Tangent bundles of Hantzsche-Wendt manifolds

A. Gąsior *, A. Szczepański **

* Institute of Mathematics, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, POLAND, anna.gasior@poczta.umcs.lublin.pl
** Institute of Mathematics, University of Gdańsk, ul. Wita Stwosza 57, 80-952 Gdańsk, POLAND, matas@univ.gda.pl

Abstract: We formulate a condition for an existence of a $\operatorname{Spin}^{\mathbb{C}}$ -structure on an oriented flat manifold M^n with $H^2(M^n, \mathbb{R}) = 0$. We prove that M^n has a $\operatorname{Spin}^{\mathbb{C}}$ -structure if and only if there exist a homomorphism $\epsilon : \pi_1(M^n) \to \operatorname{Spin}^{\mathbb{C}}(n)$ such $\overline{\lambda}_n \circ \epsilon = h$, where $h : \pi_1(M^n) \to \operatorname{SO}(n)$ is a holonomy homomorphism and $\overline{\lambda}_n : \operatorname{Spin}^{\mathbb{C}}(n) \to \operatorname{SO}(n)$ is a standard homomorphism defined on page 2. As an application we shall prove that all cyclic Hantzsche - Wendt manifolds have not the $\operatorname{Spin}^{\mathbb{C}}$ -structure.

MSC2000: 53C27, 53C29, 20H15

Keywords: $Spin^{\mathbb{C}}$ -structure, flat manifold, Hantzsche-Wendt manifold, tangent bundle

1. INTRODUCTION

Let M^n be a flat manifold of dimension n. By definition, this is a compact connected, Riemannian manifold without boundary with sectional curvature equal to zero. From the theorems of Bieberbach ([2]) the fundamental group $\pi_1(M^n) = \Gamma$ determines a short exact sequence:

(1)
$$0 \to \mathbb{Z}^n \to \Gamma \xrightarrow{h} F \to 0,$$

where \mathbb{Z}^n is a torsion free abelian group of rank n and F is a finite group which is isomorphic to the holonomy group of M^n . The universal covering of M^n is the Euclidean space \mathbb{R}^n and hence Γ is isomorphic to a discrete cocompact subgroup of the isometry group $\operatorname{Isom}(\mathbb{R}^n) = \operatorname{O}(n) \ltimes \mathbb{R}^n = \operatorname{E}(n)$. In the above short exact sequence $\mathbb{Z}^n \cong (\Gamma \cap \mathbb{R}^n)$ and h can be considered as the projection $h : \Gamma \to F \subset \operatorname{O}(n) \subset \operatorname{E}(n)$ on the first component. Conversely, given a short sequence of the form (1), it is known that the group Γ is (isomorphic to) a Bieberbach group if and only if Γ is torsion free.

By Hantzsche-Wendt manifold (for short HW-manifold) M^n we shall understand any oriented flat manifold of dimension n with a holonomy group $(\mathbb{Z}_2)^{n-1}$. It is easy to see that n is always an odd number. Moreover, (see [12] and [17]) HW-manifolds are rational homology spheres and its holonomy representation ¹ is diagonal, [16]. Hence $\pi_1(M^n)$ is

That is a representation $\phi_{\Gamma} : F \to \operatorname{GL}(n, \mathbb{Z})$, given by a formula $\phi_{\Gamma}(f)(z) = \overline{f}z\overline{f}^{-1}$, where $\overline{f} \in \Gamma, f \in F, z \in \mathbb{Z}^n$ and $p(\overline{f}) = f$.

generated by $\beta_i = (B_i, b_i) \in SO(n) \ltimes \mathbb{R}^n, 1 \le i \le n$, where

(2)
$$B_i = \operatorname{diag}(-1, -1, ..., -1, \underbrace{1}_i, -1, -1, ..., -1)$$
 and $b_i \in \{0, 1/2\}^n$.

Let us recall some other properties of M^n . For $n \ge 5$ the commutator subgroup of the fundamental group is equal to the translation subgroup $([\Gamma, \Gamma] = \Gamma \cap \mathbb{R}^n)$, ([14]). The number $\Phi(n)$ of affinian not equivalent HW-manifolds of dimension n growths exponetially, see [12, Theorem 2.8] and for $m \ge 7$ there exist many pairs of isospectral manifolds all not homeomorphic to each other, [12, Corollary 3.6]. These manifolds have interesting connection with Fibonacci groups [18] and the theory of quadratic forms over a field \mathbb{F}_2 , [19]. HW-manifolds have not a Spin-structure, [11, Example 4.6 on page 4593]. Hence tangent bundles of HW-manifolds are not trivial. There are still not known their (co)homology groups with coefficients in \mathbb{Z} . Here we send reader to [4] where are presented results for low dimensions and an algorithm. Finally, let us mention about properties related to the theory of fixed points. HW-manifolds satisfy so called Anosov relation. This means for any continious map $f: M^n \to M^n$, |L(f)| = N(f), where L(f) is the Lefschetz number of f and N(f) is the Nielsen number of f, see [3].

In this note we are interested in properties of the tangent bundle of HW-manifolds. We shall prove that they are line element parallelizable (Proposition 1) and we shall define an infinite family of HW-manifolds without $\operatorname{Spin}^{\mathbb{C}}$ -structure (Theorem 2). However, the main result of this article is related to an existence $\operatorname{Spin}^{\mathbb{C}}$ -structures on oriented flat manifolds. The group $\operatorname{Spin}^{\mathbb{C}}(n)$ is given by $\operatorname{Spin}^{\mathbb{C}}(n) = (\operatorname{Spin}(n) \times S^1)/\{1, -1\}$ where $\operatorname{Spin}(n) \cap S^1 = \{1, -1\}$. Moreover, there is a homomorphism of groups $\overline{\lambda}_n : \operatorname{Spin}^{\mathbb{C}}(n) \to \operatorname{SO}(n)$ given by $\overline{\lambda}_n[g, z] = \lambda_n(g)$, where $g \in \operatorname{Spin}(n), z \in S^1$ and $\lambda_n : \operatorname{Spin}(n) \to \operatorname{SO}(n)$ is the universal covering. We shall prove:

Theorem 1 Let M be an oriented flat manifold with $H^2(M, \mathbb{R}) = 0$. M has a Spin^{\mathbb{C}}-structure if and only if there exists a homomorphism $\epsilon : \Gamma \to \text{Spin}^{\mathbb{C}}(n)$ such that

(3)
$$\overline{\lambda}_n \circ \epsilon = h.$$

As an application we prove Theorem 2.

Theorem 2 All cyclic HW-manifolds have not the $\text{Spin}^{\mathbb{C}}$ -structure.

For a description of cyclic HW-manifolds see Definition 2. We conjecture that all HW-manifolds have not the $\text{Spin}^{\mathbb{C}}$ -structure.

2. HANTZSCHE-WENDT MANIFOLDS ARE LINE ELEMENT PARALLELIZABLE

We keep notations from the introduction. For any discrete group G, we have a universal principal G-bundle with the total space $\mathbb{E}G$ and the base space $\mathbb{B}G$. $\mathbb{B}G$ is called the classifying space of a group G and is unique up to homotopy. In our case \mathbb{R}^n is the total space of a principal Γ -bundle with a base space M^n . Here $\mathbb{E}\Gamma = \mathbb{R}^n$ and $\mathbb{B}\Gamma = M^n$, see [20, page 369]. Now $G \to \mathbb{B}G$ behaves more or less like a functor, and in particular, from the surjection $h: \Gamma \to h(\Gamma) = F$ we can construct a corresponding map $B(h): \mathbb{B}\Gamma \to \mathbb{B}F$. Finally, the inclusion $i_n: F \to O(n)$ yields a map $B(i_n): \mathbb{B}F \to \mathbb{B}(O(n))$. The universal *n*-dimensional vector bundle over B(O(n)) yields, via this map a vector bundle η_n over B F.

Lemma 1. ([20, Proposition 1.1]) $B(h)^*(\eta_n)$ is equivalent to the tangent bundle of M^n .

Proof: (See [20, page 369]) We have a commutative diagram as follows

where $E(h)(g \cdot e) = h(g) \cdot E(h)(e)$ for all $g \in \Gamma$ and $e \in E\Gamma = \mathbb{R}^n$. Let the total space of η_n be $EF \times \mathbb{R}^n/F$ where $f \in F$ acts via $f(e, v) = (f \cdot e, f \cdot v)$. Now clearly the total space τ of the tangent bundle of $M^n = B\Gamma$ can be taken to be $\mathbb{R}^n \times \mathbb{R}^n/\Gamma$ where Γ acts via $g(v_1, v_2) = (gv_1, h(g)v_2)$. Thus we have a commutative diagram as follows:

where F acts on $E F \times \mathbb{R}^n$ as followings $\{v_1, v_2\} \to \{E(h)(v_1), v_2\}$. This finishes the proof.

Remark 1. From the above Lemma we can observe that the tangent bundle is flat in sense of [1, page 272].

Let us present the main result of this section.

Proposition 1. Let M^n be a HW-manifold of dimension n. Then its tangent bundle is line element parallelizable, (is a sum of line bundles).

Proof: By definition the fundamental group $\Gamma = \pi_1(M^n)$ is a subgroup of $\mathrm{SO}(n) \ltimes \mathbb{R}^n$ and $h(\Gamma) = (\mathbb{Z}_2)^{n-1} \subset \mathrm{SO}(n)$ is a group of all diagonal orthogonal matrices. It is also an image of the holonomy representation $\phi_{\Gamma} : (\mathbb{Z}_2)^{n-1} \to \mathrm{SO}(n)$. Let us recall a basic facts about line bundles. It is well known that the classification space for line bundles is $\mathbb{R}P^{\infty}$, the infinite projective space. Hence any line bundle $\xi : L \to M^n$ is isomorphic to $f^*(\eta_1)$, where

$$f \in [M^n, \mathbb{R}P^\infty] \simeq H^1(M^n, \mathbb{Z}_2) \simeq Hom(\Gamma, \mathbb{Z}_2) \stackrel{(*)}{\simeq} (\mathbb{Z}_2)^{n-1}$$

is a classification map and $\eta_1 \in H^1(\mathbb{R}P^{\infty}, \mathbb{Z}_2) = \mathbb{Z}_2$ is not a trivial element. Here η_1 represents the universal line vector bundle and the isomorphism (*) follows from [14, Cor. 3.2.,]. Since $(\mathbb{Z}_2)^{n-1}$ is an abelian group,

$$\phi_{\Gamma} = \bigoplus_{i=1}^{n} (\phi_{\Gamma})_i,$$

where $(\phi_{\Gamma})_i : (\mathbb{Z}_2)^{n-1} \to \{\pm 1\}$ are irreducible representations of $(\mathbb{Z}_2)^{n-1}$, for i = 1, 2, ..., n. From Lemma 1 and [7, Theorem 8.2.2] the tangent bundle

$$\tau(M^n) = B(h)^*(\eta_n) = \bigoplus_{i=1}^n B(h_i)^*(\eta_1),$$

where $h_i = (\phi_{\Gamma})_i \circ h$. This finishes the proof.

3. $\text{Spin}^{\mathbb{C}}$ -STRUCTURE

It is well known (see [11, Example 4.6 on page 4593]) that HW-manifolds have not the Spin-structure. In this section we shall consider the question: Do HW-manifolds have the $\text{Spin}^{\mathbb{C}}$ -structure ?

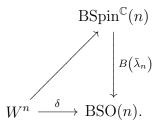
On the beginning let us recall some facts about the group $\text{Spin}^{\mathbb{C}}$, which was defined in the Introduction. We start with homomorphisms ([5, page 25]):

- $i : \operatorname{Spin}(n) \to \operatorname{Spin}^{\mathbb{C}}(n)$ is the natural inclusion i(g) = [g, 1].
- $j: S^1 \to \operatorname{Spin}^{\mathbb{C}}(n)$ is the natural inclusion, j(z) = [1, z].
- \tilde{l} : Spin^{\mathbb{C}} $(n) \to S^1$ is given by $l[g, z] = z^2$.
- $p: \operatorname{Spin}^{\mathbb{C}}(n) \to \operatorname{SO}(n) \times S^1$ is given by $p([g, z]) = (\lambda_n(g), z^2)$. Hence $p = \lambda_n \times l$.

Since $S^1 = SO(2)$, there is a natural map $k : SO(n) \times SO(2) \to SO(n+2)$. Then we can describe $Spin^{\mathbb{C}}(n)$ as the pullback by this map of the covering map

Let W^n be an *n*-dimensional, compact oriented manifold and let $\delta : W^n \to BSO(n)$ be the classification map of its tangent bundle TW^n . We now recall the definition of a $Spin^{\mathbb{C}}$ -structure ([9, page 34], [5, page 47]).

Definition 1. A Spin^{\mathbb{C}}-structure on the manifold W^n is a lift of δ to BSpin^{\mathbb{C}}(n), giving a commutative diagram:

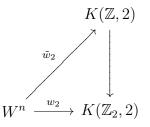


Remark 2.

- (1) (See [5, Remark, d on page 49].) W^n has the Spin^{\mathbb{C}}-structure if and only if the Stiefel-Whitney class $w_2 \in H^2(W^n, \mathbb{Z}_2)$ is \mathbb{Z}_2 -reduction of an integral Stiefel-Whitney class $\tilde{w}_2 \in H^2(W^n, \mathbb{Z})$.
- (2) Let $K(\mathbb{Z}, 2)$ and $K(\mathbb{Z}_2, 2)$ be the Eilenberg-Maclane spaces. From the homotopy theory

$$H^{2}(W^{n},\mathbb{Z}) = [W^{n}, BS^{1}] = [W^{n}, K(\mathbb{Z}, 2)]$$

and $H^2(W^n, \mathbb{Z}_2) = [W^n, K(\mathbb{Z}_2, 2)]$. Hence the above condition defines a commutative diagram



where the vertical arrow is induced by an epimorfizm $\mathbb{Z} \to \mathbb{Z}_2$.

From previous sections (Lemma 1) an oriented flat manifold $M = B\Gamma$, and $\delta = B(h)$ where $\Gamma = \pi_1(M)$ and $h : \Gamma \to SO(n)$ is a holonomy homomorphism. Let us recall (see [15, page 323] and Remark 3) that an oriented manifold M has a Spin-structure if and only if there exists a homomorphism $e : \Gamma \to Spin(n)$ such that

(4)
$$\lambda_n \circ e = h.$$

Hence, a condition of existence of the $\text{Spin}^{\mathbb{C}}$ -structure on M is very similar to the above condition (4).

Theorem 1. Let M be an oriented flat manifold with $H^2(M, \mathbb{R}) = 0$. M has a Spin^{\mathbb{C}}-structure if and only if there exists a homomorphism $\epsilon : \Gamma \to \text{Spin}^{\mathbb{C}}(n)$ such that

(5)
$$\overline{\lambda}_n \circ \epsilon = h.$$

Proof: Let us assume that there exists a homomorphism $\epsilon : \Gamma \to \operatorname{Spin}^{\mathbb{C}}(n)$ such that $\overline{\lambda}_n \epsilon = h$. We claim that conditions of Definition 1 are satisfied. In fact, $B(\overline{\lambda}_n)B(\epsilon) = B(h)$ up to homotopy. To go the other way, let us assume that $M = B\Gamma$ admits a $\operatorname{Spin}^{\mathbb{C}}$ -structure. We have a commutative diagram.

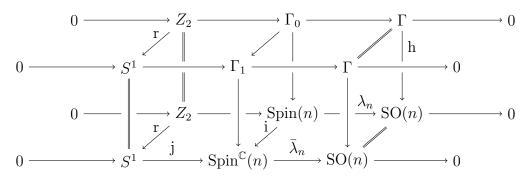


Diagram 1

where Γ_0 is defined by the second Stiefel-Whitney class $w_2 \in H^2(\Gamma, \mathbb{Z}_2)$ and Γ_1 is defined by the element $r_*(w_2) \in H^2(\Gamma, S^1)$. Here $r : \mathbb{Z}_2 \to S^1$ is a group monomorphism. Let $h^2 :$ $H^2(\mathrm{SO}(n), K) \to H^2(\Gamma, K)$ be a homomorphism induced by the holonomy homomorphism h, for $K = \mathbb{Z}_2, S^1$. From definition, (see [10, Chapter 23.6]) there exists an element ${}^2 x_2 \in H^2(\mathrm{SO}(n), \mathbb{Z}_2) = \mathbb{Z}_2$ such that $h^2(x_2) = w_2$ and $h^2(r_*(x_2)) = r_*(h^2(x_2)) = r_*(w_2)$. Moreover we have two infinite sequences of cohomology which are induced by the following commutative diagram of groups

From Remark 2 $red(\tilde{w}_2) = w_2$ and since $H^2(\Gamma, \mathbb{R}) = 0, r_*(w_2) = 0$. It follows that the row $0 \to S^1 \to \Gamma_1 \to \Gamma \to 0$

of the Diagram 1 splits. Hence there exists a homomorphism $\epsilon : \Gamma \to \operatorname{Spin}^{\mathbb{C}}(n)$ which satisfies (5). This proves the theorem.

As an immediate corollary we have.

Corollary 1. Let M be an oriented flat manifold with the fundamental group Γ . If there exists a homomorphism $\epsilon : \Gamma \to \operatorname{Spin}^{\mathbb{C}}(n)$ such that

(6) $\bar{\lambda}_n \circ \epsilon = h.$

then M has a $\operatorname{Spin}^{\mathbb{C}}$ -structure.

 $^{^{2}}H^{*}(\mathrm{SO}(n),\mathbb{Z}_{2}) = \mathbb{Z}_{2}[x_{2},x_{3},...,x_{n}].$

Remark 3. A condition (4) of an existence of the Spin-structure for oriented flat manifolds also follows from the proof of the above Theorem 1.

Question: Is the assumption $H^2(M, \mathbb{R}) = 0$ about the second cohomology group necessary?

Example 1.

- (1) Because of the inclusion $i : \operatorname{Spin}(n) \to \operatorname{Spin}^{\mathbb{C}}(n)$ each Spin -structure on M induces a $\operatorname{Spin}^{\mathbb{C}}$ -structure.
- (2) If M is any smooth compact manifold with an almost complex structure, then M has a canonical Spin^C-structure, see [5, page 27].

Example 2. Any oriented compact manifold of dimension up to four has a $\text{Spin}^{\mathbb{C}}$ -structure, see [6, page 49].

From Example 2 and [15, Theorem on page 324] we have immediately.

Corollary 2. There exist three four dimensional flat manifolds without Spin-structure but with $\text{Spin}^{\mathbb{C}}$ -structure.

In [5, Example on page 50] is given a compact 5-dimensional manifold Q, without $\text{Spin}^{\mathbb{C}}$ -structure. However the fundamental group $\pi_1(Q) = 1$. There are also two other non-simply connected 5-dimensional examples, see [8, Eaxmples page 438]. The first one is hypersurface in $\mathbb{R}P^2 \times \mathbb{R}P^4$ defined by the equation $x_0y_0 + x_1y_1 + x_2y_2 = 0$ where $[x_0 : x_1 : x_2]$ and $[y_0 : y_1y_2 : y_3 : y_4]$ are homogeneneous coordinates in $\mathbb{R}P^2$ and $\mathbb{R}P^4$ respectively. The second one is the Dold's manifold

$$P(1,2) = \mathbb{C}P^2 \times S^1 / \sim,$$

where \sim is an involution, which acts on $\mathbb{C}P^2$ by complex conjugation and antipodally on S^1 . Our next result gives examples of 5-dimensional flat manifolds without Spin^{\mathbb{C}}structure.

Proposition 2. Two HW-manifolds M_1 and M_2 of dimension five have not the Spin^{\mathbb{C}}-structure.

Proof: Since $H^2(M_i, \mathbb{R}) = 0, i = 1, 2$, ([4], [16]) we can apply a condition from Theorem 1. Let $\Gamma_1 = \pi_1(M_1)$. It has the CARAT number 1-th 219.1.1, see [13]. ³ It is generated by

$$\alpha_1 = ([1, 1, 1, -1, -1], (0, 0, 1/2, 1/2, 0)), \alpha_2 = ([1, 1, -1, -1, 1], (0, 1/2, 0, 0, 0)), \\ \alpha_3 = ([-1, 1, 1, -1, 1], (0, 0, 0, 0, 1/2)), \alpha_4 = ([1, -1, -1, 1, 1], (1/2, 0, 0, 0, 0))$$

and translations. We assume that there exists a homomorphism $\epsilon : \Gamma_1 \to \operatorname{Spin}^{\mathbb{C}}(5)$ such

that $\bar{\lambda}_n \circ \epsilon = h$. From definition $\alpha_2 \alpha_3 = \alpha_3 \alpha_2$

and $(\alpha_2 \alpha_3)^2 = (\alpha_2)^2 (\alpha_3)^2$. Put $\epsilon(\alpha_i) = [a_i, z_i] \in \text{Spin}^{\mathbb{C}}(5), a_i \in \text{Spin}(5), z_i \in S^1, i = 1, 2, 3$. Then

$$\frac{\epsilon \left((\alpha_2 \alpha_3)^2 \right)}{(\alpha_2 \alpha_3)^2} = \begin{bmatrix} -1, z_2^2 z_5^2 \end{bmatrix} = \epsilon ((\alpha_2))^2 \epsilon \left((\alpha_3)^2 \right) = \begin{bmatrix} -1, z_2^2 \end{bmatrix} \begin{bmatrix} -1, z_5^2 \end{bmatrix} = \begin{bmatrix} 1, z_2^2 z_5^2 \end{bmatrix}$$

³Here we use the name CARAT for tables of Bieberbach groups of dimension ≤ 6 , see [13].

and $-z_2^2 z_5^2 = z_2^2 z_5^2$. We obtain contradiction.

Now, let us consider the second five dimensional HW-group $\Gamma_2 = \pi_1(M_2)$ which has a number 2-th. 219.1.1., (see [13]). It is generated by

$$\beta_1 = (B_1, (1/2, 1/2, 0, 0, 0)), \beta_2 = (B_2, (0, 1/2, 1/2, 0, 0)),$$

 $\beta_3 = (B_3, (0, 0, 1/2, 1/2, 0))$ and $\beta_4 = (B_4, (0, 0, 0, 1/2, 1/2)).$

Put $\beta_5 = (\beta_1 \beta_2 \beta_3 \beta_4)^{-1} = (B_5, (1/2, 0, 0, 0, -1/2))$. Assume that there exists a homomorphism $\epsilon : \Gamma_2 \to \operatorname{Spin}^{\mathbb{C}}(5)$ which defines the $\operatorname{Spin}^{\mathbb{C}}$ -structure on M_2 . Let $\epsilon(\beta_i) = [a_i, z_i] \in \operatorname{Spin}^{\mathbb{C}}(5) = (\operatorname{Spin}(5) \times S^1)/\{1, -1\}$. Let $t_i = (I, (0, ..., 0, \underbrace{1}_{i}, 0, ..., 0)), i = 1, 2, 3, 4, 5$.

Since ϵ is a homomorphism

(7)
$$\forall_{1 \le i \le 5} \ \epsilon \left((\beta_i \beta_{i+2})^2 \right) = \left[a_i a_{i+2} a_i a_{i+2}, z_i^2 z_{i+2}^2 \right] = \left[-1, z_i^2 z_{i+2}^2 \right].$$

Moreover, by easy computation

(8)
$$\forall_{1 \le i \le 5} \ (\beta_i)^2 = t_i, (\beta_i \beta_{i+2})^2 = t_{i+1} t_{i+3}^{-1} \text{ and } \epsilon(t_i) = [\pm 1, z_i^2].$$

From (7), (8) and (11)

(9)
$$\left[-1, z_1^2 z_3^2\right] = \left[1, z_2^2 z_4^2\right] = \left[-1, z_3^2 z_5^2\right] = \left[1, z_4^2 z_1^2\right] = \left[-1, z_5^2 z_2^2\right] = \left[1, z_1^2 z_3^2\right]$$

which is impossible. Here indexes we read modulo 5. This finishes the proof.

Definition 2. The HW-manifold M^n of dimension n, is cyclic if and only if $\pi_1(M^n)$ is generated by the following elements (see [18, Lemma 1]):

$$\beta_i = (B_i, (0, 0, 0, ..., 0, \underbrace{\frac{1/2}{i}}_{i}, 1/2, 0, ..., 0)), 1 \le i \le n - 1,$$

$$\beta_n = (\beta_1 \beta_2 \dots \beta_{n-1})^{-1} = (B_n, (1/2, 0, ..., 0, -1/2).$$

We have.

Theorem 2. Cyclic HW-manifolds have not the $\text{Spin}^{\mathbb{C}}$ -structure.

Proof: Since the above group Γ_2 satisfies our assumption the proof is generalization of arguments from the Proposition 2. Let Γ be a fundamental group of the cyclic HW-manifold of dimension ≥ 5 , with set of generators $\beta_i = (B_i, b_i), i = 1, 2, ..., n$. Since $H^2(\Gamma, \mathbb{R}) = 0$, ([4]) we can apply a condition from Theorem 1. Let us assume that there exist a homomorphism $\epsilon : \Gamma \to Spin^{\mathbb{C}}(n)$, which defines the Spin^{\mathbb{C}}-structure and

(10)
$$\epsilon(\beta_i) = [a_i, z_i], a_i \in \operatorname{Spin}(n), z_i \in S^1.$$

From [14] the maximal abelian subgroup \mathbb{Z}^n of Γ is exactly the commutator subgroup Γ . Hence $\epsilon([\Gamma, \Gamma]) \subset i(\operatorname{Spin}(n)) \subset \operatorname{Spin}^{\mathbb{C}}(n)$. Since $\forall_i \ \epsilon((\beta_i)^2) = [a_i^2, z_i^2]$ and $(\beta_i)^2 \in [\Gamma, \Gamma]$, $z_i^2 = \pm 1$, for i = 1, 2, ..., n. It follows that

(11)
$$\forall_i \ z_i \in \{\pm 1, \pm i\}.$$

Let $t_i = (I, (0, ..., 0, \underbrace{1}_i, 0, ..., 0)).$ From (10)
(12) $\epsilon(t_i) = \epsilon((\beta_i)^2) = [\pm 1, z_i^2], i = 1, 2, ..., n$

and also

(13)
$$\forall_{1 \le i \le n} \ \epsilon \left((\beta_i \beta_{i+2})^2 \right) = \left[-1, z_i^2 z_{i+2}^2 \right].$$

Moreover

(14)
$$\forall_{1 \le i \le n} \ (\beta_i \beta_{i+2})^2 = t_{i+1} t_{i+3}^{-1}$$

From equations (12), (13) and (14) we have

$$\left[-1, z_i^2 z_{i+2}^2\right] = \left[1, z_{i+1}^2 z_{i+3}^2\right]$$

and

$$\forall_{1 \le i \le n} \ z_i^2 z_{i+2}^2 = -z_{i+1}^2 z_{i+3}^2 = z_{i+2}^2 z_{i+4}^2.$$

Since *n* is odd $z_i^2 z_{i+2}^2 = -z_{i+n}^2 z_{i+2+n}^2 = -z_i^2 z_{i+2}^2$, contradiction, (cf. (9))⁴. This finishes the proof.

Acknowledgment

We would like to thank J. Popko for his help in the proof of the Theorem 1, B. Putrycz for discussion about existence of $\text{Spin}^{\mathbb{C}}$ -structures on HW-manifolds and A. Weber for some useful comments.

References

- L. Auslander, R. H. Szczarba, Vector bundles over tori and noncompact solvmanifolds, American J. Mathem. 97, (1975), pp. 260 - 281
- [2] Charlap L.S.: Bieberbach Groups and Flat Manifolds. Springer-Verlag, 1986.
- [3] K. Dekimpe, B. De Rock, The Anosov theorem for flat generalized Hantzsche Wendt manifolds, J. Geom. Phys. 52 (2004), No.2, 177 - 185
- [4] K. Dekimpe, N. Petrosyan, Homology of Hantzsche-Wendt groups, Contemporary Mathematics, 501 Amer. Math. Soc. Providence, RI, (2009), 87 - 102
- [5] T. Friedrich, Dirac operators in Riemannian geometry, Graduate Studies in Mathematics, Vol. 25, American Mathematical Society, Providence, Rhode Island 2000
- [6] R. E. Gompf, Spin^C-structures and homotopy equivalences, Geometry and Topology, 1, (1997), 41-45
- [7] D. Husemöller, Fibre bundles, McGraw-Hill, New York 1966
- [8] T. P. Killingback, E. G. Rees, Spin^C-structures on manifolds, Class. Quantum Grav. 2 (1985), 433-438
- [9] R. C. Kirby, The Topology of 4-Manifolds, Springer LN 1374, New York 1989
- [10] J. P. May, A concise course in Algebraic Topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago 1999
- [11] R. Miatello, R. Podestá, The spectrum of twisted Dirac operators on compact flat manifolds, Trans. A.M.S., 358, Number 10, 2006, 4569 - 4603
- [12] R. Miatello, J. P. Rossetti, Isospectral Hantzsche-Wendt manifolds, J. Reine Angew. Math. 515 (1999), 1 - 23.
- [13] J. Opgenorth, W. Plesken, T. Schulz CARAT Crystallographic Algorithms and Tables http://wwwb.math.rwth-aachen.de/CARAT/
- [14] B. Putrycz, Commutator Subgroups of Hantzsche-Wendt Groups, J. Group Theory, 10 (2007), 401
 409
- [15] B. Putrycz, A. Szczepański: Existence of spin structures on flat four manifolds Adv. in Geometry, 10 (2), (2010), 323-322

⁴The indexes should be read modulo n.

- [16] J. P. Rossetti, A. Szczepański, Generalized Hantzsche-Wendt flat manifolds, Revista Iberoam. Mat. 21(3), 2005, 1053-1079
- [17] A. Szczepański, Aspherical manifolds with the Q-homology of a sphere, Mathematika, 30, (1983), 291-294
- [18] A. Szczepański, The euclidean representations of the Fibonacci groups, Q. J. Math. 52 (2001), 385-389;
- [19] A. Szczepański, Properties of generalized Hantzsche Wendt groups, J. Group Theory ${\bf 12},\!(2009)$, 761-769
- [20] A. T. Vasquez, Flat Riemannian manifolds, J. Diff. Geom. 4, 1970, 367 382

10