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∗ Institute of Mathematics, Maria Curie-Sk lodowska University,
pl. M. Curie-Sk lodowskiej 1, 20-031 Lublin, POLAND,

anna.gasior@poczta.umcs.lublin.pl
∗∗ Institute of Mathematics, University of Gdańsk,
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Abstract: We formulate a condition for an existence of a SpinC-structure on an
oriented flat manifold Mn with H2(Mn,R) = 0. We prove that Mn has a SpinC-
structure if and only if there exist a homomorphism ε : π1(Mn) → SpinC(n)
such λ̄n ◦ ε = h, where h : π1(Mn)→ SO(n) is a holonomy homomorphism and
λ̄n : SpinC(n) → SO(n) is a standard homomorphism defined on page 2. As an
application we shall prove that all cyclic Hantzsche - Wendt manifolds have not
the SpinC-structure.
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1. Introduction

Let Mn be a flat manifold of dimension n. By definition, this is a compact connected,
Riemannian manifold without boundary with sectional curvature equal to zero. From the
theorems of Bieberbach ([2]) the fundamental group π1(Mn) = Γ determines a short exact
sequence:

(1) 0→ Zn → Γ
h→ F → 0,

where Zn is a torsion free abelian group of rank n and F is a finite group which is
isomorphic to the holonomy group of Mn. The universal covering of Mn is the Euclidean
space Rn and hence Γ is isomorphic to a discrete cocompact subgroup of the isometry
group Isom(Rn) = O(n) n Rn = E(n). In the above short exact sequence Zn ∼= (Γ ∩ Rn)
and h can be considered as the projection h : Γ → F ⊂ O(n) ⊂ E(n) on the first
component. Conversely, given a short sequence of the form (1), it is known that the
group Γ is (isomorphic to) a Bieberbach group if and only if Γ is torsion free.

By Hantzsche-Wendt manifold (for short HW-manifold) Mn we shall understand any
oriented flat manifold of dimension n with a holonomy group (Z2)n−1. It is easy to see
that n is always an odd number. Moreover, (see [12] and [17]) HW-manifolds are rational
homology spheres and its holonomy representation 1 is diagonal, [16]. Hence π1(Mn) is

1That is a representation φΓ : F → GL(n,Z), given by a formula φΓ(f)(z) = f̄ zf̄−1, where f̄ ∈ Γ, f ∈
F, z ∈ Zn and p(f̄) = f.

1



2

generated by βi = (Bi, bi) ∈ SO(n) n Rn, 1 ≤ i ≤ n, where

(2) Bi = diag(−1,−1, ...,−1, 1︸︷︷︸
i

,−1,−1, ...,−1) and bi ∈ {0, 1/2}n.

Let us recall some other properties of Mn. For n ≥ 5 the commutator subgroup of the fun-
damental group is equal to the translation subgroup ([Γ,Γ] = Γ∩Rn), ([14]). The number
Φ(n) of affinian not equivalent HW-manifolds of dimension n growths exponetially, see
[12, Theorem 2.8] and for m ≥ 7 there exist many pairs of isospectral manifolds all not
homeomorphic to each other, [12, Corollary 3.6]. These manifolds have interesting con-
nection with Fibonacci groups [18] and the theory of quadratic forms over a field F2, [19].
HW-manifolds have not a Spin-structure, [11, Example 4.6 on page 4593]. Hence tangent
bundles of HW-manifolds are not trivial. There are still not known their (co)homology
groups with coefficients in Z. Here we send reader to [4] where are presented results for
low dimensions and an algorithm. Finally, let us mention about properties related to the
theory of fixed points. HW-manifolds satisfy so called Anosov relation. This means for
any continious map f : Mn → Mn, | L(f) |= N(f), where L(f) is the Lefschetz number
of f and N(f) is the Nielsen number of f, see [3].

In this note we are interested in properties of the tangent bundle of HW-manifolds. We
shall prove that they are line element parallelizable (Proposition 1) and we shall define an
infinite family of HW-manifolds without SpinC-structure (Theorem 2). However, the main
result of this article is related to an existence SpinC-structures on oriented flat manifolds.
The group SpinC(n) is given by SpinC(n) = (Spin(n)×S1)/{1,−1} where Spin(n)∩S1 =
{1,−1}. Moreover, there is a homomorphism of groups λ̄n : SpinC(n) → SO(n) given by
λ̄n[g, z] = λn(g), where g ∈ Spin(n), z ∈ S1 and λn : Spin(n) → SO(n) is the universal
covering. We shall prove:

Theorem 1 Let M be an oriented flat manifold with H2(M,R) = 0. M has a SpinC-
structure if and only if there exists a homomorphism ε : Γ→ SpinC(n) such that

(3) λ̄n ◦ ε = h.

As an application we prove Theorem 2.

Theorem 2 All cyclic HW-manifolds have not the SpinC-structure.

For a description of cyclic HW-manifolds see Definition 2. We conjecture that all HW-
manifolds have not the SpinC-structure.

2. Hantzsche-Wendt manifolds are line element parallelizable

We keep notations from the introduction. For any discrete group G, we have a universal
principal G-bundle with the total space EG and the base space BG. BG is called the
classifying space of a group G and is unique up to homotopy. In our case Rn is the total
space of a principal Γ-bundle with a base space Mn. Here E Γ = Rn and B Γ = Mn, see
[20, page 369]. Now G→ BG behaves more or less like a functor, and in particular, from
the surjection h : Γ→ h(Γ) = F we can construct a corresponding map B(h) : B Γ→ BF.
Finally, the inclusion in : F → O(n) yields a map B(in) : BF → B(O(n)). The universal
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n-dimensional vector bundle over B(O(n)) yields, via this map a vector bundle ηn over
BF.

Lemma 1. ([20, Proposition 1.1]) B(h)∗(ηn) is equivalent to the tangent bundle of Mn.

Proof: (See [20, page 369]) We have a commutative diagram as follows

Rn = E Γ EF

Mn = B Γ BF
��

//
E(h)

��

//
B(h)

where E(h)(g · e) = h(g) · E(h)(e) for all g ∈ Γ and e ∈ E Γ = Rn. Let the total space
of ηn be EF × Rn/F where f ∈ F acts via f(e, v) = (f · e, f · v). Now clearly the total
space τ of the tangent bundle of Mn = B Γ can be taken to be Rn × Rn/Γ where Γ acts
via g(v1, v2) = (gv1, h(g)v2). Thus we have a commutative diagram as follows:

τ = Rn × Rn/Γ EF × Rn/F

Mn = Rn/Γ BF

��
� �
� �
� �
�

//

��
� �
� �
� �
� �

//
B(h)

where F acts on EF ×Rn as followings {v1, v2} → {E(h)(v1), v2}. This finishes the proof.
�

Remark 1. From the above Lemma we can observe that the tangent bundle is flat in
sense of [1, page 272].

Let us present the main result of this section.

Proposition 1. Let Mn be a HW-manifold of dimension n. Then its tangent bundle is
line element parallelizable, (is a sum of line bundles).

Proof: By definition the fundamental group Γ = π1(Mn) is a subgroup of SO(n) n Rn

and h(Γ) = (Z2)n−1 ⊂ SO(n) is a group of all diagonal orthogonal matrices. It is also an
image of the holonomy representation φΓ : (Z2)n−1 → SO(n). Let us recall a basic facts
about line bundles. It is well known that the classification space for line bundles is RP∞,
the infinite projective space. Hence any line bundle ξ : L→ Mn is isomorphic to f ∗(η1),
where

f ∈ [Mn,RP∞] ' H1(Mn,Z2) ' Hom(Γ,Z2)
(∗)
' (Z2)n−1

is a classification map and η1 ∈ H1(RP∞,Z2) = Z2 is not a trivial element. Here η1

represents the universal line vector bundle and the isomorphism (∗) follows from [14, Cor.
3.2., ]. Since (Z2)n−1 is an abelian group,

φΓ =
n⊕
i=1

(φΓ)i,
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where (φΓ)i : (Z2)n−1 → {±1} are irreducible representations of (Z2)n−1, for i = 1, 2, ..., n.
From Lemma 1 and [7, Theorem 8.2.2] the tangent bundle

τ(Mn) = B(h)∗(ηn) =
n⊕
i=1

B(hi)
∗(η1),

where hi = (φΓ)i ◦ h. This finishes the proof.
�

3. SpinC-structure

It is well known (see [11, Example 4.6 on page 4593]) that HW-manifolds have not the
Spin-structure. In this section we shall consider the question: Do HW-manifolds have the
SpinC-structure ?

On the beginning let us recall some facts about the group SpinC, which was defined in
the Introduction. We start with homomorphisms ([5, page 25]):

• i : Spin(n)→ SpinC(n) is the natural inclusion i(g) = [g, 1].
• j : S1 → SpinC(n) is the natural inclusion, j(z) = [1, z].
• l : SpinC(n)→ S1 is given by l[g, z] = z2.
• p : SpinC(n)→ SO(n)× S1 is given by p([g, z]) = (λn(g), z2). Hence p = λn × l.

Since S1 = SO(2), there is a natural map k : SO(n)× SO(2)→ SO(n + 2). Then we can
describe SpinC(n) as the pullback by this map of the covering map

SpinC(n) Spin(n+ 2)

SO(n)× SO(2) SO(n+ 2)
��
� �
� �
� �

//

��
� �
� �
� �
�

λn

//
k

Let W n be an n-dimensional, compact oriented manifold and let δ : W n → BSO(n)
be the classification map of its tangent bundle TW n. We now recall the definition of a
SpinC-structure ([9, page 34], [5, page 47]).

Definition 1. A SpinC-structure on the manifold W n is a lift of δ to BSpinC(n), giving
a commutative diagram:

BSpinC(n)

W n BSO(n).
��
� �
� �
� �
� �
� �

B(λ̄n)

??���������������
//

δ
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Remark 2.

(1) (See [5, Remark, d on page 49].) W n has the SpinC-structure if and only if
the Stiefel-Whitney class w2 ∈ H2(W n,Z2) is Z2-reduction of an integral Stiefel-
Whitney class w̃2 ∈ H2(W n,Z).

(2) Let K(Z, 2) and K(Z2, 2) be the Eilenberg-Maclane spaces. From the homotopy
theory

H2(W n,Z) = [W n, BS1] = [W n, K(Z, 2)]

and H2(W n,Z2) = [W n, K(Z2, 2)]. Hence the above condition defines a commuta-
tive diagram

K(Z, 2)

W n K(Z2, 2)
��
� �
� �
� �
� �
� �
�??���������������

w̃2

//
w2

where the vertical arrow is induced by an epimorfizm Z→ Z2.

From previous sections (Lemma 1) an oriented flat manifold M = B Γ, and δ = B(h)
where Γ = π1(M) and h : Γ → SO(n) is a holonomy homomorphism. Let us recall (see
[15, page 323] and Remark 3) that an oriented manifold M has a Spin-structure if and
only if there exists a homomorphism e : Γ→ Spin(n) such that

(4) λn ◦ e = h.

Hence, a condition of existence of the SpinC-structure on M is very similar to the above
condition (4).

Theorem 1. Let M be an oriented flat manifold with H2(M,R) = 0. M has a SpinC-
structure if and only if there exists a homomorphism ε : Γ→ SpinC(n) such that

(5) λ̄n ◦ ε = h.

Proof: Let us assume that there exists a homomorphism ε : Γ → SpinC(n) such that
λ̄nε = h. We claim that conditions of Definition 1 are satisfied. In fact, B(λ̄n)B(ε) = B(h)
up to homotopy. To go the other way, let us assume that M = BΓ admits a SpinC-
structure. We have a commutative diagram.
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0 Z2 Γ0 Γ 0

0 S1 Γ1 Γ 0

0 Z2 Spin(n) SO(n) 0

0 S1 SpinC(n) SO(n) 0
j λ̄n

r

r i

h

λn

Diagram 1

where Γ0 is defined by the second Stiefel-Whitney class w2 ∈ H2(Γ,Z2) and Γ1 is defined
by the element r∗(w2) ∈ H2(Γ, S1). Here r : Z2 → S1 is a group monomorphism. Let h2 :
H2(SO(n), K)→ H2(Γ, K) be a homomorphism induced by the holonomy homomorphism
h, for K = Z2, S

1. From definition, (see [10, Chapter 23.6]) there exists an element 2

x2 ∈ H2(SO(n),Z2) = Z2 such that h2(x2) = w2 and h2(r∗(x2)) = r∗(h
2(x2)) = r∗(w2).

Moreover we have two infinite sequences of cohomology which are induced by the following
commutative diagram of groups

1 Z Z Z2 1

1 Z R S1 1

//

� �
� �
� �
�

� �
� �
� �
�

//
2

��
� �
� �
� �
�

//

��
� �
� �
� �
�

r

//

// // // //

. . . H2(Γ,Z) H2(Γ,Z) H2(Γ,Z2) H3(Γ,Z) . . .

. . . H2(Γ,Z) H2(Γ,R) H2(Γ, S1) H3(Γ,Z) . . .

// //

��

//
red

��

r∗

// //

// // // // //

From Remark 2 red(w̃2) = w2 and since H2(Γ,R) = 0, r∗(w2) = 0. It follows that the row

0→ S1 → Γ1 → Γ→ 0

of the Diagram 1 splits. Hence there exists a homomorphism ε : Γ → SpinC(n) which
satisfies (5). This proves the theorem.

�

As an immediate corollary we have.

Corollary 1. Let M be an oriented flat manifold with the fundamental group Γ. If there
exists a homomorphism ε : Γ→ SpinC(n) such that

(6) λ̄n ◦ ε = h.

then M has a SpinC-structure.

2H∗(SO(n),Z2) = Z2[x2, x3, ..., xn].
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Remark 3. A condition (4) of an existence of the Spin-structure for oriented flat mani-
folds also follows from the proof of the above Theorem 1.

Question: Is the assumption H2(M,R) = 0 about the second cohomology group neces-
sary?

Example 1.

(1) Because of the inclusion i : Spin(n)→ SpinC(n) each Spin-structure on M induces
a SpinC-structure.

(2) If M is any smooth compact manifold with an almost complex structure, then M
has a canonical SpinC-structure, see [5, page 27].

Example 2. Any oriented compact manifold of dimension up to four has a SpinC-structure,
see [6, page 49].

From Example 2 and [15, Theorem on page 324] we have immediately.

Corollary 2. There exist three four dimensional flat manifolds without Spin-structure
but with SpinC-structure.

In [5, Example on page 50] is given a compact 5-dimensional manifold Q, without
SpinC-structure. However the fundamental group π1(Q) = 1. There are also two other
non-simply connected 5-dimensional examples, see [8, Eaxmples page 438]. The first one
is hypersurface in RP 2 × RP 4 defined by the equation x0y0 + x1y1 + x2y2 = 0 where
[x0 : x1 : x2] and [y0 : y1y2 : y3 : y4] are homogeneneous coordinates in RP 2 and RP 4

respectively. The second one is the Dold’s manifold

P (1, 2) = CP 2 × S1/ ∼,
where ∼ is an involution, which acts on CP 2 by complex conjugation and antipodally
on S1. Our next result gives examples of 5-dimensional flat manifolds without SpinC-
structure.

Proposition 2. Two HW-manifolds M1 and M2 of dimension five have not the SpinC-
structure.

Proof: Since H2(Mi,R) = 0, i = 1, 2, ([4], [16]) we can apply a condition from The-
orem 1. Let Γ1 = π1(M1). It has the CARAT number 1-th 219.1.1, see [13]. 3 It is
generated by

α1 = ([1, 1, 1,−1,−1], (0, 0, 1/2, 1/2, 0)), α2 = ([1, 1,−1,−1, 1], (0, 1/2, 0, 0, 0)),

α3 = ([−1, 1, 1,−1, 1], (0, 0, 0, 0, 1/2)), α4 = ([1,−1,−1, 1, 1], (1/2, 0, 0, 0, 0))

and translations. We assume that there exists a homomorphism ε : Γ1 → SpinC(5) such
that λ̄n ◦ ε = h. From definition

α2α3 = α3α2

and (α2α3)2 = (α2)2(α3)2. Put ε(αi) = [ai, zi] ∈ SpinC(5), ai ∈ Spin(5), zi ∈ S1, i = 1, 2, 3.
Then

ε
(
(α2α3)2

)
=
[
−1, z2

2z
2
5

]
= ε((α2))2ε

(
(α3)2

)
=
[
−1, z2

2

] [
−1, z2

5

]
=
[
1, z2

2z
2
5

]
3Here we use the name CARAT for tables of Bieberbach groups of dimension ≤ 6, see [13].
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and −z2
2z

2
5 = z2

2z
2
5 . We obtain contradiction.

Now, let us consider the second five dimensional HW-group Γ2 = π1(M2) which has a
number 2-th. 219.1.1., (see [13]). It is generated by

β1 = (B1, (1/2, 1/2, 0, 0, 0)), β2 = (B2, (0, 1/2, 1/2, 0, 0)),

β3 = (B3, (0, 0, 1/2, 1/2, 0)) and β4 = (B4, (0, 0, 0, 1/2, 1/2)).

Put β5 = (β1β2β3β4)−1 = (B5, (1/2, 0, 0, 0,−1/2)). Assume that there exists a homomor-
phism ε : Γ2 → SpinC(5) which defines the SpinC-structure on M2. Let ε(βi) = [ai, zi] ∈
SpinC(5) = (Spin(5) × S1)/{1,−1}. Let ti = (I, (0, ..., 0, 1︸︷︷︸

i

, 0, ..., 0)), i = 1, 2, 3, 4, 5.

Since ε is a homomorphsim

(7) ∀1≤i≤5 ε
(
(βiβi+2)2

)
=
[
aiai+2aiai+2, z

2
i z

2
i+2

]
=
[
−1, z2

i z
2
i+2

]
.

Moreover, by easy computation

(8) ∀1≤i≤5 (βi)
2 = ti, (βiβi+2)2 = ti+1t

−1
i+3 and ε(ti) =

[
±1, z2

i

]
.

From (7), (8) and (11)

(9)
[
−1, z2

1z
2
3

]
=
[
1, z2

2z
2
4

]
=
[
−1, z2

3z
2
5

]
=
[
1, z2

4z
2
1

]
=
[
−1, z2

5z
2
2

]
=
[
1, z2

1z
2
3

]
,

which is impossible. Here indexes we read modulo 5. This finishes the proof.
�

Definition 2. The HW-manifold Mn of dimension n, is cyclic if and only if π1(Mn) is
generated by the following elements (see [18, Lemma 1]):

βi = (Bi, (0, 0, 0, ..., 0, 1/2︸︷︷︸
i

, 1/2, 0, ..., 0)), 1 ≤ i ≤ n− 1,

βn = (β1β2 . . . βn−1)−1 = (Bn, (1/2, 0, ..., 0,−1/2).

We have.

Theorem 2. Cyclic HW-manifolds have not the SpinC-structure.

Proof: Since the above group Γ2 satisfies our assumption the proof is generaliza-
tion of arguments from the Proposition 2. Let Γ be a fundamental group of the cyclic
HW-manifold of dimension ≥ 5, with set of generators βi = (Bi, bi), i = 1, 2, .., n. Since
H2(Γ,R) = 0, ([4]) we can apply a condition from Theorem 1. Let us assume that there
exist a homomorphism ε : Γ→ SpinC(n), which defines the SpinC-structure and

(10) ε(βi) = [ai, zi], ai ∈ Spin(n), zi ∈ S1.

From [14] the maximal abelian subgroup Zn of Γ is exactly the commutator subgroup Γ.
Hence ε([Γ,Γ]) ⊂ i (Spin(n)) ⊂ SpinC(n). Since ∀i ε((βi)2) = [a2

i , z
2
i ] and (βi)

2 ∈ [Γ,Γ],
z2
i = ±1, for i = 1, 2, ..., n. It follows that

(11) ∀i zi ∈ {±1,±i}.
Let ti = (I, (0, ..., 0, 1︸︷︷︸

i

, 0, ..., 0)). From (10)

(12) ε(ti) = ε
(
(βi)

2
)

=
[
±1, z2

i

]
, i = 1, 2, ..., n
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and also

(13) ∀1≤i≤n ε
(
(βiβi+2)2

)
=
[
−1, z2

i z
2
i+2

]
.

Moreover

(14) ∀1≤i≤n (βiβi+2)2 = ti+1t
−1
i+3.

From equations (12), (13) and (14) we have[
−1, z2

i z
2
i+2

]
=
[
1, z2

i+1z
2
i+3

]
and

∀1≤i≤n z2
i z

2
i+2 = −z2

i+1z
2
i+3 = z2

i+2z
2
i+4.

Since n is odd z2
i z

2
i+2 = −z2

i+nz
2
i+2+n = −z2

i z
2
i+2, contradiction, (cf. (9)) 4. This finishes

the proof.
�
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