Flat manifolds with only finitely many affinities

Gerhard Hiss and Andrzej Szczepański *

1 Introduction

Let X denote a compact, connected, flat Riemannian manifold (flat manifold for short) of dimension n with fundamental group Γ. Then Γ is a Bieberbach group of rank n, i.e., Γ is torsion free and there is a short exact sequence of groups

$$
\begin{equation*}
0 \rightarrow L \rightarrow \Gamma \rightarrow G \rightarrow 1 \tag{1}
\end{equation*}
$$

where G is finite, the so-called holonomy group of Γ, and L is a free abelian group of rank n. Moreover, L is a maximal abelian subgroup of Γ.

It is known that X is determined by Γ up to affine equivalence [2]. The set $\operatorname{Aff}(X)$ of affine self equivalences of X is a Lie group. Let $\operatorname{Aff}_{0}(X)$ denote its identity component. Then $\operatorname{Aff}_{0}(X)$ is a torus whose dimension equals the first Betti number of X, and $\operatorname{Aff}(X) / \operatorname{Aff}_{0}(X)$ is isomorphic to $\operatorname{Out}(\Gamma)$, the group of outer automorphisms of $\Gamma[2$, Chapter V$]$. In this note we investigate some flat manifolds X for which $\operatorname{Aff}(X)$ is finite. It is natural to ask which finite groups can occur as $\operatorname{Aff}(X)$ for some flat manifold X. In particular, is there a flat manifold whose group of affinities is trivial? Related questions for a larger class of manifolds have been investigated by Malfait in [9].

By the remarks above, $\operatorname{Aff}(X)$ is finite, if and only if $\operatorname{Out}(\Gamma)$ is finite and the first Betti number of X is zero. If some (non-trivial) cyclic Sylow subgroup of G has a normal complement, then by [4, Theorem 0.1], the first Betti number of X is non-zero, in which case $\operatorname{Aff}(X)$ is infinite. In Section 2

[^0]we show that $\operatorname{Aff}(X)$ is non-trivial if G is p-nilpotent, i.e., has a normal p-complement, for some prime p dividing the order of G.

In [6] we gave the following criterion, due independently also to Brown, Neubüser, and Zassenhaus, for a Bieberbach group to have a finite outer automorphism group. The conjugation action of Γ gives L the structure of a $\mathbf{Z} G$-lattice (a $\mathbf{Z} G$-module which is free and finitely generated as abelian group), the so-called translation lattice of Γ. Since Γ is torsion free and L is maximal abelian, G is faithfully represented on L (see [2, III.1]). In other words, there is an injective group homomorphism of G into GL (L). Put $L^{\mathbf{Q}}:=\mathbf{Q} \otimes_{\mathbf{Z}} L$. Then $\operatorname{Out}(\Gamma)$ is finite if and only if $L^{\mathbf{Q}}$ is multiplicity free as a $\mathbf{Q} G$-module, and $\mathbf{R} \otimes_{\mathbf{Q}} V$ is irreducible for every irreducible constituent V of $L^{\mathbf{Q}}$ [6]. The first Betti number of X equals the number of trivial constituents of $L^{\mathbf{Q}}$ (see, e.g., [4, Proposition 1.4]).

It follows from [6, Lemma 2.3] that if X_{1} and X_{2} are flat manifolds with $\operatorname{Aff}\left(X_{i}\right)$ finite, $i=1,2$, then the group of affinities of the product manifold $X_{1} \times X_{2}$ is also finite. In particular, taking the m-fold product of such a flat manifold with itself, we obtain a flat manifold with a finite group of affinities containing the symmetric group on m letters as a subgroup.

To give a more explicit description of $\operatorname{Out}(\Gamma)$ let N denote the normalizer in $\operatorname{GL}(L)$ of G (viewed as a subgroup of $\mathrm{GL}(L)$ via the monomorphism discussed above). Then N acts in a natural way on $H^{2}(G, L)$. Let $\alpha \in H^{2}(G, L)$ denote the cohomology class giving rise to the extension (1), and let N_{α} denote its stabilizer in N. Then G is a normal subgroup of N_{α} and we have a short exact sequence (see [2, Theorem V.1.1])

$$
\begin{equation*}
0 \rightarrow H^{1}(G, L) \rightarrow \operatorname{Out}(\Gamma) \rightarrow N_{\alpha} / G \rightarrow 1 \tag{2}
\end{equation*}
$$

In order to construct a flat manifold X with trivial group of affinities, one must find a Bieberbach group Γ with $H^{1}(G, L)=0$ and $N_{\alpha}=G$. In Section 2 we shall construct one example where $H^{1}(G, L)=0$ and N_{α} / G is a group with two elements, and another example where $H^{1}(G, L)$ has two elements and N_{α} / G is trivial. So far we have not been able to construct a flat manifold X with a trivial group of affinities.

In Section 3 of our paper we compute the group of affinities of the generalized Hantzsche-Wendt manifolds introduced in [10, 13], thus giving, for the first time, examples of $\operatorname{Aff}(X)$ for flat manifolds X with non-cyclic holonomy in any dimension.

Finally, in Section 4, we use the generalized Hantzsche-Wendt manifolds to construct a family of flat manifolds X_{n} of dimension $2 n+1$, whose holonomy groups are certain extraspecial 2-groups of order $2^{2 n+1}$ and with $\operatorname{Aff}\left(X_{n}\right)$ finite for all n.

We close the introduction with a few words on notation. If M is a finite set, $|M|$ denotes the number of its elements. If G is a group acting on a set M, we write M^{G} for the set of G-fixed points of M. Finally, C_{n} denotes the cyclic group of order n, and $\left(C_{n}\right)^{m}$ is the direct product of m copies of C_{n}.

2 Flat manifolds with few symmetries

Let G be a finite group and M a $\mathbf{Z} G$-lattice of finite rank. We start with the following observation.

Lemma 2.1 Suppose that $H^{0}(G, M)=0$. Let p be a prime. Then p divides $\left|H^{1}(G, M)\right|$ if and only if the $\mathbf{F}_{p} G$-module $M / p M$ has a trivial submodule.

In particular $H^{1}(G, M)=0$, if and only if $M / q M$ has no trivial submodule for all primes q dividing $|G|$.

Proof: The hypothesis $H^{0}(G, M)=0$ yields

$$
H^{1}(G, M) \cong H^{0}\left(G, \mathbf{Q} \otimes_{\mathbf{z}} M / M\right) \cong\left(\mathbf{Q} \otimes_{\mathbf{z}} M / M\right)^{G} .
$$

Suppose that p divides $\left|H^{1}(G, M)\right|$. Then there exists $0 \neq x \in\left(\mathbf{Q} \otimes_{\mathbf{z}} M / M\right)^{G}$ such that $p x=0$. We thus have $x=x_{0}+M, x_{0} \in \mathbf{Q} \otimes_{\mathbf{z}} M$ and $p x_{0} \in M$. Then $x_{0} \in \frac{1}{p} M \subset \mathbf{Q} \otimes_{\mathbf{z}} M$ and $x_{0} \notin M$. Hence $M / p M$ has a trivial submodule. The other direction is proved similarly.

This lemma has some interesting consequences.
Proposition 2.2 Suppose that G is p-nilpotent, i.e., has a normal p-complement, for some prime p dividing $|G|$. If $H^{0}(G, M)=0$ and p divides $\left|H^{2}(G, M)\right|$, then p also divides $\left|H^{1}(G, M)\right|$.

Proof: We have $H^{2}\left(G, \mathbf{Z}_{p} \otimes_{\mathbf{Z}} M\right) \neq 0$, since p divides $\left|H^{2}(G, M)\right|$. Let U be an indecomposable direct summand of $\mathbf{Z}_{p} \otimes_{\mathbf{Z}} M$ which lies in the principal p block of G. Then every indecomposable direct summand of $U / p U$ lies in the principal p-block of G. Since G is p-nilpotent, $U / p U$ contains a non-trivial vector fixed by G (see, e.g., [3, § 63A]). The result follows from the lemma.

Corollary 2.3 Let X be a flat manifold whose holonomy group G is pnilpotent for some prime p dividing $|G|$. Then $\operatorname{Aff}(X)$ is non-trivial.

Proof: Let M denote the translation lattice of the fundamental group of X. If $H^{0}(G, M) \neq 0$, then $\operatorname{Aff}(X)$ contains a torus, hence is infinite. If $H^{0}(G, M)=0$, then $H^{1}(G, M) \neq 0$ by the above proposition (p divides the order of $H^{2}(G, M)$, since this cohomology group contains a special element). As $H^{1}(G, M)$ is isomorphic to a subgroup of $\operatorname{Aff}(X)$, the result follows.

It follows in particular that flat manifolds with nilpotent holonomy have a non-trivial group of affinities. A somewhat weaker version of Corollary 2.3 has also been obtained by Malfait [9, Proposition 5.9]. Moreover, this author conjectures that the assumption on the holonomy group is in fact unnecessary, in other words that $\operatorname{Aff}(X)$ is non-trivial for every flat manifold X ($[9$, Conjecture 5.12]).

Example 2.4 Let $G=\mathrm{SL}_{3}(2)$. Then G has a presentation $G=\langle a, b|$ $\left.a^{2}, b^{3},(a b)^{7},[b, a]^{4}\right\rangle$ (see [7, p. 290]). We use the notation of [7, Chapter 6, Section 11]. In particular, we consider right $\mathbf{Z} G$-modules to make it easier to match our results with the tables in [7].

Let

$$
L:=L_{3}^{6} \oplus L_{8}^{7} \oplus L_{4}^{8},
$$

where L_{i}^{m} is the lattice of dimension m (and, in case $m=6$, with character χ_{6}), which is denoted by L_{i} in [7]. It can easily be checked with Lemma 2.1 that $H^{1}(G, L)=0$.

We identify G with its image in $\operatorname{GL}(L) \cong \mathrm{GL}_{21}(\mathbf{Z})$. Since L_{8}^{7} is not invariant under the outer automorphism of G, it follows that $N:=N_{\mathrm{GL}(L)}(G)=$ $G C_{\mathrm{GL}(L)}(G)$. We have $C_{\mathrm{GL}(L)}(G) \cong\left(C_{2}\right)^{3}$.

Let $\alpha \in H^{2}\left(G, L_{3}^{6}\right)$ be defined by the 1-cocycle $\delta \in Z^{1}\left(G, \mathbf{Q} \otimes_{\mathbf{z}} L_{3}^{6} / L_{3}^{6}\right)$ determined by

$$
\delta(a)=\frac{1}{2}[0,1,0,0,0,0], \quad \delta(b)=0 .
$$

Then α has order 2 .
Let $\beta \in H^{2}\left(G, L_{8}^{7}\right)$ be defined by the 1-cocycle $\delta \in Z^{1}\left(G, \mathbf{Q} \otimes_{\mathbf{z}} L_{8}^{7} / L_{8}^{7}\right)$ determined by

$$
\delta(a)=\frac{1}{3}[2,0,0,0,0,0,0], \quad \delta(b)=\frac{1}{3}[0,0,0,0,0,0,1] .
$$

Then β has order 3 .
Finally, let $\gamma \in H^{2}\left(G, L_{4}^{8}\right)$ be defined by the 1-cocycle $\delta \in Z^{1}\left(G, \mathbf{Q} \otimes_{\mathbf{z}}\right.$ $\left.L_{4}^{8} / L_{4}^{8}\right)$ determined by

$$
\delta(a)=\frac{1}{7}[0,2,0,5,0,0,0,5], \quad \delta(b)=\frac{1}{7}[6,0,0,0,0,0,0,0] .
$$

Then γ has order 7 .
Put $\sigma:=\alpha+\beta+\gamma \in H^{2}(G, L)$. Then σ is a special cocycle since $\operatorname{res}_{\langle a\rangle}^{G}(\alpha) \neq 0, \operatorname{res}_{\langle b\rangle}^{G}(\beta) \neq 0$ and $\operatorname{res}_{\langle a b\rangle}^{G}(\gamma) \neq 0$. It is clear that $N_{\sigma}=G C$, where $C=\left\langle-\mathrm{id}_{L_{3}^{6}}+\mathrm{id}_{L_{8}^{7}}+\mathrm{id}_{L_{4}^{8}}\right\rangle \leq C_{\mathrm{GL}(L)}(G)$.

Let Γ denote the Bieberbach group obtained by extending L by G with the cocycle σ, and let X be the flat manifold with fundamental group Γ. Then $\operatorname{Aff}(X) \cong C$ is a group of order 2 .

Example 2.5 Let $\tilde{G}=\mathrm{SL}_{3}(2) .2$, the automorphism group of G. Then \tilde{G} has a presentation $\tilde{G}=\left\langle a, b, c \mid a^{2}, b^{3}, c^{2},(a b)^{7},[b, a]^{4},[a, c],\left(a c b^{2}\right)^{2}\right\rangle$.

Let

$$
\tilde{L}:=\tilde{L}_{4}^{7} \oplus \tilde{L}_{10}^{7} \oplus \tilde{L}_{4}^{8}
$$

where \tilde{L}_{i}^{m} is an extension to \tilde{G} of the $\mathbf{Z} G$-lattice L_{i}^{m} (with the notation of Example 2.4). More precisely, the trace of c on these lattices equals $-1,1$, -2 , in the respective cases.

We find $H^{1}\left(\tilde{G}, \tilde{L}_{4}^{7}\right)=C_{2}$ and $H^{1}\left(\tilde{G}, \tilde{L}_{10}^{7}\right)=0=H^{1}\left(\tilde{G}, \tilde{L}_{4}^{8}\right)$. Thus $H^{1}(\tilde{G}, \tilde{L})=C_{2}$.

Let $\alpha \in H^{2}\left(\tilde{G}, L_{4}^{7}\right)$ be defined by the 1-cocycle $\delta \in Z^{1}\left(\tilde{G}, \mathbf{Q} \otimes_{\mathbf{z}} L_{4}^{7} / L_{4}^{7}\right)$ determined by

$$
\begin{aligned}
\delta(a) & =\frac{1}{6}[3,5,3,3,3,0,1], \\
\delta(b) & =\frac{1}{6}[0,4,2,2,0,0,0], \\
\delta(c) & =\frac{1}{6}[3,3,0,3,0,0,0] .
\end{aligned}
$$

Then α has order 6 .
Let $\beta \in H^{2}\left(\tilde{G}, L_{10}^{7}\right)$ be defined by the 1-cocycle $\delta \in Z^{1}\left(\tilde{G}, \mathbf{Q} \otimes_{\mathbf{z}} L_{10}^{7} / L_{10}^{7}\right)$ determined by

$$
\delta(a)=\frac{1}{12}[6,0,0,6,6,0,6],
$$

$$
\begin{aligned}
\delta(b) & =\frac{1}{12}[0,8,0,0,0,1,1] \\
\delta(c) & =\frac{1}{12}[2,8,8,2,6,9,9] .
\end{aligned}
$$

Then β has order 12.
Let $\gamma \in H^{2}\left(\tilde{G}, L_{4}^{8}\right)$ be defined by the 1-cocycle $\delta \in Z^{1}\left(\tilde{G}, \mathbf{Q} \otimes_{\mathbf{Z}} L_{4}^{8} / L_{4}^{8}\right)$ determined by

$$
\begin{aligned}
\delta(a) & =\frac{1}{7}[0,3,0,4,0,0,5,2], \\
\delta(b) & =\frac{1}{7}[0,5,0,0,5,0,0,0], \\
\delta(c) & =\frac{1}{7}[0,0,0,0,3,3,0,0] .
\end{aligned}
$$

Then γ has order 7 .
Let $\sigma:=\alpha+\beta+\gamma$. Then σ is special in $H^{2}(\tilde{G}, \tilde{L})$, since $\operatorname{res}_{\langle a\rangle}^{\tilde{G}}(\alpha) \neq 0$, $\operatorname{res}_{\langle b\rangle}^{\tilde{G}}(\alpha) \neq 0, \operatorname{res}_{\tilde{G}{ }_{\langle c\rangle}^{\tilde{G}}}(\beta) \neq 0$ and $\operatorname{res}_{\langle a b\rangle}^{\tilde{G}}(\gamma) \neq 0$.

Since $\operatorname{Aut}(\tilde{G})=\tilde{G}$, we have $N_{\mathrm{GL}(\tilde{L})}(\tilde{G})=\tilde{G} C_{\mathrm{GL}(\tilde{L})}(\tilde{G})$. No non-trivial element of $C_{\mathrm{GL}(\tilde{L})}(\tilde{G}) \cong\left(C_{2}\right)^{3}$ fixes σ. Hence $N_{\sigma}=\tilde{G}$.

Let $\tilde{\Gamma}$ denote the extension of \tilde{L} by \tilde{G} determined by σ, and let \tilde{X} be the flat manifold with fundamental group $\tilde{\Gamma}$. Then $\operatorname{Aff}(\tilde{X})$ is a group of order 2 .

The computations in these examples have been performed with Maple [1] and GAP [12].

3 Generalized Hantzsche-Wendt manifolds

In this section we shall calculate the group $\operatorname{Out}\left(\Gamma_{2 n}\right)$ where $\Gamma_{2 n}$ is the fundamental group of the generalized Hantzsche-Wendt manifold of dimension $2 n+1$ introduced in [10, 13].

Let us recall the definition of $\Gamma_{2 n}$, which we shall call Hantzsche-Wendt group for short. We denote by $a_{i}, 1 \leq i \leq 2 n+1$, the $(2 n+1) \times(2 n+1)$ diagonal matrices over \mathbf{Z} with diagonal entries 1 on position i and -1 on the other positions (see [13, p. 292]). Let A be the subgroup of $\mathrm{GL}_{2 n+1}(\mathbf{Z})$ generated by $a_{i}, i=1,2, \ldots, 2 n$. Let $L=\mathbf{Z}^{2 n+1}$ with standard (column) basis
vectors $u_{1}, u_{2}, \ldots, u_{2 n+1}$. We view L as a left $\mathbf{Z} A$-lattice. The HantzscheWendt group $\Gamma_{2 n}$ is an extension of L by A. This extension is given by the element

$$
[s] \in H^{1}\left(A, \mathbf{Q} \otimes_{\mathbf{z}} L / L\right) \cong H^{2}(A, L)
$$

represented by the 1-cocycle $s \in Z^{1}\left(A, \mathbf{Q} \otimes_{\mathbf{z}} L / L\right)$ with

$$
\begin{equation*}
s\left(a_{i}\right)=\frac{1}{2}\left(u_{i}+u_{i+1}\right)+L, \quad 1 \leq i \leq 2 n \tag{3}
\end{equation*}
$$

(see [13, p. 294]). We remark that Maxwell has also defined a Bieberbach group with holonomy group A and $\mathbf{Z} A$-lattice L in Part (e) of the proof of [10, Proposition 6]. It is not difficult to see that Maxwell's cocycle is cohomologous to the one in (3).

We shall use (2) to calculate $\operatorname{Out}\left(\Gamma_{2 n}\right)$. First we must find the normalizer $N=N_{\mathrm{GL}_{2 n+1}(\mathbf{Z})}(A)$ of the holonomy group $A \cong\left(C_{2}\right)^{2 n}$ in $\mathrm{GL}_{2 n+1}(\mathbf{Z})$. By immediate calculations one can prove the following lemma.

Lemma 3.1 Let $S_{2 n+1} \leq \mathrm{GL}_{2 n+1}(\mathbf{Z})$ denote the group of permutation matrices, and let $\tilde{A}=\left\langle-I_{2 n+1}, A\right\rangle$, where $I_{2 n+1}$ denotes the identity matrix. Then $N=\tilde{A} S_{2 n+1}$. In particular, $N \cong C_{2} \backslash S_{2 n+1}$, the wreath product of C_{2} and $S_{2 n+1}$ 。

Example 3.2 If $n=1$, then the cohomology class defined by (3) is the only (up to conjugation by N) special element of $H^{2}(A, L)$.

However, for $n=2$, there are exactly two N-orbits of special elements in $H^{2}(A, L)$. Let $t: A \rightarrow \mathbf{Q} \otimes_{\mathbf{Z}} L / L$ be the 1-cocycle defined by

$$
\begin{gathered}
t\left(a_{1}\right)=\frac{1}{2}\left(u_{1}+u_{3}\right)+L, \\
t\left(a_{2}\right)=\frac{1}{2} u_{2}+L, \\
t\left(a_{3}\right)=\frac{1}{2}\left(u_{3}+u_{4}\right)+L, \\
t\left(a_{4}\right)=\frac{1}{2}\left(u_{4}+u_{5}\right)+L
\end{gathered}
$$

and let $[t]$ denote the corresponding cohomology class in $H^{2}(A, L)$. Then it is easily checked that $[t]$ is special. Moreover, the stabilizer of $[t]$ in S_{5} is trivial.

We shall show below that this is not the case for $[s]$, so that $[s]$ and $[t]$ are not in the same N-orbit. Finally, it is not hard to prove that there are no other N-orbits containing special cocycles.

We expect that the number of N-orbits of special cocycles in $H^{2}(A, L)$ grows as n grows. We have not attempted to classify these special orbits.

Let us recall the definition of the action $*$ of N on $H^{1}\left(A, \mathbf{Q} \otimes_{\mathbf{z}} L / L\right)$. Let $n \in N$ and let $c: A \rightarrow \mathbf{Q} \otimes_{\mathbf{Z}} L / L$ represent a cohomology class from $H^{1}\left(A, \mathbf{Q} \otimes_{\mathbf{Z}} L / L\right)$. Then

$$
(n * c)(x)=n c\left(n^{-1} x n\right)
$$

for $x \in A$. We shall prove:
Lemma 3.3 For $n \geq 2, N_{[s]}:=\{n \in N \mid n *[s]=[s]\}=\tilde{A} F$, where F is the cyclic subgroup of $S_{2 n+1}$ generated by the $(2 n+1)$-cycle $(1,2, \ldots, 2 n, 2 n+1)$. For $n=1, N_{[s]}=N$.

Proof: It is obvious that $n * s=s$ for $n \in \tilde{A}$. Let $\sigma \in S_{2 n+1}$. From $\sigma^{-1} a_{i} \sigma=a_{\sigma^{-1}(i)}$ we obtain

$$
\begin{equation*}
\sigma * s\left(a_{i}\right)=\sigma\left(s\left(a_{\sigma^{-1}(i)}\right)\right)=\frac{1}{2}\left(u_{i}+u_{\sigma\left(\sigma^{-1}(i)+1\right)}\right) . \tag{4}
\end{equation*}
$$

(Here, and in the remainder of the proof, the subscripts have to be read modulo $2 n+1$.) Note that $\sigma \in F$ if and only if $\sigma(i)+1=\sigma(i+1)$ for all $1 \leq i \leq 2 n+1$. Thus (4) shows that $F \leq N_{[s]}$.

We shall prove that $\sigma \notin N_{[s]}$ for $\sigma \notin F$ and $n \geq 2$. Let $\sigma \notin F$ and suppose that $\sigma \in N_{[s]}$. Then there is an element $v=\sum_{i=1}^{2 n+1} v_{i} u_{i} \in \mathbf{Q} \otimes_{\mathbf{Z}} L / L \cong$ $(\mathbf{Q} / \mathbf{Z})^{2 n+1}$ such that

$$
\begin{equation*}
(\sigma * s-s)\left(a_{i}\right)=\frac{1}{2}\left(u_{\sigma\left(\sigma^{-1}(i)+1\right)}-u_{i+1}\right)=\left(a_{i}-I_{2 n+1}\right) v, \quad 1 \leq i \leq 2 n+1 \tag{5}
\end{equation*}
$$

Since $\sigma^{-1} \notin F$, there is an i such that $\sigma\left(\sigma^{-1}(i)+1\right) \neq i+1$. Therefore, $(\sigma * s-s)\left(a_{i}\right) \neq 0$ and $v_{i+1}=1 / 4 \in \mathbf{Q} / \mathbf{Z}$. Let $1 \leq j \leq 2 n+1, j \neq i+1$. Then the $(i+1)$ st component of $\left(a_{j}-I_{2 n+1}\right) v$ equals $1 / 2 \in \mathbf{Q} / \mathbf{Z}$. Equation (5) implies that $\sigma\left(\sigma^{-1}(j)+1\right)=i+1$ or $j+1=i+1$. Thus $2 n+1 \leq 3$, i.e., $n \leq 1$. It is easy to see that $N_{[s]}=N$ if $n=1$.

From the definition and the properties of the holonomy representation we conclude that

$$
H^{1}(A, L) \simeq\left(C_{2}\right)^{2 n+1}
$$

We describe the action of $N_{[s]} / A=\left\langle-I_{2 n+1}\right\rangle \times F$ on $H^{1}(A, L)$ following [2, Example V.6.1]. F acts by permuting the direct factors, and $\left\langle-I_{2 n+1}\right\rangle$ acts trivially. We can now formulate the main result of this section. It follows from Lemmas 3.1 and 3.3. (For $n=1$, see [5, pp. 128,129] and [15, pp. 321323].)

Theorem 3.4 Let $M^{2 n+1}$, $n \geq 2$, be the generalized Hantzsche-Wendt flat manifold of dimension $2 n+1$. Then $\operatorname{Aff}\left(M^{2 n+1}\right)$ is a split extension of $H^{1}(A, L)$ and $\left\langle-I_{2 n+1}\right\rangle \times F$, i.e., it is isomorphic to $C_{2} \times\left(C_{2}\langle F)\right.$. The subgroup of $\operatorname{Aff}\left(M^{2 n+1}\right)$ which preserves orientation is isomorphic to C_{2} 亿 F.

Proof: Lemma 3.3 and the sequence (2) show that $\mathrm{Aff}\left(M^{2 n+1}\right)$ is an extension of $H^{1}(A, L)$ by $\left\langle-I_{2 n+1}\right\rangle \times F$. Since $|F|$ is odd, the extension $H^{1}(A, L)$ by F splits, so $\operatorname{Aff}\left(M^{2 n+1}\right)$ has a subgroup B of index 2 isomorphic to $C_{2} \prec F$.

We embed $\Gamma_{2 n}$ in the usual way into the group $\mathcal{A}_{2 n+1}$ of affine motions of $\mathbf{R}^{2 n+1}$. Then $M^{2 n+1}=\mathbf{R}^{2 n+1} / \Gamma_{2 n}$ and $\operatorname{Aff}\left(M^{2 n+1}\right) \cong N_{\mathcal{A}_{2 n+1}}\left(\Gamma_{2 n}\right) / \Gamma_{2 n}$ (see [2, Lemma V.6.1]). It is clear that B can be represented by elements of $\mathcal{A}_{2 n+1}$ whose linear part has determinant 1 . Thus $-I_{2 n+1}$, having determinant -1 , gives rise to a non-trivial element of $\operatorname{Aff}\left(M^{2 n+1}\right)$ not lying in B. It also follows that B is equal to the subgroup of orientation preserving elements of $\operatorname{Aff}\left(M^{2 n+1}\right)$.

4 Extra-special 2-groups

We continue with the notation of the previous section. Let $T_{2 n}$ be the sublattice of L generated by

$$
2 u_{1}, u_{1}-u_{2}, u_{2}-u_{3}, \ldots, u_{2 n}-u_{2 n+1} .
$$

Then $T_{2 n}$ has index 2 in L and the group $\mathcal{G}_{2 n}:=\Gamma_{2 n} / T_{2 n}$ is a finite group of order $2^{2 n+1}$. It is proved in [11] that $\mathcal{G}_{2 n}$ is extraspecial (of type varying with n). We can use the construction of the generalized Hantzsche-Wendt manifolds to prove that the extraspecial groups $\mathcal{G}_{2 n}$ occur as holonomy groups of Bieberbach groups with finite outer automorphism groups. Such groups were called \Re_{1}-groups in [6].

Proposition 4.1 For each $n \geq 1, \mathcal{G}_{2 n}$ is an \Re_{1}-group.
Proof: It is easy to give a list of all irreducible complex representations of the group $\mathcal{G}_{2 n}$. There are $2^{2 n} 1$-dimensional representations arising from the commutator factor group and one faithful representation of dimension 2^{n} (see [8, Problem 2.13]). If $\mathcal{G}_{2 n}$ is a central product of dihedral groups of order 8 , the complex irreducible representation of degree 2^{n} can be realized over \mathbf{Q}. Otherwise, it has Frobenius-Schur indicator -1 , and thus can not be realized over \mathbf{R}. It follows that any \mathbf{Q}-irreducible representation of $\mathcal{G}_{2 n}$ is R -irreducible.

Let K be a faithful integral representation of $\mathcal{G}_{2 n}$ which, as a rational representation, is multiplicity free and does not contain a 1 -dimensional direct summand. Then the $\mathbf{Z} \mathcal{G}_{2 n}$-module $T_{2 n} \oplus K$ is a translation lattice for a Bieberbach group with finite outer automorphism group and holonomy $\mathcal{G}_{2 n}$.

References

[1] B. W. Char et al., Maple V, Language Reference Manual, Springer, 1991.
[2] L. S. Charlap, Bieberbach Groups and Flat Manifolds, Springer, 1986.
[3] C. W. Curtis and I. Reiner, Methods of Representation Theory Vol. II, Wiley, 1987.
[4] H. Hiller and C. H. Sah, Holonomy of flat manifolds with $b_{1}=0$, Quart. J. Math. Oxford 37 (1986), 177-187.
[5] J. A. Hillman, Abelian normal subgroups of two-knot groups, Comment. Math. Helv. 61 (1986), 122-148.
[6] G. Hiss and A. Szczepański, Holonomy groups of Bieberbach groups with finite outer automorphism groups, Arch. Math. 65 (1995), 8-14.
[7] D. F. Holt and W. Plesken, Perfect Groups, Clarendon Press, 1989.
[8] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, 1976.
[9] W. Malfait, Model aspherical manifolds without symmetry, preprint, 1996.
[10] G. Maxwell, Compact Euclidean space forms, J. Algebra 44 (1977), 191-195.
[11] A. A. Sapozhenko and A. Szczepański, A family of extraspecial 2-groups, Preprint 96-085, SFB 343, Universität Bielefeld, 1996.
[12] M. Schönert et al., GAP - Groups, Algorithms, and Programming, Lehrstuhl D für Mathematik, RWTH Aachen, Germany, fourth ed., 1994.
[13] A. Szczepański, Aspherical manifolds with the Q-homology of a sphere, Mathematika 30 (1983), 291-294.
[14] A. Szczepański, Outer automorphism groups of Bieberbach groups, Bull. Belg. Math. Soc. 3 (1996), 585-593.
[15] B. Zimmermann, On the Hantzsche-Wendt manifold, Monatsh. Math. 110 (1990), 321-327.

IWR der Universität Heidelberg
Im Neuenheimer Feld 368
69120 Heidelberg
Germany
e-mail: hiss@euterpe.iwr.uni-heidelberg.de
and
Institute of Mathematics
University of Gdańsk
ul. Wita Stwosza 57
80-952 Gdańsk
Poland
e-mail: matas@univ.gda.pl

[^0]: *This work was supported by a Polish grant BW/5100-5-0070-6.

