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Abstract: We formulate a condition for an existence of a Spin(c—structure on an
oriented flat manifold M™ with H2(M™,R) = 0. We prove that M™ has a Spin®-
structure if and only if there exist a homomorphism € : 71 (M™) — Spin®(n)
such A, o € = h, where h : w1 (M™) — SO(n) is a holonomy homomorphism and
An 1 Spin®(n) — SO(n) is a standard homomorphism defined on page 2. As an
application we shall prove that all cyclic Hantzsche - Wendt manifolds have not
the Spin©-structure.
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1. INTRODUCTION

Let M™ be a flat manifold of dimension n. By definition, this is a compact connected,
Riemannian manifold without boundary with sectional curvature equal to zero. From the
theorems of Bieberbach ([2]) the fundamental group 7 (M") = I' determines a short exact
sequence:

(1) O—>Z”—>F£>F—>O,

where Z" is a torsion free abelian group of rank n and F' is a finite group which is
isomorphic to the holonomy group of M™. The universal covering of M™ is the Fuclidean
space R™ and hence I' is isomorphic to a discrete cocompact subgroup of the isometry
group Isom(R") = O(n) x R" = E(n). In the above short exact sequence Z" = (I' N R")
and h can be considered as the projection h : I' — F C O(n) C E(n) on the first
component. Conversely, given a short sequence of the form (1), it is known that the
group I is (isomorphic to) a Bieberbach group if and only if T" is torsion free.

By Hantzsche-Wendt manifold (for short HW-manifold) M"™ we shall understand any
oriented flat manifold of dimension n with a holonomy group (Z,)"!. It is easy to see
that n is always an odd number. Moreover, (see [12] and [17]) HW-manifolds are rational
homology spheres and its holonomy representation ! is diagonal, [16]. Hence w1 (M") is

IThat is a representation ¢r : F' — GL(n,Z), given by a formula ¢r(f)(z) = fzf~' where f€T, f €
F,zeZ" and p(f) = f.

1



2
generated by 3; = (B;,b;) € SO(n) x R", 1 <i <n, where
(2) B; = diag(—1,—1,...,—1, 1 ,—1,—1,...,—1) and b; € {0,1/2}".

Let us recall some other properties of M". For n > 5 the commutator subgroup of the fun-
damental group is equal to the translation subgroup ([I',I'] = I'NRR"), ([14]). The number
®(n) of affinian not equivalent HW-manifolds of dimension n growths exponetially, see
[12, Theorem 2.8] and for m > 7 there exist many pairs of isospectral manifolds all not
homeomorphic to each other, [12, Corollary 3.6]. These manifolds have interesting con-
nection with Fibonacci groups [18] and the theory of quadratic forms over a field Fy, [19].
HW-manifolds have not a Spin-structure, [11, Example 4.6 on page 4593]. Hence tangent
bundles of HW-manifolds are not trivial. There are still not known their (co)homology
groups with coefficients in Z. Here we send reader to [4] where are presented results for
low dimensions and an algorithm. Finally, let us mention about properties related to the
theory of fixed points. HW-manifolds satisfy so called Anosov relation. This means for
any continious map f : M"™ — M™, | L(f) |= N(f), where L(f) is the Lefschetz number
of f and N(f) is the Nielsen number of f, see [3].

In this note we are interested in properties of the tangent bundle of HW-manifolds. We
shall prove that they are line element parallelizable (Proposition 1) and we shall define an
infinite family of HW-manifolds without Spin®-structure (Theorem 2). However, the main
result of this article is related to an existence Spin®-structures on oriented flat manifolds.
The group Spin®(n) is given by Spin®(n) = (Spin(n) x S*)/{1, —1} where Spin(n)NS* =
{1, —1}. Moreover, there is a homomorphism of groups A, : Spin®(n) — SO(n) given by
Mg, 2] = Au(g), where g € Spin(n),z € S* and ), : Spin(n) — SO(n) is the universal
covering. We shall prove:

Theorem 1 Let M be an oriented flat manifold with H*(M,R) = 0. M has a Spin®-
structure if and only if there exists a homomorphism e : ' — Spinc(n) such that

(3) Ap0€=h.

As an application we prove Theorem 2.
Theorem 2 All cyclic HW-manifolds have not the Spin®-structure.

For a description of cyclic HW-manifolds see Definition 2. We conjecture that all HW-
manifolds have not the Spin®-structure.

2. HANTZSCHE-WENDT MANIFOLDS ARE LINE ELEMENT PARALLELIZABLE

We keep notations from the introduction. For any discrete group G, we have a universal
principal G-bundle with the total space EG and the base space BG. BG is called the
classifying space of a group G and is unique up to homotopy. In our case R" is the total
space of a principal I'-bundle with a base space M". Here EI' = R™ and BI' = M", see
20, page 369]. Now G — B G behaves more or less like a functor, and in particular, from
the surjection h : I' — h(I") = F we can construct a corresponding map B(h) : BI' — B F.
Finally, the inclusion i, : F' — O(n) yields a map B(i,) : BF — B(O(n)). The universal
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n-dimensional vector bundle over B(O(n)) yields, via this map a vector bundle 7, over
B F.

Lemma 1. ([20, Proposition 1.1]) B(h)*(n,) is equivalent to the tangent bundle of M™.

Proof: (See [20, page 369]) We have a commutative diagram as follows

E(h)
R*=EI —— EF

|

M"=BI' —— BF

where E(h)(g-e) = h(g) - E(h)(e) for all g € ' and e € EI' = R™. Let the total space
of n, be EF x R"/F where f € F acts via f(e,v) = (f - e, f - v). Now clearly the total
space 7 of the tangent bundle of M™ = BT can be taken to be R" x R™/T" where I" acts
via g(v1,v2) = (gv1, h(g)ve). Thus we have a commutative diagram as follows:

T=R"xXR"T" —— EF xR"/F

| |

B(h)
M"=R"/ — BF
where F acts on E F' x R™ as followings {vy,vo} — {E(h)(v1),ve}. This finishes the proof.
U

Remark 1. From the above Lemma we can observe that the tangent bundle is flat in
sense of [1, page 272].

Let us present the main result of this section.

Proposition 1. Let M" be a HW-manifold of dimension n. Then its tangent bundle is
line element parallelizable, (is a sum of line bundles).

Proof: By definition the fundamental group I' = 7 (M") is a subgroup of SO(n) x R"
and h(T) = (Zy)" ' € SO(n) is a group of all diagonal orthogonal matrices. It is also an
image of the holonomy representation ¢r : (Z3)" ' — SO(n). Let us recall a basic facts
about line bundles. It is well known that the classification space for line bundles is RP>°,
the infinite projective space. Hence any line bundle & : L — M™ is isomorphic to f*(n),

where

e MY, RP¥| ~ H'(M",Z,) ~ Hom(T, Z,) 2 (Z,)""

is a classification map and 1, € H'(RP>,Z,) = Z, is not a trivial element. Here 7,
represents the universal line vector bundle and the isomorphism (x) follows from [14, Cor.
3.2, ]. Since (Zy)"! is an abelian group,

¢r = EP(r):,

=1
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where (¢r); : (Zy)" ' — {£1} are irreducible representations of (Z,)" 1, fori =1,2,...,n.
From Lemma 1 and [7, Theorem 8.2.2] the tangent bundle

(") = B () = €D Bll)" ().

where h; = (¢r); o h. This finishes the proof.

3. Spin®-STRUCTURE

It is well known (see [11, Example 4.6 on page 4593]) that HW-manifolds have not the
Spin-structure. In this section we shall consider the question: Do HW-manifolds have the
Spin®-structure ?

On the beginning let us recall some facts about the group Spin®, which was defined in
the Introduction. We start with homomorphisms ([5, page 25|):

e i : Spin(n) — Spin®(n) is the natural inclusion i(g) = [g, 1].

e j: S — Spin®(n) is the natural inclusion, j(z) = [1, 2].

e [ : Spin©(n) — S' is given by I[g, 2] = 2%

e p: Spin®(n) — SO(n) x S is given by p([g, 2]) = (Mu(g), 2%). Hence p = \, x L.

Since S' = SO(2), there is a natural map k : SO(n) x SO(2) — SO(n + 2). Then we can
describe Spin®(n) as the pullback by this map of the covering map

Spin®(n) —— Spin(n + 2)

| .

SO(n) x SO(2) —— SO(n + 2)

Let W™ be an n-dimensional, compact oriented manifold and let § : W™ — BSO(n)
be the classification map of its tangent bundle TW™. We now recall the definition of a
Spin©-structure ([9, page 34], [5, page 47]).

Definition 1. A Spin®-structure on the manifold W™ is a lift of § to BSpin©(n), giving
a commutative diagram:

BSpin®(n)



Remark 2.

(1) (See [5, Remark, d on page 49].) W" has the Spin“-structure if and only if
the Stiefel-Whitney class wy € H*(W™, Zy) is Zy-reduction of an integral Stiefel-
Whitney class wy € H*(W™, 7).

(2) Let K(Z,2) and K(Zs,2) be the Eilenberg-Maclane spaces. From the homotopy
theory

H*(W™ Z) = [W",BS'] = [W", K(Z,?2)]

and H*(W",Zy) = [W", K(Zs,2)]. Hence the above condition defines a commuta-
tive diagram

K(Z,2)

Wn ——— K(Z,,?2)
where the vertical arrow is induced by an epimorfizm Z — Z,.

From previous sections (Lemma 1) an oriented flat manifold M = BT, and § = B(h)
where I' = m (M) and h : I' — SO(n) is a holonomy homomorphism. Let us recall (see
[15, page 323] and Remark 3) that an oriented manifold M has a Spin-structure if and
only if there exists a homomorphism e : I' — Spin(n) such that

(4) Apoe=h.

Hence, a condition of existence of the Spin®-structure on M is very similar to the above
condition (4).

Theorem 1. Let M be an oriented flat manifold with H*(M,R) = 0. M has a Spin®-
structure if and only if there exists a homomorphism € : I' — Spin(c(n) such that

(5) A, 0€=h.

Proof: Let us assume that there exists a homomorphism € : T' — Spin®(n) such that
An€ = h. We claim that conditions of Definition 1 are satisfied. In fact, B()\,)B(¢) = B(h)
up to homotopy. To go the other way, let us assume that M = BT admits a Spin®-
structure. We have a commutative diagram.



0 - Zy Ty r 0
A A
0 St Iy r 0
T
0 Zo — Spin(n) — | — SO(n) 0
AR
0 St Spin©(n) ——— SO(n) 0

Diagram 1

where 'y is defined by the second Stiefel-Whitney class wy € H?(T',Zy) and T'; is defined
by the element r,(ws) € H*(T, S'). Here r : Zy — S is a group monomorphism. Let h? :
H?*(SO(n), K) — H?*(T', K) be a homomorphism induced by the holonomy homomorphism
h, for K = 7Z,,S*. From definition, (see [10, Chapter 23.6]) there exists an element ?
Ty € H*(SO(n),Zy) = Zy such that h?(xy) = wy and h?(r.(z2)) = r.(h%(z2)) = ri(ws).
Moreover we have two infinite sequences of cohomology which are induced by the following
commutative diagram of groups

2

1 7 7 Zo 1
1 7 R St 1

red

s HX1,Z) — H*(T,2) " HX(T,Z,) — HYT,Z) — -

|-

. — H*(I,Z) — H*(I',R) — H*(I',S") — H*(,Z) — -~
From Remark 2 red(ws) = wy and since H*(I',R) = 0, r,(wy) = 0. It follows that the row
0—-S'—>TI, =TI —=0

of the Diagram 1 splits. Hence there exists a homomorphism ¢ : I' — Spin®(n) which
satisfies (5). This proves the theorem.

O

As an immediate corollary we have.

Corollary 1. Let M be an oriented flat manifold with the fundamental group T". If there
exists a homomorphism ¢ : T' — Spin®(n) such that

(6) Xnoe:h.

then M has a Spin®-structure.

2H*(SO(n), Zy) = Loy, 3, ..., Tp).
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Remark 3. A condition (4) of an ezistence of the Spin-structure for oriented flat mani-
folds also follows from the proof of the above Theorem 1.

Question: Is the assumption H?(M,R) = 0 about the second cohomology group neces-
sary?
Example 1.
(1) Because of the inclusion i : Spin(n) — Spin®(n) each Spin-structure on M induces
a Spin®-structure.

(2) If M is any smooth compact manifold with an almost complex structure, then M
has a canonical Spin®-structure, see [5, page 27].

Example 2. Any oriented compact manifold of dimension up to four has a Spin®-structure,
see [6, page 49].

From Example 2 and [15, Theorem on page 324] we have immediately.

Corollary 2. There exist three four dimensional flat manifolds without Spin-structure
but with Spin®-structure.

In [5, Example on page 50] is given a compact 5-dimensional manifold ), without
Spin®-structure. However the fundamental group m1(Q) = 1. There are also two other
non-simply connected 5-dimensional examples, see [8, Faxmples page 438]. The first one
is hypersurface in RP? x RP* defined by the equation zoyy + z1y1 + 22y> = 0 where
[0 : o1 @ 2] and [yo : Y1y2 : Y3 : y4] are homogeneneous coordinates in RP? and RP*
respectively. The second one is the Dold’s manifold

P(1,2) =CP* x S'/ ~,

where ~ is an involution, which acts on CP? by complex conjugation and antipodally
on S'. Our next result gives examples of 5-dimensional flat manifolds without Spin®-
structure.

Proposition 2. Two HW-manifolds M, and M, of dimension five have not the Spin®-
structure.

Proof: Since H*(M;,R) = 0,7 = 1,2, ([4], [16]) we can apply a condition from The-
orem 1. Let I'y = m(M;). It has the CARAT number 1-th 219.1.1, see [13]. 3 It is
generated by

a; = ([1,1,1,-1,-1],(0,0,1/2,1/2,0)), a0 = ([1,1,—1,—1,1},(0,1/2,0,0,0)),

az = ([-1,1,1,-1,1],(0,0,0,0,1/2)), a4 = ([1,-1,—-1,1,1],(1/2,0,0,0,0))
and translations. We assume that there exists a homomorphism € : I'y — Spin®(5) such
that A\, o €e = h. From definition

Qi3 = (X30lg

and (ana3)? = (as)?(as)?. Put €(q;) = [as, 2] € Spin©(5), a; € Spin(5),z; € S',i =1,2,3.
Then

€ ((waz)?) = [—1,2327] = e((w))’e ((a3)?) = [-1,23] [-1,22] = [1, 2322

3Here we use the name CARAT for tables of Bieberbach groups of dimension < 6, see [13].
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and —z322 = z322. We obtain contradiction.

Now, let us consider the second five dimensional HW-group I'y = 71 (M5) which has a
number 2-th. 219.1.1., (see [13]). It is generated by

B = (B17 (1/27 1/27 0,0, 0))7 B = (B27 (07 1/27 1/27 0, 0))7
By = (Bs,(0,0,1/2,1/2,0)) and By = (By, (0,0,0,1/2,1/2)).
Put 85 = (81323361) "' = (Bs, (1/2,0,0,0,—1/2)). Assume that there exists a homomor-
phism € : Ty — Spin®(5) which defines the Spin®-structure on M. Let €(3;) = [a;, 2] €
Spin®(5) = (Spin(5) x S)/A{L ~1}. Let t; = (I,(0,..,0, 1 ,0,..,0)),i = 1,2,3,4,5.

i
Since € is a homomorphsim

(7) Vicics € ((@ﬂiw)z) = [&iai+2aiai+2,2¢22¢2+2] = [ 1733212”}
Moreover, by easy computation
(8) Vicics (8i)° =ti, (BiBis2)” = tisaty)y and e(t;) = [£1,77].

From (7), (8) and (11)

9) [—1,2725) = [1,232]] = [-1,2322] = [1,2327] = [-1,2323] = [1,2{#3],
which is impossible. Here indexes we read modulo 5. This finishes the proof.

Definition 2. The HW-manifold M™ of dimension n, is cyclic if and only if m (M™) is
generated by the following elements (see [18, Lemma 1]):
B; = (B;,(0,0,0,...,0,1/2,1/2,0,...,0)),1 <i<n-—1,
~
ﬁn - <ﬁ1ﬁ2 T 6”*1)71 = (Bn7 (1/27 07 ) 07 _1/2)
We have.
Theorem 2. Cyclic HW-manifolds have not the Spin®-structure.

Proof: Since the above group I's satisfies our assumption the proof is generaliza-
tion of arguments from the Proposition 2. Let I' be a fundamental group of the cyclic
HW-manifold of dimension > 5, with set of generators 3; = (B;,b;),7 = 1,2,..,n. Since
H?*(T,R) = 0, ([4]) we can apply a condition from Theorem 1. Let us assume that there
exist a homomorphism € : I' — Spin®(n), which defines the Spin®-structure and

(10) e(B;) = las, 2], a; € Spin(n), z; € S*.
From [14] the maximal abelian subgroup Z" of I' is exactly the commutator subgroup I.

Hence ¢([T',T]) C i (Spin(n)) C Spin®(n). Since V; €((5;)?) = [a2, 2?] and (5;)? € [I',T7],
2?2 =41, for i = 1,2, ...,n. It follows that

(11) Y 2 € {&1,+il.
Let t; = (1,(0,...,0, 1 ,0,...,0)). From (10)

(12) e(t;) =€e((8:)%) = [£L,27] .i=1,2,..,n



and also

(13) Vicicn € ((BiBis2)?) = [—1, 2727, -
Moreover

(14) Vicicn (Bifiv2)? = tivati s

From equations (12), (13) and (14) we have

[_ 1, Zizzzz-&-Q} = [L Zz‘2+1zz‘2+3]

and
2.2 2 2 .2 2
Vicicn ZiZive = —Ziy1%ips = ZiyaZipa-
Since n is odd 2222,, = —22, 22 = —2222,, contradiction, (cf. (9)) *. This finishes
7 142 i+n~i424n T ~142) ) ' .
the proof.
OJ
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