
Spin structures on flat manifolds

K. Dekimpe, M. Sadowski, A. Szczepański
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Abstract

The aim of this paper is to present some results about spin struc-

tures on flat manifolds. We prove that any finite group can be the

holonomy group of a flat spin manifold. Moreover we shall give some

methods of constructing spin structures related to the holonomy rep-

resentation.

1 Introduction

Let Mn be a flat manifold of dimension n. By definition, this is a compact
connected, Riemannian manifold without boundary and with sectional cur-
vature equal to zero. From the theorems of Bieberbach ([3]) the fundamental
group π1(M

n) = Γ detemines a short exact sequence:

0 → Zn → Γ
p
→ F → 0, (1)

where Zn is a torsion free abelian group of rank n and F is a finite group
which is isomorphic to the holonomy group of Mn. The universal covering
of Mn is the Euclidean space Rn and hence Γ is isomorphic to a discrete
cocompact subgroup of the isometry group Isom(Rn) = Rn oO(n) = E(n).
In the above short exact sequence Zn ∼= (Γ ∩ Rn) and p can be considered
as the projection p : Γ → F ⊂ O(n) ⊂ E(n) on the second component.
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Conversely, given a short sequence of the form (1), it is known that the
group Γ is (isomorphic to) a Bieberbach group if and only if Γ is torsion free.

In this paper, we study the open and difficult problem of finding all
spin structures (if any) on oriented flat manifolds. That is important, for
example, when we want to consider the Dirac operator or η-invariant. There
is a complete characterization of the flat manifolds which supports an Anosov
diffeomorphism (cf. [16]) or with the first Betti number equal to zero (cf.
[10]). We think, that our article is a first step towards a decsription of the
oriented flat manifolds with or without spin structure. The existence of a
Spin structure on Mn is equivalent to the existence of a homomorphism
ε : Γ → Spin(n) such that λnε = p. Here λn : Spin(n) → SO(n) is the
covering map ([15], see also below). Moreover it is well known (cf. [7, page
40]) that for any oriented Riemannian manifold Mn, the existence of a spin
structure is equivalent to the condition that the second Stiefel-Whitney class
w2(M

n) 6= 0. Hence and from (cf. [20, Corollary 1.3]) any flat manifold with
holonomy of odd order has a spin stucture. In that same paper, Vasquez
shows that not all flat manifolds admit a spin structure by providing an
example of a flat manifold Mn with w2(M

n) = 0.

All of this suggests the global question about the relations between the
properties of the holonomy group and the existence of spin structures. We
shall consider it in the first sections of this paper. We can also say that the
class of flat manifolds with holonomy groups of order 2k, k ≥ 1 is crucial from
the point of view of the existence of spin structures. We would like to mention
that a complete answer for this question in the case of an elementary abelian
group Zk

2, k ≥ 1 was given in [14], where sufficient and necessary conditions
for the existence of a spin structure is given. It turns out that there are in
fact many such flat manifolds admitting a spin structure, but also a lot of
them not admitting a spin structure. But, for most finite groups, not of odd
order, the answer is still not known. For example nothing is known for cyclic
2-groups of order greater than two. In the last section we consider the case
of generalized quaternion 2-groups and define a spin structure on such flat
oriented manifolds.

After having established a sufficient condition for admitting a spin structure
(see Proposition 2) we are able to show (Theorem 1) that for any finite
group G there exists a flat manifold M , having G as its holonomy group and
also admitting a spin structure. That result suggests the question on what
can be said about the minimal dimension s(G) of a flat spin manifold with
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holonomy group G. We present some results in case the holonomy group
is an elementary abelian 2-group, but we also devote a whole part of this
paper to the case of generalized quaternion groups. In fact, we are able to
determine (Theorem 2) the minimal dimension of a flat manifold, having such
a quaternion group as its holonomy group and admitting a spin structure.

The second problem which we consider in section four is the dependence
of the spin structure on the properties of the homomorphism ε. We shall give,
in the case where

ε(Zn) = {1},

a characterization of the holonomy groups and representations of flat oriented
manifolds which do not admit a spin structure (Proposition 4). We would
like to mention that the case ε(Zn) = {1,−1} is different and needs other
methods. In the last section we consider non trivial examples of spin struc-
tures ε on oriented flat manifolds with generalized quaternion two-groups as
holonomy groups and with the property that ε(Zn) = Z2.

2 A general result

¿From above any oriented flat manifold with holonomy of odd order has a
spin structure. Moreover we have the following.

Proposition 1 Let Mn and Γ be as above and let F2 be a 2-Sylov subgroup
of F. Then Mn has a spin structure if and only if Mn(2) = Rn/p−1(F2) has
a spin structure.

Proof: We have an injection i : p−1(F2) → Γ, which induces a homomor-
phism i∗ : H2(Mn,Z2) → H2(M(2),Z2). By [2, Proposition 10.4] i∗ is a
monomorphism too, so that w2(TM

n) = 0 if and only if w2(TM
n(2)) = 0.

Corollary 1 Let H be a finite group with Sylow 2-subgroup of order 2. Then
any oriented flat manifold with holonomy group H has a spin structure.

Proof: From [20, Corollary 2.8] and [19] (see also [14, Proposition 4.2]) we
get that any oriented flat manifold with Z2 holonomy has a spin structure.
Hence by the above proposition the corollary follows.

Problem Classify all finite groups H, for which any oriented flat manifold
with holonomy group H admits a spin structure.
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3 Holonomy and Spin structures

Let us start by recalling some basic facts about the group Spin(n). We refer
to [12, Part II, Ch. 11, Th.9.2] and [7] for more details. The n-dimensional
real Clifford algebra Cl(n) is a unitary real associative algebra generated by
e1, e2, . . . , en staisfying the relations

∀i, 1 ≤ i ≤ n : eiei = −1, ∀i, j, 1 ≤ i < j ≤ n : eiej = −ejei.

So, any element of Cl(n) can be written as a polynomial of the form

p(e1, e2, . . . , en) = a0 +
∑

1≤i≤n

a1
i ei +

∑

1≤i<j≤n

a2
i,jeiej + · · ·+ ane1e2 . . . en, (2)

where all of the coefficients ak
i1i2...ik

belong to R.
The norm of an element of the above form is equal to

√

(a0)2 +
∑

1≤i≤n

(a1
i )

2 +
∑

1≤i<j≤n

(a2
i,j)

2 + · · ·+ (an)2

Let Rn be the subspace of Cl(n) generated by e1, e2, . . . , en. We shall denote
by Pin(n) the group which is multiplicatitively generated by all elements of
Rn of norm 1. The group Spin(n) is a subgroup of Pin(n) which is invariant
under the automorphism ′ : Cl(n) → Cl(n), which maps ei to −ei for i =
1, 2, . . . , n. It consists of elements of the form (2) of norm 1, for which the
coefficients appearing in front of an odd number of ei’s vanish. In other
words:

a1
i = a3

i,j,k = a5
i,j,k,l,m = . . . = 0. (3)

For n ≥ 2 there is a standard covering map

λn : Spin(n) → SO(n) : y 7→ λn(y), with λn(y) : Rn → Rn : x 7→ yxy∗

where, ∗ is the anti-automorphism of Cl(n) determined by (ei1ei2 . . . eir)
∗ =

eir . . . ei2ei1. The kernel of λn equals {1,−1}. We start with the following.

Lemma 1 Let k1, k2, ..., kl ≥ 2 be natural numbers and
l∑

i=1

ki = n. Then

there exists a homomorphism

ν : Spin(k1) × Spin(k2) × ...× Spin(kl) → Spin(n)
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given by the formula

ν((p1(e1, . . . , ek1), p2(e1, . . . , ek2), . . . , pl(e1, . . . , ekl
)) =

p1(e1, . . . , ek1)p2(ek1+1, . . . , ek1+k2) · · ·pl(ek1+···+kl−1+1, . . . , en).

Here pi(e1, . . . , eki
) ∈ Spin(ki).

Proof: Without loss of generality we can assume that l = 2.
Consider any p1(e1, . . . , ek1), q1(e1, . . . , ek1) ∈ Spin(k1) and p2(e1, . . . , ek2),
q2(e1, . . . , ek2) ∈ Spin(k2). We have that

ν
( (
p1(e1, . . . , ek1), p2(e1, . . . , ek2)

) (
q1(e1, . . . , ek1), q2(e1, . . . , ek2)

))

= ν
(
p1(e1, . . . , ek1)q1(e1, . . . , ek1), p2(e1, . . . , ek2)q2(e1, . . . , ek2)

)

= p1(e1, . . . , ek1)q1(e1, . . . , ek1)p2(ek1+1, . . . , ek1+k2)q2(ek1+1, . . . , ek1+k2).

On the other hand

ν
(
p1(e1, . . . , ek1), p2(e1, . . . , ek2)

)
ν

(
q1(e1, . . . , ek1), q2(e1, . . . , ek2)

)

= p1(e1, . . . , ek1)p2(ek1+1, . . . , ek1+k2)q1(e1, . . . , ek1)q2(ek1+1, . . . , ek1+k2)

But as p2(ek1+1, . . . , ek1+k2) depends only on ek1+1, ek1+2, ..., en and q1 is de-
fined on e1, e2, ..., ek1 and using the fact that both p2 and q1 satisfy condition
(3), one easily sees that

p2(ek1+1, . . . , ek1+k2)q1(e1, . . . , ek1) = q1(e1, . . . , ek1)p2(ek1+1, . . . , ek1+k2)

from which it follows that ν is a homomorphism.

It is easy to see that Ker(ν) ∼= (Z2)
l−1.

Let Γ ⊂ E(n) be the fundamental group of an oriented flat manifold of
dimension n. Let F be the holonomy group of Γ and φΓ : F → SL(n,Z) be
the corresponding holonomy representation, i.e. the action of F on Zn induced
by the short exact sequence (1) (see also [3]). Assume that φΓ =

⊕k

i=1 φi

as Z-representations and φi(F ) ⊂ SL(ni,Z). Via the short exact sequence
(1), we can view Γ as an extension of F by Zn and thus Γ is determined
by an element β ∈ H2

φΓ
(F,Zn). The condition that Γ is torsion free has

been translated into the language of cohomology. A 2-cohomology class β
is called special if and only if for each cyclic subgroup C of F we have that
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the restriction map res : H2(F,Zn) → H2(C,Zn), maps β to a non-zero
element. It has been proved that torsion free extensions correspond exactly
to these special elements. So any Bieberbach group is determined by a special
2-cohomology class.

However, as an F -module, Zn =
⊕k

i=1 Zni , and therefore

H2
φΓ

(F,Zn) =

k⊕

i=1

H2
φi

(F,Zni).

Hence β can be seen as a sum of elements βi ∈ H2
φi

(F,Zni). So, the group
(to be precise the extension) Γ determines groups Γ1,Γ2, ...,Γk which corre-
spond to cocycles β1, β2, ..., βk. Note that after conjugating by an element of
GL(ni,R), we can view φi as being a representation into SO(ni). We will
refer to this conjugate representation by the symbol φ′

i. Analogously, we will
also use φ′

Γ to denote the corresponding conjugate representation into SO(n).
Note that there exists an embedding ψ of Γ into E(n) as a Bieberbach group,
such that ∀γ ∈ Γ : ψ(γ) = (tγ , φ

′
Γ(γ)) for some tγ ∈ Rn.

Definition 1 Let φ : G→ SO(n) be an orthogonal representation of a group
G. The pair (φ,G) has a Spin structure if there exist a homomorphism
ε : G→ Spin(n) such that λnε = φ.

The main applications of the above lemma are the following.

Theorem 1 Every finite group is the holonomy of a spin flat manifold.

Proposition 2 Let Γ and φΓ be as above. Assume that the dimension of any
representation φi is greater than or equal to two. If for each i = 1, 2, ..., k;
(φ′

i,Γi) has a spin structure then (φ′
Γ,Γ) has a spin structure.

Proof of Proposition 2: As an extension Γ can be viewed as the set
of elements ((z1, z2, . . . , zk), f) with f ∈ F and zi ∈ Zni . The product is
determined by a cocycle β = β1 ⊕ · · · ⊕ βk ∈

⊕
H2

φi
(F,Zni). Thus the

product of two elements is given by

((z1, z2, . . . , zk), f)((y1, y2, . . . , yk), g) =

((z1 + φ1(f)y1 + β1(f, g), . . . , zk + φk(f)yk + βk(f, g)), fg)
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The group Γi consists of all tuples (z, f) ∈ Zni × F and the product is given
by (z, f)(y, g) = (z+φi(f)y+βi(f, g), fg). The existence of a Spin structure
for the pair (φ′

i,Γi) implies the existence of a morphism εi : Γi → Spin(ni)
satisfying λni

εi = φ′
i. If we now put

ε((z1, z2, . . . , zk), f) = ν(ε1(z1, f), ε2(z2, f), . . . , εk(zk, f))

we find the desired spin structure for the pair (φ′
Γ,Γ).

Remark The converse statement of Proposition 2 is not true. In the proof
of the Theorem 1 we will show that if one takes any oriented Bieberbach
group Γ, say determined by a cocycle β and a module structure φΓ, then
the “double” of Γ, that is, the group determined by a module structure
φΓ⊕φΓ and cocycle β⊕β, always has a Spin structure, while its components
Γ1 = Γ2 = Γ need not have a Spin structure.

It is however easy to see that the converse is true under the extra assumption
that ε(Zn) = {1}. (Zn being the maximal normal abelian subgroup of Γ).

Proof of Theorem 1: Let F be a finite group. Then, there exists an
oriented Bieberbach group Γ with holonomy group F . We have a short exact
sequence

0 → Zn → Γ → F → 0,

which is determined by some β ∈ H2(F,Zn). Now, we shall recall some
standard construction (cf. [13, Proposition 3.3] and [16, Theorem 2.2]). Let,
Γ′ be the group defined by the element β⊕β ∈ H2(F,Zn⊕Zn) ∼= H2(F,Zn)⊕
H2(F,Zn). Then Γ′ is a Bieberbach group, and if the holonomy representation
of Γ is given by φΓ : F → SO(n), then the holonomy representation of Γ′ is
the direct sum of representations φΓ ⊕ φΓ. Let us denote the flat manifold
with fundamental group Γ by Mn and with fundamental group Γ′ by d(M).

For any f ∈ F , we choose a φ̃Γ(f) ∈ Spin(n) such that λn(φ̃Γ(f)) = φΓ(f).
Using Lemma 1 we can define

ε : F → Spin(n) × Spin(n) → Spin(2n),

by the formula ε(f) = ν(φ̃Γ(f), φ̃Γ(f)).

We claim that ε is a homomorphism. In fact, let f1, f2 ∈ F, then

ε(f1f2) = ν( ˜φΓ(f1f2), ˜φΓ(f1f2))
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= ν(±φ̃Γ(f1)φ̃Γ(f2),±φ̃Γ(f1)φ̃Γ(f2))

= ν(φ̃Γ(f1)φ̃Γ(f2), φ̃Γ(f1)φ̃Γ(f2))

= ε(f1)ε(f2).

Moreover we have that λ2nε = φΓ ⊕ φΓ. Indeed

λ2nε(f) = λ2n(ν(φ̃Γ(f), φ̃Γ(f))) = (λnφ̃Γ(f), λnφ̃Γ(f))
︸ ︷︷ ︸

∈SO(n)×SO(n)⊆SO(2n)

= (φΓ ⊕ φΓ)(f).

It follows that Γ′ is the fundamental group of a spin flat manifold with
holonomy F . We can see that for a spin structure defined in such a way
we have that ε(Z2n) ∩ Z2 = {1}.

Remark There is another proof of Theorem 1 which uses characteristic
classes. In fact let d(M) denote the flat manifold of dimension 2n as de-
fined in the proof of Theorem 1. Let pi : d(Mn) → Mn(i = 1, 2) denote the
maps induced by projections on the first or second coordinate at the covering
space Rn × Rn. We have

Td(Mn) ' p∗1T (Mn) ⊕ p∗2T (Mn).

It follows from the definition of d(Mn), that the vector bundles p∗1T (Mn)
and p∗2T (Mn) are isomorphic. Moreover, the Stiefel-Whitney formula (cf.
[12, Part III, Ch. 16, section 3.1]) gives us:

(w(Td(M)) = w(p∗1T (Mn))w(p∗2T (Mn)) =

= (1 + w2(TM) + ... + wn(TM))(1 + w2(TM) + ... + wn(TM).

Hence we can observe that w2(Td(M)) = 0. In the above, we used the
fact that the induced homomorphisms p∗i : H∗(M,Z2) → H∗(d(M),Z2) are
monomorphisms.

Now we can formulate a definition.

Definition 2 For any finite group G, we denote by s(G) the minimal di-
mension of an oriented spin flat manifold with holonomy group G.

The number s(G) is obviously related to the number d(G) which is the min-
imal dimension of a flat manifold with holonomy group G. We have always
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d(G) ≤ s(G) ≤ 4d(G) and if the manifold of minimal dimension is oriented
we have from the proof of Theorem 1 that s(G) ≤ 2d(G). About the num-
ber d(G) we only have knowledge for a few classes of groups as for example:
cyclic, elementary abelian, dihedral, semidihedral, quaternion (cf. [3], [10]).
For most classes, the exact determination of d(G) is still an open and difficult
problem.

We have already observed in the Remark after the Proposition 2 that in some
cases the spin structure on oriented flat manifold has some special conditions.
In the next section we want to consider such situations.

4 Spin structure ε with property ε(Zn) = {1}

We start with a simple observation.

Proposition 3 Let G be a finite group with H2(G,Z2) = 0. Then any ori-
ented flat manifold M with holonomy G has a spin structure.

Proof: Let Γ ⊂ E(n) be the fundamental group of M . We have to define a
homomorphism ε : Γ → Spin(n) such that p = λnε. By the assumption there
exists a homomorphism p′ : p(G) → λ−1

n (p(G)) such that λnp
′ = idp(G). Put

ε = p′p.

If a finite group G has a trivial Schur multiplier (i.e. H2(G,Z) = 0) and is
perfect, then any central extension of it with a group of order 2 splits and so
they satisfy the condition of the proposition. The binary icosahedral group
is an interesting example of it (cf. [21, § 6.2]). Moreover the groups L2(8),
L2(16), L3(3), U3(3), M11, L2(32), U3(4), J1 are examples of such groups.
These examples and many more can be found in the Atlas ([4]).

Moreover we can use Proposition 3 and [17, Proposition 6.1] to give an
estimate for the number s((Z2)

n). We have

Corollary 2 Suppose that n > 3. Let 1 ≤ i ≤ 8, n = 8k + i and hi =
4k + (i − 1) for i = 1, 2, 3 h4 = h3 and hi = 4k + 3 for i = 5, 6, 7, 8, then
s((Z2)

n−hi−1) ≤ n.

Proof: It follows from [17] that for the above numbers n− hi, (Z2)
n−hi can

be seen as a subgroup of an extra special 2-group Gn ⊂ Spin(n), where Gn

denotes the preimage under λn of the maximal diagonal subgroup of SO(n).
As {−1, 1} is certainly a subgroup of this elementary abelian 2-group, it

follows that λn((Z2)
n−hi) ∼= (Z2)

n−hi−1.
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Next, we need to construct an oriented flat manifold Mn of dimension n
with holonomy group (Z2)

n−hi−1, and moreover we have to require that the
holonomy representation

φ : p(π1(M
n)) → SO(n)

satisfies φ((Z2)
n−hi−1) = λn((Z2)

n−hi).
Such a construction is possible due to Theorem 5.1 of [18]. The existence

of a spin structure on Mn now follows from the definition.

At the end of this part we want to give some criterion for the non-existence
of spin structures with property from the title of the section. This criterion
is well known and was used by Griess [9] and Gagola and Garrison [8] to
construct non-trivial double covers for certain groups. We are indebted to
Klaus Lux for pointing out the latter references.

Proposition 4 Let G be the holonomy group of a flat oriented manifold with
holonomy representation Φ : G → SO(n) with character χ. Let g ∈ G have
order 2. If

1

2
(χ(1) − χ(g)) ≡ 2( mod 4).

Then there is no ε : G→ Spin(n) such that Φ = λnε.

Proof: Let d denote the dimension of the (−1)-eigenspace of Φ(g). Then d
is even. By [8, Corollary 4.3], there is an inverse image u ∈ Spin(n) of Φ(g)

with u2 = (−1)
d(d−1)

2 . Now d = χ(1)−χ(g)
2

, so u has order 4. In particular, the
inverse image λ−1

n (Φ(G)) is non-split, from which th eresult follows

5 The case of quaternion holonomy

In this section we will illustrate the use of Proposition 2 and determine
s(Q2α) for the quaternion group of order 2α (α ≥ 3), which is given by the
presentation

Q2α = 〈x, y | x2α

= 1, x2α−1

= y2, y−1xy = x−1〉.

For any α ≥ 3, the center of Q2α is the group {1, y2} of order 2.
It will turn out that this family of groups is tractable because of the

following fact.
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Proposition 5 ([6]) Let α ≥ 3. Then Q2α admits exactly one (up to Q-
equivalence) irreducible and faithful representation ψα : Q2α → GL(n,Q)
(for some n ∈ N).

Proof: Denote the nontrivial representation of Z2 = {1, y2} → GL(1,Q)
by φ. Then this unique faithful and irreducible representation is the induced
representation

ψα = IndQ2α

{1,y2}φ (and so n = 2α−1)

Of course as Q2α is a finite group, the representation ψα can also be viewed
as a representation into O(n), and in fact even into SO(n). We will follow
this point of view in Lemma 3.

Lemma 2 Let H be a group containing G as a subgroup of index 2. Let l be
a positive integer and suppose that φ : G→ SO(4l) is a representation, such
that the pair (φ,G) has a Spin structure. Then also the pair (IndH

Gφ,H) has
a spin structure.

Proof: Fix an h ∈ H such that H = G ∪ Gh. Then any element x ∈ H is
either of the form x = g for some unique g ∈ G or of the form x = gh for
some unique g ∈ G.
Throughout the proof of this lemma, we will use k = 2l and n = 4l = 2k.
By [5], we know that ∀g ∈ G,

IndH
Gφ(g) =

(
φ(g) 0

0 φ(h−1gh)

)

and IndH
Gφ(gh) =

(
0 φ(gh2)

φ(h−1gh) 0

)

If In denote the n× n-identity matrix, then we also have that

IndH
Gφ(g) =

(
φ(g) 0

0 In

) (
0 In
In 0

) (
φ(h−1gh) 0

0 In

) (
0 In
In 0

)

(4)

and

IndH
Gφ(gh) =

(
φ(gh2) 0

0 In

) (
0 In
In 0

) (
φ(h−1gh) 0

0 In

)

. (5)

We know there exists a morphism ε : G → Spin(n) such that λnε = φ. Let
us denote by ε̃ : G → Spin(2n), the map which sends each element of the
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form (2) to the same polynomial but now seen as an element of Spin(2n). So,
in fact, using the notations of Lemma 1 (with k1 = k2 = n), we have that
∀g ∈ G : ε̃(g) = ν(ε(g), 1). So, ε̃ is a morphism and

∀g ∈ G : λ2n(ε̃(g)) =

(
φ(g) 0

0 In

)

.

Let us fix the following element of Spin(2n):

s =
1

2k
(e1 − en+1)(e2 − en+2) . . . (en − e2n)

It is easy to see that s indeed belongs to Spin(2n) and that

λ2n(s) =

(
0 In
In 0

)

∈ SO(2n).

Using the fact that n = 4l, one easily computes that s2 = 1 (if one caries out
the same computation for n = 4l + 2, one will find that s2 = −1). Using s
define a new map ε′ : H → Spin(2n), by the formulas

∀g ∈ G : ε′(g) = ε̃(g)sε̃(h−1gh)s and ε′(gh) = ε̃(gh2)sε̃(h−1gh).

From its definition and the expressions (4) and (5), one immediately gets
that

λ2nε
′ = IndH

Gφ.

The only thing left to show is that ε′ is a morphism of groups. This can be
done by checking the following 4 conditions for all g1, g2 ∈ G:

1. ε′(g1g2) = ε′(g1)ε
′(g2) 2. ε′(g1g2h) = ε′(g1)ε

′(g2h)
3. ε′(g1hg2) = ε′(g1h)ε

′(g2) 4. ε′(g1hg2h) = ε′(g1h)ε
′(g2h)

Here, we will check the condition 3., the other cases are left to the reader.
On the one hand we have that

ε′(g1hg2) = ε′(g1hg2h
−1h)

= ε̃(g1hg2h)sε̃(h
−1g1hg2)

While on the other hand we compute (where we will use that the two under-
lined parts commute)

ε′(g1h)ε
′(g2) = ε̃(g1h

2) sε̃(h−1g1h)ε̃(g2)s ε̃(h
−1g2h) s

= ε̃(g1h
2)ε̃(h−1g2h)sε̃(h

−1g1h)ε̃(g2)s
2

= ε̃(g1hg2h)sε̃(h
−1g1hg2)
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which shows that the condition is satisfied.

Using the previous lemma in the case of the quaternion groups, we obtain
the following.

Lemma 3 Let α ≥ 3 and let ψα : Q2α → GL(2α−1,Q) denote the unique
irreducible and faithful representation of Proposition 5. If we consider ψα

as being a representation into SO(n), then the pair (ψα, Q2α) admits a spin
structure.

Proof: We will use induction on α. For α = 3, one can check (or consult [1,
page 245]) that ψ3 : Q8 → SO(4) is determined by

ψ3(x) =







0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0







and ψ3(y) =







0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0







We leave to the reader to check that a spin structure ε : Q8 → Spin(4) is
given by

ε(x) =
1

2
e2e3(e1 − e3)(e2 − e4) and ε(y) =

1

2
e3e4(e1 − e4)(e3 − e2).

Now, assume by induction that there is a spin structure for (ψα−1, Q2α−1).
The group Q2α contains Q2α−1 as a subgroup of finite index, namely the
subgroup generated by x2 and y. It follows that (using the notations of
Proposition 5)

ψα = IndQ2α

{1,y2}φ = IndQ2α

Q2α−1
Ind

Q2α−1

{1,y2} φ.

¿From the induction hypothesis and Lemma 2, we find that also the pair
(ψα, Q2α) admits a spin structure.

In order to construct flat manifolds with holonomy group Q2α, we need
to find a faithful Q2α–module structure φ on some Zn such that there exists
at least one special element in H2

φ(Q2α ,Zn). The next proposition explains
what we should look for.

Proposition 6 Let φ : Q2α → GL(n,Z) denote a faithful Q2α-module struc-
ture of Zn. Then there exists a Q2α- submodule T ⊆ Zn such that T ⊗ Q is
the unique faithful and irreducible rational Q2α-module (from Proposition 5)
and Zn/T is a torsion free.
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Moreover, let p : Zn → Zn/T denotes the natural projection and C = {1, y2}
be the centre of Q2α .
Then, for all β ∈ H2(Q2α,Zn) we have that res(β) ∈ H2(C,Zn) is zero if and
only if res(p∗(β)) ∈ H2(C,Zn/T ) is zero.

Proof: The module Zn ⊗Q ∼= Qn is a faithful module and hence it contains
a submodule TQ which is (isomorphic to) the unique irreducible and faithful
rational Q2α–module (mentioned in Proposition 5). By taking T = Zn ∩ TQ,
we immediately find the submodule satisfying the properties stated above.

Note that y2 acts as multiplication by −1 on TQ and hence also as multi-
plication by −1 on T . It follows at once that H2(C, T ) = 0. The short exact
sequence 0 → T → Zn → Zn/T → 0 of Q2α–modules gives rise to the fol-
lowing commutative diagram in which the rows are the long exact sequences
associated to the above short exact sequence of modules:

. . . // H2(Q2α , T )

res

��

i∗

// H2(Q2α ,Zn)

res

��

p∗
// H2(Q2α ,Zn/T )

res

��

// . . .

. . . // H2(C, T ) = 0
i∗

// H2(C,Zn) p∗
// H2(C,Zn/T ) // . . .

As H2(C, T ) = 0, we have that p∗ in the bottom row is injective. Therefore,
for all β ∈ H2(Q2α,Zn), we obtain that

res(β) = 0 ⇔ p∗(res(β)) = 0 ⇔ res(p∗(β)) = 0.

which was to be shown.

Lemma 4 For any Q2α-module structure on Z (with α ≥ 3), the restriction
map res : H2(Q2α ,Z) → H2(C,Z) is trivially 0. Here C = {1, y2} denotes
the centre of Q2α .

Proof: Suppose first that Q2α acts non trivially on Z. Then at least one
of the generators x or y has to act as −1 on Z and hence at least one of
the cohomology groups H2(〈x〉,Z) or H2(〈y〉,Z) is zero. As y2 = x2α−1

,
the restriction map res : H2(Q2α ,Z) → H2(C,Z) can be thought of as a
composition of restrictions maps in the following two ways:

H2(Q2α ,Z) −→ H2(〈x〉,Z) −→ H2(C,Z) and
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H2(Q2α ,Z) −→ H2(〈y〉,Z) −→ H2(C,Z).

As at least in one case one of the middle groups is trivial, it follows that the
restriction map res : H2(Q2α ,Z) → H2(C,Z) is trivial.

In case the action is trivial, The short exact sequence of trivial Q2α-
modules 0 → Z → Q → Q/Z → 0 induces a commutative square, where the
horizontal arrows are isomorphisms (use the fact that H i(Q2α ,Q) = 0 for
i > 0):

H1(Q2α ,Q/Z) //

res

��

H2(Q2α ,Z)

res

��

H1(C,Q/Z) // H2(C,Z)

Now, a 1-cocycle in H1(Q2α ,Q/Z) is just a morphism f : Q2α → Z. As
y2 belongs to the commutator subgroup [Q2α ,Q2α], f(y2) = 0. This im-
mediatly implies that res : H1(Q2α ,Q/Z) → H1(C,Q/Z) and hence also
res : H2(Q2α ,Z) → H2(C,Z) is trivially 0.

We are now ready to prove the main theorem of this section

Theorem 2 If α ≥ 3, then s(Q2α) = 2α−1 + 3.

Proof: We will first prove that the minimal dimension of an orientable
flat manifold with holonomy Q2α is greater than or equal to 2α−1 + 3 and
afterwards, we will show that in this dimension, there exists an orientable
flat manifold with holonomy Q2α admitting a Spin structure.

So assume that Γ is a Bieberbach group with holonomy Q2α and Γ is in
fact the fundamental group of an orientable flat manifold. Then Γ fits in a
short exact sequence

1 → Zn → Γ → Q2α → 1

inducing a faithful Q2α-module structure on Zn and Γ is determined by a
special element β ∈ H2(Q2α ,Zn). In particular, for C = {1, y2}, we have that
the restriction map res : H2(Q2α ,Zn) → H2(C,Zn) is such that res(β) 6= 0.
Note that the fact that the corresponding manifold is orientable is equivalent
to the fact the image of the holonomy representation φ : Q2α → GL(n,Z)
lies inside SL(n,Z).

Let T denote the Q2α-submodule of Zn obtained in the Proposition 6.
We know that T ∼= Z2α−1

, and that Zn/T ∼= Zk for some k. We will first
show that k > 2. Recall that by Proposition 6, we must have that 0 6=
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res(p∗(β)) ∈ H2(C,Zk). This immediately excludes the case k = 0. The
situation for k = 1 can be excluded by Lemma 4.

For k = 2, we need to consider all possible representations of Q2α in
SL(2,Z) (remember that the manifold has to be orientable). Any finite
subgroup of SL(2,Z) is cyclic (of order 1,2,3,4 or 6) and hence abelian.
It follows that any representation of Q2α factors through Q2α/[Q2α , Q2α ] ∼=
Z2⊕Z2. This implies that the image of any representation of Q2α in SL(2,Z)
is either trivial or Z2. In this latter case, the image consists of plus and minus
the identity matrix.

It follows that any representation of Q2α in SL(2,Z) is in fact the sum
of two 1-dimensional representations and therefore, again using Lemma 4,
we can also exclude the case k = 2, from which we conclude that s(Q2α) ≥
2α−1 + 3.

To prove that s(Q2α) ≤ 2α−1 + 3, we consider the Bieberbach groups
constructed in [11]. As a Q2α-module structure of Z2α−1+3, one considers
the direct sum of two representations. As a first module, one chooses any
integral representation φ1 : Q2α → SL(2α−1,Z), such that the corresponding
rational representation is the unique faithful and irreducible representation
of Proposition 5. As a second representation, one considers a representation
φ2 : Q2α → SL(3,Z) given by

φ2(x) =





−1 1 1
0 1 2
0 0 −1



 and φ2(y) =





1 −1 0
0 −1 0
0 0 −1





We will use the representation φ = φ1 ⊕ φ2.
In [11], it is shown that there exists a special element β2 ∈ H2

φ2
(Q2α ,Z3).

Of course, the element β = 0 ⊕ β2 ∈ H2
φ1

(Q2α ,Z2α−1
) ⊕ H2

φ2
(Q2α ,Z3) =

H2
φ(Q2α ,Z2α−1+3) is then also special and determines a Bieberbach group Γ

with holonomy Q2α (and where the corresponding manifold is orientable).
As before, we use Γ1 and Γ2 to denote the groups corresponding to 0 ∈

H2
φ1

(Q2α ,Z2α−1
) and β2 ∈ H2

φ2
(Q2α ,Z3) respectively. It follows from Lemma 3

that the pair (φ1,Γ1) has a spin structure (factoring through the holonomy
group). On the other hand, the group Γ2 is torsion free and hence it is the
fundamental group of a three dimensional orientable flat manifold (in fact
the Hantsche-Wendt manifold, cf. [18] and [21]). It follows that also the pair
(φ2,Γ2) has a spin structure. As a consequence of Proposition 2, we obtain
that (φ,Γ) has a spin structure, which was to be shown.
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[1] Brown, H., Bülow, R., Neubüser, J., Wondratschek, H., Zassenhaus,
H; Crystallographic groups of four-dimensional space, New York, Wiley,
1978.

[2] Brown K.S.: Cohomology of groups. Springer, Berlin 1982.

[3] Charlap L.S.: Bieberbach Groups and Flat Manifolds. Springer-Verlag,
1986.

[4] Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.:
Atlas of finite groups. Clarendon Press, Oxford 1985.

[5] Dornhoff L.: Group Representation Theory, Part B, Dekker, New York
1971

[6] Eckmann, B., Mislin, G.: Rational representations of finite groups and
their Euler class. Math. Ann. 245 (1979), 45–54

[7] Friedrich T.: Dirac Operators in Riemannian Geometry. AMS, Gradu-
ate Studies in Math., Vol. 25 Providence, Rhode Island, 2000.

[8] Gagola, S. M. Jr., Garrison S. C.; III, Real characters, double covers,
and the multiplier. J.Algebra 98, (1986), 38-75.

[9] Griess, R. L.,Jr. A sufficient condition for a finite group to have a non-
trivial Schur multiplier. Not. Amer. Math. Soc. 17, (1970), 644

[10] Hiller H., Sah C.H.; Holonomy of flat manifolds with b1 = 0. Q. J. Math.
37 (1986), 177-187;

[11] Hiller H., Marciniak, Z., Sah, C.H., Szczepanski, A.; Holonomy of flat
manifolds with b1 = 0 II. Q. J. Math. 38 (1987), 213-200;,

17



[12] Husemoller D. : Fibre Bundles, McGraw-Hill, 1966.

[13] Johnson, F. E. A, Rees, E. G., Kähler groups and rigidity phenomena.
Math. Proc. Camb. Phil. Soc. 109 (1991), 31-44;,
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