. HW-manifolds have no Spin-structure, [12, Example 4.6 on page 4593].

The (co)homology groups and cohomology rings with coefficients in \mathbb{Z} or \mathbb{Z}_{2}, of generalized Hantzsche-Wendt manifolds are still not known, see [4] and [5]. We finish this overview with an example of generalized Hantzsche-Wendt manifolds which have been known already in 1974.

Example 1 Let $M^{n}=\mathbb{R}^{n} / \Gamma_{n}, n \geq 2$ be manifolds defined in [11] (see also [16, page 1059]), where $\Gamma_{n} \subset E(n)$ is generated by $\gamma_{0}=(I=i d,(1,0, \ldots, 0))$ and

$$
\left.\gamma_{i}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & . & . & \ldots & 0 \tag{4}\\
0 & 1 & 0 & . & . & \ldots & 0 \\
. & . & . & . & . & \ldots & \\
0 & \ldots & 1 & 0 & 0 & \ldots & 0 \\
0 & \ldots & 0 & -1 & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & 1 & \ldots & 0 \\
. & . & . & . & . & \ldots & \\
0 & . & \ldots & 0 & 0 & 0 & 1
\end{array}\right],\left(\begin{array}{c}
0 \\
0 \\
\ldots \\
0 \\
0 \\
\frac{1}{2} \\
\ldots \\
0
\end{array}\right)\right) \in E(n),
$$

where the -1 is placed in the (i, i) entry and the $\frac{1}{2}$ as an $(i+1)$ entry, $i=1,2, \ldots, n-1 . \Gamma_{2}$ is the fundamental group of the Klein bottle.

2.2 Real Bott manifolds

We follow [3], [10] and [14]. To define the second family let us introduce a sequence of $\mathbb{R} P^{1}$-bundles

$$
\begin{equation*}
M_{n} \xrightarrow{\mathbb{R} P^{1}} M_{n-1} \xrightarrow{\mathbb{R} P^{1}} \ldots \xrightarrow{\mathbb{R} P^{1}} M_{1} \xrightarrow{\mathbb{R} P^{1}} M_{0}=\{\text { a point }\} \tag{5}
\end{equation*}
$$

such that $M_{i} \rightarrow M_{i-1}$ for $i=1,2, \ldots, n$ is the projective bundle of a Whitney sum of a real line bundle L_{i-1} and the trivial line bundle over M_{i-1}. We call the sequence (5) a real Bott tower of height n, [3].

Definition 2 ([10]) The top manifold M_{n} of a real Bott tower (5) is called a real Bott manifold.

Let γ_{i} be the canonical line bundle over M_{i} and set $x_{i}=w_{1}\left(\gamma_{i}\right)$. Since $H^{1}\left(M_{i-1}, \mathbb{Z}_{2}\right)$ is additively generated by $x_{1}, x_{2}, . ., x_{i-1}$ and L_{i-1} is a line bundle over M_{i-1}, one can uniquely write

$$
\begin{equation*}
w_{1}\left(L_{i-1}\right)=\Sigma_{k=1}^{i-1} a_{k, i} x_{k} \tag{6}
\end{equation*}
$$

with $a_{k, i} \in \mathbb{Z}_{2}=\{0,1\}$ and $i=2,3, \ldots, n$.
From above $A=\left[a_{k i}\right]$ is an upper triangular matrix ${ }^{1}$ of size n whose diagonal entries are 0 and other entries are either 0 or 1 . Summing up, we can say that the tower (5) is completly determined by the matrix A.

[^0]From [10, Lemma 3.1] we can consider any real Bott manifold $M(A)$ in the following way. Let $M(A)=\mathbb{R}^{n} / \Gamma(A)$, where $\Gamma(A) \subset E(n)$ is generated by elements

$$
\left.s_{i}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & . & . & \ldots & 0 \tag{7}\\
0 & 1 & 0 & . & . & \ldots & 0 \\
. & . & . & . & . & \ldots & \\
0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & (-1)^{a_{i, i+1}} & \ldots & 0 \\
. & . & . & . & . & \ldots & \\
0 & \ldots & 0 & 0 & 0 & \ldots & (-1)^{a_{i, n}}
\end{array}\right],\left(\begin{array}{c}
0 \\
\cdot \\
0 \\
\frac{1}{2} \\
0 \\
. \\
0 \\
0
\end{array}\right)\right) \in E(n),
$$

where $(-1)^{a_{i, i+1}}$ is placed in $(i+1, i+1)$ entry and $\frac{1}{2}$ as an (i) entry, $i=1,2, \ldots, n-1 . s_{n}=(I,(0,0, \ldots, 0,1)) \in E(n)$. From [10, Lemma 3.2,3.3] $s_{1}^{2}, s_{2}^{2}, \ldots, s_{n}^{2}$ commute with each other and generate a free abelian subgroup \mathbb{Z}^{n}. It is easy to see that it is not always a maximal abelian subgroup of $\Gamma(A)$. Moreover, we have the following commutative diagram

where $k=r k_{\mathbb{Z}_{2}}(A), N$ is the maximal abelian subgroup of $\Gamma(A)$, and p : $\Gamma(A) / \mathbb{Z}^{n} \rightarrow \Gamma(A) / N$ is a surjection induced by the inclusion $i: \mathbb{Z}^{n} \rightarrow N$. From the first Bieberbach theorem, see [2], N is a subgroup of all translations of $\Gamma(A)$ i.e. $N=\Gamma(A) \cap \mathbb{R}^{n}=\Gamma(A) \cap\left\{(I, a) \in E(n) \mid a \in \mathbb{R}^{n}\right\}$.

Definition 3 ([3]) A binary square matrix A is a Bott matrix if $A=P B P^{-1}$ for a permutation matrix P and a strictly upper triangular binary matrix B.

Let $\mathcal{B}(n)$ be the set of Bott matrices of size $n .{ }^{2}$ Since two different upper triangular matrices A and B may produce (affinely) diffeomorphic (\sim) real Bott manifolds $M(A), M(B)$, see [3] and [10], there are three operations on $\mathcal{B}(n)$, denoted by (Op1), (Op2) and (Op3), such that $M(A) \sim M(B)$ if and only if the matrix A can be transformed into B through a sequence of the above operations, see [3, part 3]. The operation (Op1) is a conjugation by a permutation matrix,

[^1]$(\mathrm{Op} 2)$ is a bijection $\Phi_{k}: \mathcal{B}(n) \rightarrow \mathcal{B}(n)$
\[

$$
\begin{equation*}
\Phi_{k}(A)_{*, j}:=A_{*, j}+a_{k j} A_{*, k}, \tag{8}
\end{equation*}
$$

\]

for $k, j \in\{1,2, \ldots, n\}$ such that $\Phi_{k} \circ \Phi_{k}=1_{\mathcal{B}(n)}$.
Finally (Op 3) is, for distinct $l, m \in\{1,2, . ., n\}$ and the matrix A with $A_{*, l}=$ $A_{*, m}$

$$
\Phi^{l, m}(A)_{i, *}:= \begin{cases}A_{l, *}+A_{m, *} & \text { if } i=m \tag{9}\\ A_{i, *} & \text { otherwise }\end{cases}
$$

Here $A_{*, j}$ denotes j-th column and $A_{i, *}$ denotes i-th row of the matrix A.
Let us start to consider the relations between these two classes of flat manifolds. We start with an easy observation

$$
\begin{aligned}
\mathcal{R B M}(n) & \cap \mathcal{G H} \mathcal{W}(n)=\left\{M(A) \mid \operatorname{rank}_{\mathbb{Z}_{2}} A=n-1\right\}= \\
= & \left\{M(A) \mid a_{1,2} a_{2,3} \ldots a_{n-1, n}=1\right\} .
\end{aligned}
$$

These manifolds are classified in [3, Example 3.2] and for $n \geq 2$

$$
\begin{equation*}
\#(\mathcal{R B} \mathcal{M}(n) \cap \mathcal{G H} \mathcal{W}(n))=2^{(n-2)(n-3) / 2} \tag{10}
\end{equation*}
$$

There exists the classification, see [16] and [3], of diffeomorphism classes of $\mathcal{G H W}$ and $\mathcal{R B} \mathcal{M}$ manifolds in low dimensions. For $\operatorname{dim} \leq 6$ we have the following table.

	number of dim		number of manifolds		number of notanifolds	
	total	oriented	total	oriented	total	
1	0	0	1	1	0	
2	1	0	2	1	0	
3	3	1	4	2	1	
4	12	0	12	3	2	
5	123	2	54	8	8	
6	2536	0	472	29	64	

Proposition $1 \Gamma_{n} \in \mathcal{G H W} \cap \mathcal{R B M}$.
Proof: It is enough to see that the group $(G, 0) \Gamma_{n}(G, 0)^{-1}=\Gamma(A)$, where $G=\left[g_{i j}\right], 1 \leq i, j \leq n$,

$$
g_{i j}:= \begin{cases}1 & \text { if } j=n-i+1 \\ 0 & \text { otherwise }\end{cases}
$$

and $A=\left[a_{i j}\right], 1 \leq i, j \leq n$, with

$$
a_{i j}:= \begin{cases}1 & \text { if } j=i+1 \\ 0 & \text { otherwise }\end{cases}
$$

3 Existence of Spin and Spin ${ }^{\mathbb{C}}$ structures on real Bott manifolds

In this section we shall give some condition for the existence of Spin and $\operatorname{Spin}^{\mathbb{C}}$ structures on real Bott manifolds. We use notations from the previous sections. There are a few ways to decide whether there exists a Spin structure on an oriented flat manifold M^{n}, see [6]. We start with the following. A closed oriented differential manifold N has such a structure if and only if the second Stiefel-Whitney class $w_{2}(N)=0$. In the case of an oriented real Bott manifold $M(A)$ we have the formula for w_{2}.
Recall, see [10], that for the Bott matrix A

$$
\begin{equation*}
H^{*}\left(M(A) ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[x_{1}, x_{2}, \ldots, x_{n}\right] /\left(x_{j}^{2}=x_{j} \Sigma_{i=1}^{n} a_{i, j} x_{i} \mid j=1,2, \ldots, n\right) \tag{11}
\end{equation*}
$$

as graded rings. Moreover, from [11, (3.1) on page 3] the k-th Stiefel-Whitney class

$$
\begin{equation*}
w_{k}(M(A))=(B(p))^{*} \sigma_{k}\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in H^{k}\left(M(A) ; \mathbb{Z}_{2}\right) \tag{12}
\end{equation*}
$$

where σ_{k} is the k-th elementary symmetric function,

$$
p: \pi_{1}(M(A)) \rightarrow G \subset O(n)
$$

a holonomy representation, $B(p)$ is a map induced by p on the classification spaces and $y_{i} \stackrel{(6)}{=} w_{1}\left(L_{i-1}\right)$. Hence,

$$
\begin{equation*}
w_{2}(M(A))=\Sigma_{1 \leq i<j \leq n} y_{i} y_{j} \in H^{2}\left(M(A) ; \mathbb{Z}_{2}\right) . \tag{13}
\end{equation*}
$$

There exists a general condition, see [4, Theorem 3.3], for the calculation of the second Stiefel-Whitney for flat manifolds with $\left(\mathbb{Z}_{2}\right)^{k}$ holonomy of diagonal type but we prefer the above explicit formula (13). ${ }^{3}$ Its advantage follows from the knowledge of the cohomology ring (11) of real Bott manifolds.

[^2]An equivalent condition for the existence of a Spin structure is as follows. An oriented flat manifold M^{n} (a Bieberbach group $\pi_{1}\left(M^{n}\right)=\Gamma$) has a Spin structure if and only if there exists a homomorfism $\epsilon: \Gamma \rightarrow \operatorname{Spin}(n)$ such that $\lambda_{n} \epsilon=p$. Here $\lambda_{n}: \operatorname{Spin}(n) \rightarrow S O(n)$ is the covering map, see [6]. We have a similar condition, under assumption $H^{2}\left(M^{n}, \mathbb{R}\right)=0$, for the existence of $\operatorname{Spin}^{\mathbb{C}}$ structure, [6, Theorem 1]. In this case M^{n} (a Bieberbach group Γ) has a Spin ${ }^{\mathbb{C}}$ structure if an only if there exists a homomorphism

$$
\begin{equation*}
\bar{\epsilon}: \Gamma \rightarrow \operatorname{Spin}^{\mathbb{C}}(n) \tag{14}
\end{equation*}
$$

such that $\overline{\lambda_{n}} \bar{\epsilon}=p \cdot \overline{\lambda_{n}}: \operatorname{Spin}^{\mathbb{C}}(n) \rightarrow S O(n)$ is the homomorphism induced by λ_{n}, see [6]. We have the following easy observation. If there existe $H \subset \Gamma$, a subgroup of finite index, such that the finite covering \tilde{M}^{n} with $\pi_{1}\left(\tilde{M}^{n}\right)=H$ has no Spin $\left(\operatorname{Spin}^{\mathbb{C}}\right)$ structure, then M^{n} has also no such structure.

We shall prove.
Theorem 1 Let A be a matrix of an orientable real Bott manifold $M(A)$ of dimension n.
I. Let $l \in \mathbb{N}$ be an odd number. If there exist $1 \leq i<j \leq n$ and rows $A_{i, *}, A_{j, *}$ such that

$$
\begin{equation*}
\#\left\{m \mid a_{i, m}=a_{j, m}=1\right\}=l \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i, j}=0, \tag{16}
\end{equation*}
$$

then $M(A)$ has no Spin structure.
Moreover, if

$$
\begin{equation*}
\#\left\{J \subset\{1,2, \ldots, n\} \mid \# J=2, \Sigma_{j \in J} A_{*, j}=0\right\}=0, \tag{17}
\end{equation*}
$$

then $M(A)$ has no Spin $^{\mathbb{C}}$ structure.
II. If there exist $1 \leq i<j \leq n$ and rows

$$
\begin{gathered}
A_{i, *}=\left(0, \ldots, 0, a_{i, i_{1}}, \ldots, a_{i, i_{2 k}}, 0, \ldots, 0\right), \\
A_{j, *}=\left(0, \ldots, 0, a_{j, i_{2 k}+1}, \ldots, a_{j, i_{2 k}+2 l}, 0, \ldots, 0\right)
\end{gathered}
$$

such that $a_{i, i_{1}}=a_{i, i_{2}}=\ldots=a_{i, i_{2 k}}=1, a_{i, m}=0$ for $m \notin\left\{i_{1}, i_{2}, \ldots, i_{2 k}\right\}$ $a_{j, i_{2 k}+1}=a_{j, i_{2 k}+2}=\ldots=a_{j, i_{2 k}+2 l}=1, a_{j, r}=0$ for $r \notin\left\{i_{2 k}+1, i_{2 k}+2, \ldots, i_{2 k}+\right.$ $2 l\}$ and l, k odd then $M(A)$ has no Spin structure.

Proof: From [10, Lemma 2.1] the manifold $M(A)$ is orientable if and only if for any $i=1,2, . ., n$,

$$
\sum_{k=i+1}^{n} a_{i, k}=0 \bmod 2 .
$$

Assume that $\epsilon: \pi_{1}(M(A)) \rightarrow \operatorname{Spin}(n)$ defines a Spin structure on $M(A)$. Let $a_{i, i_{1}}, a_{i, i_{2}}, \ldots, a_{i, i_{2 m}}, a_{j, j_{1}}, a_{j, j_{2}}, \ldots, a_{j, j_{2 p}}=1$ and let s_{i}, s_{j} be elements of $\pi_{1}(M(A))$ which define rows i, j of A, see (7). Then

$$
\begin{gathered}
\epsilon\left(s_{i}\right)= \pm e_{i_{1}} e_{i_{2}} \ldots e_{i_{2 m}}, \\
\epsilon\left(s_{j}\right)= \pm e_{j_{1}} e_{j_{2}} \ldots e_{j_{2 p}}
\end{gathered}
$$

and

$$
\epsilon\left(s_{i} s_{j}\right)= \pm e_{k_{1}} e_{k_{2}} \ldots e_{k_{2 r}} .
$$

From (15) $2 r=2 m+2 p-2 l$. Moreover $\epsilon\left(s_{i}^{2}\right)=(-1)^{m}, \epsilon\left(s_{j}^{2}\right)=(-1)^{p}$ and $\epsilon\left(\left(s_{i} s_{j}\right)^{2}\right)=(-1)^{m+p-l}=(-1)^{m+p+l}$. Since from (16) (see also [10, Lemma 3.2]) $s_{i} s_{j}=s_{j} s_{i}$ we have $\epsilon\left(\left(s_{i}\right)^{2}\right) \epsilon\left(\left(s_{j}\right)^{2}\right)=\epsilon\left(\left(s_{i} s_{j}\right)^{2}\right)$. Hence

$$
(-1)^{m+p}=(-1)^{m+p+l} .
$$

This is impossible since l is an odd number and we have a contradiction.
For the existence of the Spin ${ }^{\mathbb{C}}$ structure it is enough to observe that the condition (17) is equivalent to equation $H^{2}(M(A), \mathbb{R})=0$, see [3, formula (8.1)]. Hence, we can apply the formula (14). Let us assume that $\bar{\epsilon}: \pi_{1}(M(A) \rightarrow$ $\operatorname{Spin}^{\mathbb{C}}(n)$ defines a Spin ${ }^{\mathbb{C}}$ structure. Using the same arguments as above, see [6, Proposition 1], we obtain a contradiction. This finished the proof of I.

For the proof II let us observe that $s_{i}^{2}=\left(s_{i} s_{j}\right)^{2}$. Hence $(-1)^{k}=\epsilon\left(\left(s_{i}\right)^{2}=\right.$ $\left.\epsilon\left(\left(s_{i} s_{j}\right)^{2}\right)\right)=(-1)^{k+l}=1$. This is impossible.

In the above theorem rows of number i and j correspond to generators s_{i}, s_{j} which define a finite index subgroup $H \subset \pi_{1}(M(A))$. It is a Bieberbach group with holonomy group $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. We proved that H (if it exists) has no Spin $\left(\operatorname{Spin}^{\mathbb{C}}\right)$ structure, (see the discussion before Theorem 1). In the next example we give the list of all 5 -dimensional real Bott manifolds (with) without $\operatorname{Spin}\left(\operatorname{Spin}^{\mathbb{C}}\right)$ structure.

Example 2 From [14] we have the list of all 5-dimensional oriented real Bott manifolds. There are 7 such manifolds without the torus. Here are
their matrices:

$$
\begin{aligned}
& A_{4}=\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], A_{23}=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \\
& A_{29}=\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], A_{37}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \\
& A_{40}=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], A_{48}=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \\
& 0
\end{aligned}
$$

From the first part of Theorem 1 above, for $i=1, j=2$ the manifold $M\left(A_{4}\right)$ has no Spin ${ }^{\mathbb{C}}$ structure. For the same reasons (for $i=1, j=2$) manifolds $M\left(A_{40}\right)$ and $M\left(A_{48}\right)$ have no Spin structures. The manifold $M\left(A_{23}\right)$ has no a Spin structure, because it satisfies for $i=1, j=3$ the second part of the Theorem 1. Since any flat oriented manifold with \mathbb{Z}_{2} holonomy has Spin strucure, [9, Theorem 3.1] manifolds $M\left(A_{29}\right), M\left(A_{49}\right)$ have it. Our last example, the manifold $M\left(A_{37}\right)$ has Spin structure and we leave it as an exercise.

In all these cases it is possible to calculate the w_{2} with the help of (6), (13) and (11). In fact, $w_{2}\left(M\left(A_{4}\right)\right)=\left(x_{2}\right)^{2}+x_{1} x_{3}, w_{2}\left(M\left(A_{23}\right)\right)=x_{1} x_{3}, w_{2}\left(M\left(A_{40}\right)\right)=$ $w_{2}\left(M\left(A_{48}\right)\right)=x_{1} x_{2}$. In all other cases $w_{2}=0$.

Example 3 Let

$$
A=\left[\begin{array}{lllllll}
0 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & * & * & * & * \\
0 & 0 & 0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

be a family of Bott matrices, with $* \in \mathbb{Z}_{2}$. It is easy to check that the first two rows satisfy the condition of Theorem 1. Hence the oriented real Bott manifolds $M(A)$ have no the Spin structure.

Remark 1 In [1] on page 6 an example of the flat (real Bott) manifold M without Spin structure is considered. By an immediate calculation the Bott matrix of M is equal to

$$
\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

4 Concluding Remarks

The tower (5) is an analogy of a Bott tower

$$
W_{n} \rightarrow W_{n-1} \rightarrow \ldots \rightarrow W_{1}=\mathbb{C} P^{1} \rightarrow W_{0}=\{\text { a point }\}
$$

where W_{i} is a $\mathbb{C} P^{1}$ bundle on W_{i-1} i.e.; $W_{i}=P\left(1 \oplus L_{i-1}\right)$ and L_{i-1} is a holomorphic line bundle over W_{i-1}. As in (5) $P\left(1 \oplus L_{i-1}\right)$ is projectivisation of the trivial linear bundle and L_{i-1}. It was introduced by Grossberg and Karshon [7]. As is well known, see [3] for the complete bibliography, W_{n} is a toric manifold.

There is an open problem: Is it true that two toric manifolds are diffeomorphic (or homeomorphic) if their cohomology rings with integer coefficients are isomorphic as graded rings ? In some cases it has partial affirmative solutions (see [10]). For real Bott manifolds the following is true.
Theorem ([10, Theorem 1.1]) Two real Bott manifolds are diffeomorphic if and only if their cohomology rings with \mathbb{Z}_{2} coefficients are isomorphic as graded rings. Equivalently, they are cohomological rigid.

All of this suggests the following:
Question Are $\mathcal{G H} \mathcal{W}$-manifolds cohomological rigid ?
The answer to the above question is positive for manifolds from $\mathcal{G H W} \cap$ $\mathcal{R B M}$. It looks the most interesting for oriented GHW-manifolds. However, for $n=5$ there are two oriented Hantzsche-Wendt manifolds. From direct calculations with the help of a computer we know that they have different cohomology rings with \mathbb{Z}_{2} coefficients.

References

[1] L. Auslander, R. H. Szczarba, Characteristic clsses of compact solvmanifolds, Ann. of Math. 4, 76, 1962, 1-8.
[2] Charlap L.S.: Bieberbach Groups and Flat Manifolds. Springer-Verlag, 1986.
[3] S. Choi, M. Masuda, S. Oum, Classification of real Bott manifolds and acyclic digraphs, arXiv:1006.4658
[4] S. Console, R. J. Miatello, J. P. Rossetti, \mathbb{Z}_{2} - cohomology and spectral properties of flat manifolds of diagonal type. J. Geom. Physics 60 (2010), 760-781
[5] K. Dekimpe, N. Petrosyan, Homology of Hantzsche-Wendt groups, Contemporary Mathematics, 501 Amer. Math. Soc. Providence, RI, (2009), 87-102
[6] A. Gąsior, A. Szczepański, Tangent bundles of Hantzsche-Wendt manifolds, preprint 2011
[7] M. Grossberg, Y. Karshon, Bott towers, complete integrability and the extended character of representations, Duke Math. J. 76 (1994), 23-58
[8] W. Hantzsche, H. Wendt, Dreidimensional Euklidische Raumformen, Math. Ann. 110 (1934-35), 593-611.
[9] G. Hiss, A. Szczepański, Spin structures on flat manifolds with cyclic holonomy, Communications in Algebra, 36 (1) (2008), 11-22
[10] Y. Kamishima, M. Masuda, Cohomological rigidity of real Bott manifolds, Alebr. \& Geom. Topol. 9 (2009), 2479-2502
[11] R. Lee, R. H. Szczarba, On the integral Pontrjagin classes of a Riemannian flat manifolds, Geom. Dedicata 3 (1974), 1-9
[12] R. Miatello, R. Podestá, The spectrum of twisted Dirac operators on compact flat manifolds, Trans. A.M.S., 358, Number 10, 2006, 4569 4603
[13] R. Miatello, J. P. Rossetti, Isospectral Hantzsche-Wendt manifolds, J. Reine Angew. Math. 515 (1999), 1-23.
[14] A. Nazra, Diffeomorphism Classes of Real Bott Manifolds, Tokyo J. Math., Vol. 34, No. 1 (2011), 229-260
[15] B. Putrycz, Commutator Subgroups of Hantzsche-Wendt Groups, J. Group Theory, 10 (2007), 401-409
[16] J. P. Rossetti, A.Szczepański, Generalized Hantzsche-Wendt flat manifolds, Rev. Mat. Iberoamericana 21, (2005), no.3, 1053-1070
[17] A. Szczepański, The euclidean representations of the Fibonacci groups, Q. J. Math. 52 (2001), 385-389;
[18] A. Szczepański, Properties of generalized Hantzsche - Wendt groups, J. Group Theory 12,(2009), 761-769

Institute of Mathematics, Maria Curie-Skłodowska University
Pl. Marii Curie-Skłodowskiej 1
20-031 Lublin
Poland
E-mail: anna.gasior @ poczta.umcs.lublin.pl
Institute of Mathematics, University of Gdańsk
ul. Wita Stwosza 57,
80-952 Gdańsk,
Poland
E-mail: matas @ univ.gda.pl

[^0]: ${ }^{1} a_{k, i}=0$ unless $k<i$.

[^1]: ${ }^{2}$ Sometimes $\mathcal{B}(n)$ is defined to be the set of strictly upper triangular binary matrices of size n.

[^2]: ${ }^{3}$ We use it in Example 2.

