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1 Introduction

Let X denote a compact, connected, flat Riemannian manifold (flat manifold
for short) of dimension n with fundamental group I". Then I' is a Bieberbach
group of rank n, i.e., I' is torsion free and there is a short exact sequence of
groups

0=-L—-T—=>G—1, (1)

where G is finite, the so-called holonomy group of I', and L is a free abelian
group of rank n. Moreover, L is a maximal abelian subgroup of I'.

It is known that X is determined by T up to affine equivalence [2]. The
set Aff(X) of affine self equivalences of X is a Lie group. Let Affy(X) denote
its identity component. Then Affy(X) is a torus whose dimension equals the
first Betti number of X, and Aff(X)/Affy(X) is isomorphic to Out(I"), the
group of outer automorphisms of I" [2, Chapter V]. In this note we investigate
some flat manifolds X for which Aff(X) is finite. It is natural to ask which
finite groups can occur as Aff(X) for some flat manifold X. In particular, is
there a flat manifold whose group of affinities is trivial? Related questions
for a larger class of manifolds have been investigated by Malfait in [9].

By the remarks above, Aff(X) is finite, if and only if Out(I") is finite
and the first Betti number of X is zero. If some (non-trivial) cyclic Sylow
subgroup of G has a normal complement, then by [4, Theorem 0.1], the first
Betti number of X is non-zero, in which case Aff()X) is infinite. In Section 2
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we show that Aff(X) is non-trivial if G is p-nilpotent, i.e., has a normal
p-complement, for some prime p dividing the order of G.

In [6] we gave the following criterion, due independently also to Brown,
Neubiiser, and Zassenhaus, for a Bieberbach group to have a finite outer
automorphism group. The conjugation action of I' gives L the structure of
a ZG-lattice (a ZG-module which is free and finitely generated as abelian
group), the so-called translation lattice of T". Since I is torsion free and L
is maximal abelian, G is faithfully represented on L (see [2, III.1]). In other
words, there is an injective group homomorphism of G into GL(L). Put
LQ := Q®z L. Then Out(I') is finite if and only if LQ is multiplicity free as
a QG-module, and R ®q V is irreducible for every irreducible constituent V'
of LR [6]. The first Betti number of X equals the number of trivial con-
stituents of LR (see, e.g., [4, Proposition 1.4]).

It follows from [6, Lemma 2.3] that if X; and X, are flat manifolds with
Aff(X;) finite, i = 1,2, then the group of affinities of the product manifold
X1 x Xy is also finite. In particular, taking the m-fold product of such a flat
manifold with itself, we obtain a flat manifold with a finite group of affinities
containing the symmetric group on m letters as a subgroup.

To give a more explicit description of Out(I") let N denote the normalizer
in GL(L) of G (viewed as a subgroup of GL(L) via the monomorphism dis-
cussed above). Then N acts in a natural way on H*(G, L). Let o € H*(G, L)
denote the cohomology class giving rise to the extension (1), and let N, de-
note its stabilizer in N. Then G is a normal subgroup of N, and we have a
short exact sequence (see [2, Theorem V.1.1])

0— HYG,L) — Out(l') = N, /G — 1. (2)

In order to construct a flat manifold X with trivial group of affinities, one
must find a Bieberbach group I' with H*(G, L) = 0 and N, = G. In Section 2
we shall construct one example where H'(G, L) = 0 and N, /G is a group with
two elements, and another example where H'(G, L) has two elements and
N, /G is trivial. So far we have not been able to construct a flat manifold X
with a trivial group of affinities.

In Section 3 of our paper we compute the group of affinities of the gener-
alized Hantzsche-Wendt manifolds introduced in [10, 13], thus giving, for the
first time, examples of Aff(X) for flat manifolds X with non-cyclic holonomy
in any dimension.



Finally, in Section 4, we use the generalized Hantzsche-Wendt manifolds
to construct a family of flat manifolds X,, of dimension 2n + 1, whose holon-
omy groups are certain extraspecial 2-groups of order 22"+ and with Aff(X,,)
finite for all n.

We close the introduction with a few words on notation. If M is a finite
set, |M| denotes the number of its elements. If G is a group acting on a
set M, we write M for the set of G-fixed points of M. Finally, C, denotes
the cyclic group of order n, and (C,,)™ is the direct product of m copies of C,,.

2 Flat manifolds with few symmetries

Let GG be a finite group and M a ZG-lattice of finite rank. We start with the
following observation.

Lemma 2.1 Suppose that H°(G, M) = 0. Let p be a prime. Then p divides
|H' (G, M)| if and only if the F,G-module M/pM has a trivial submodule.

In particular HY (G, M) = 0, if and only if M/qM has no trivial submod-
ule for all primes q dividing |G)|.

Proof: The hypothesis H°(G, M) = 0 yields
Hl(G7M) = HO(G7Q®Z M/M) = (Q Kz M/M)G

Suppose that p divides |H*(G, M)|. Then there exists 0 # x € (Q®zM/M)%
such that pr = 0. We thus have x = xo+M, 2o € Q®zM and pzy € M. Then
Tg € ]%M C Q®z M and xy ¢ M. Hence M/pM has a trivial submodule.
The other direction is proved similarly.

This lemma has some interesting consequences.

Proposition 2.2 Suppose that G is p-nilpotent, i.e., has a normal p-com-
plement, for some prime p diwiding |G|. If H°(G,M) = 0 and p divides
|H?(G, M)|, then p also divides |H (G, M)|.

Proof: We have H*(G,Z, ®z M) # 0, since p divides |H*(G, M)|. Let U be
an indecomposable direct summand of Z, ®z M which lies in the principal p-
block of G. Then every indecomposable direct summand of U/pU lies in the
principal p-block of G. Since G is p-nilpotent, U/pU contains a non-trivial
vector fixed by G (see, e.g., [3, § 63A]). The result follows from the lemma.
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Corollary 2.3 Let X be a flat manifold whose holonomy group G is p-
nilpotent for some prime p dividing |G|. Then Aff(X) is non-trivial.

Proof: Let M denote the translation lattice of the fundamental group
of X. If H°(G, M) # 0, then Aff(X) contains a torus, hence is infinite. If
H°(G,M) = 0, then H*(G, M) # 0 by the above proposition (p divides the
order of H?(G, M), since this cohomology group contains a special element).
As H'(G, M) is isomorphic to a subgroup of Aff(X), the result follows.

It follows in particular that flat manifolds with nilpotent holonomy have
a non-trivial group of affinities. A somewhat weaker version of Corollary 2.3
has also been obtained by Malfait [9, Proposition 5.9]. Moreover, this author
conjectures that the assumption on the holonomy group is in fact unneces-
sary, in other words that Aff(X) is non-trivial for every flat manifold X (]9,
Conjecture 5.12]).

Example 2.4 Let G = SL3(2). Then G has a presentation G = (a,b |
a?,b%, (ab)”, [b,a]?) (see [7, p. 290]). We use the notation of [7, Chapter 6,
Section 11]. In particular, we consider right ZG-modules to make it easier
to match our results with the tables in [7].
Let
L:=Ly&® L& Lj,

where L" is the lattice of dimension m (and, in case m = 6, with charac-
ter xg), which is denoted by L; in [7]. It can easily be checked with Lemma 2.1
that H'(G, L) = 0.

We identify G with its image in GL(L) & GLg;(Z). Since L is not invari-
ant under the outer automorphism of G, it follows that N := Ngp)(G) =
GCGL(L)(G) We have CGL(L)(G) = (02)3.

Let a € H?*(G, L§) be defined by the 1-cocycle § € Z'(G,Q ®z L§/LY)
determined by

1
6(a) = 5[0.1,0,0,0,0,,  4(b) =0.

Then « has order 2.
Let 8 € H?(G, L) be defined by the 1-cocycle § € Z*(G,Q @z L§/L%)
determined by

1 1
d(a) = 5[2,0,0,0,0, 0,0, o(b) = 5[0,0, 0,0,0,0,1].



Then £ has order 3.
Finally, let v € H?(G, L%) be defined by the 1-cocycle § € Z}(G,Q ®z
L8/L%) determined by

1 1
5(&) = ?[Oa 27 07 57 Oa 07 07 5]7 5(b) - ?[67 Oa 07 07 07 Oa 07 0]

Then ~ has order 7.

Put 0 .= a+ 8+ € H?*(G,L). Then o is a special cocycle since
res%(&) £ 0, res%(ﬁ) # 0 and res<Gab>(’y) # 0. It is clear that N, = GC,
Where C = <—idLg + idLg + idLi> S CGL(L)<G)-

Let I" denote the Bieberbach group obtained by extending L by G with
the cocycle o, and let X be the flat manifold with fundamental group I'.
Then Aff(X) = C is a group of order 2.

Example 2.5 Let G = SL3(2).2, the automorphism group of G. Then G
has a presentation G = (a,b, ¢ | a2,b%,¢2, (ab)7, [b,a]*, [a, ¢, (ach?)?).

Let

L:= EZ S [:IO S Ei,

where L™ is an extension to G of the ZG-lattice L (with the notation of
Example 2.4). More precisely, the trace of ¢ on these lattices equals —1, 1,
—2, in the respective cases.

We find HY(G,L]) = C, and H'(G,L])) = 0 = HYG,L}). Thus
HY(G,L) = C,.

Let a € H*(G, LY) be defined by the 1-cocycle § € Z'(G,Q &z L1/LT)
determined by

1

6(a) = 513.5,3,3,3,0, 1],

1
i(b) = 6[0,4,2,2,0,0,0],

1
6(c) = 513.3,0.3,0,0,0.

Then « has order 6. )
Let B € H*(G, LY,) be defined by the 1-cocycle 6 € Z}(G,Q ®z LT,/L],)
determined by

1
§(a) = —=[6,0,0,6,6,0,6
(a) 12[ ) ) Y Y ) 7 ]7



1

o) = 12

[07 87 O? 07 07 17 1]7

1
6(c) = 502,8,8,2,6,9,9].

Then f has order 12. )
Let v € H*(G, L%) be defined by the 1-cocycle § € ZY(G,Q ®z L§/LY)
determined by

1

6(&) = ?[07 37 07 47 07 Oa 57 2]7
1

5(b) - 7[07 57 07 07 57 07 07 0]7

1
6(c) = £(0,0,0,0,3,3,0,0].

Then ~ has order 7. o i
Let 0 := a+ 8+ ~. Then o is special in H?(G, L), since res%(a) # 0,

res% () #0, re~sg>(ﬂ)~7£ 0 and resiw (7) 7% 0. ~ ~
Since Aut(G) = G, we have Ngyp ) (G) = GCqy ;) (G). No non-trivial
element of C’GL@)(@) >~ ((Cy)? fixes 0. Hence N, = G.

Let I' denote the extension of L by ~C~¥ determined by o, and let X be the
flat manifold with fundamental group I'. Then Aff(X) is a group of order 2.

The computations in these examples have been performed with Maple [1]
and GAP [12].

3 Generalized Hantzsche-Wendt manifolds

In this section we shall calculate the group Out(T'y,) where I'y, is the fun-
damental group of the generalized Hantzsche-Wendt manifold of dimension
2n + 1 introduced in [10, 13].

Let us recall the definition of I'y,, which we shall call Hantzsche-Wendt
group for short. We denote by a;, 1 <i < 2n+1, the 2n+ 1) x (2n + 1)-
diagonal matrices over Z with diagonal entries 1 on position ¢ and —1 on
the other positions (see [13, p. 292]). Let A be the subgroup of GLg,1(Z)
generated by a;, i = 1,2,...,2n. Let L = Z*>"*! with standard (column) basis



vectors i, Us, ..., Us,11. We view L as a left ZA-lattice. The Hantzsche-
Wendt group Iy, is an extension of L by A. This extension is given by the
element

[s] € H'(A,Q®z L/L) = H*(A, L),
represented by the 1-cocycle s € Z'(A, Q ®z L/L) with

1
s(a;) = i(uz + uiy1) + L, 1<i<2n (3)

(see [13, p. 294]). We remark that Maxwell has also defined a Bieberbach
group with holonomy group A and ZA-lattice L in Part (e) of the proof
of [10, Proposition 6]. It is not difficult to see that Maxwell’s cocycle is
cohomologous to the one in (3).

We shall use (2) to calculate Out(I'y,). First we must find the normalizer
N = Ngr,,,1(z)(A) of the holonomy group A = (C5)*" in GLa,41(Z). By
immediate calculations one can prove the following lemma.

Lemma 3.1 Let Sg,q1 < GLan11(Z) denote the group of permutation matri-
ces, and let A = (—Isny1, A), where Iy, denotes the identity matriz. Then
N = ASs, 1. In particular, N = Cy 0 Sony1, the wreath product of Cy and

S2n+1 .
Example 3.2 If n = 1, then the cohomology class defined by (3) is the only
(up to conjugation by N) special element of H?(A, L).

However, for n = 2, there are exactly two N-orbits of special elements in
H?(A,L). Let t : A— Q®gz L/L be the 1-cocycle defined by

1
t(al) = 5(@61 + U3) + L,

1
t(a,g) = §U2 + L,
1
t(az) = §(U3 +uy) + L,

1
t(as) = §(U4 +us) + L,

and let [t] denote the corresponding cohomology class in H?(A, L). Then it is
easily checked that [t] is special. Moreover, the stabilizer of [t] in Ss is trivial.
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We shall show below that this is not the case for [s], so that [s] and [t] are
not in the same N-orbit. Finally, it is not hard to prove that there are no
other N-orbits containing special cocycles.

We expect that the number of N-orbits of special cocycles in H?(A, L)
grows as n grows. We have not attempted to classify these special orbits.

Let us recall the definition of the action * of N on H'(A,Q ®z L/L).
Let n € N and let ¢ : A — Q ®z L/L represent a cohomology class from
HY(A,Q®z L/L). Then

(n*c)(z) = nce(n"'an)
for z € A. We shall prove:

Lemma 3.3 Forn >2,Ny :={n € N | nx[s| = [s]} = AF, where F is the
cyclic subgroup of Sepn i1 generated by the (2n+1)-cycle (1,2,...,2n,2n+1).
Forn=1, Ng=N.

Proof: It is obvious that nxs = s for n € A. Let o € Sont1. From
o~ 'a;0 = a,-1(;) we obtain

o xs(a;) = o(s(a-13:))) = ;(uz + Up(o-1(1)+1))- (4)
(Here, and in the remainder of the proof, the subscripts have to be read
modulo 2n + 1.) Note that o € F' if and only if (i) + 1 = o(i + 1) for all
1 <i<2n+ 1. Thus (4) shows that F' < N.
We shall prove that o ¢ Ni, for o € F'and n > 2. Let 0 € I and suppose
that 0 € Njj. Then there is an element v = Y@y, € Q®z L)L
(Q/Z)**! such that

1 .
(oxs—s)(a;) = E(ug(g—l(i)ﬂ)—uiﬂ) = (a;—Izn41)v, 1 <i<2n+1. (5)

Since 0! ¢ F, there is an i such that o(c7'(i) + 1) # i + 1. Therefore,
(0xs—s)(a;) #O0and v;1; =1/4 € Q/Z. Let 1 <j<2n+1,j5#i+ 1.
Then the (i+1)st component of (a;—I»,41)v equals 1/2 € Q/Z. Equation (5)
implies that o(c™'(j)+1) =i+ 1lorj+1=4+1. Thus2n+1 < 3, ie,
n < 1. It is easy to see that Njg = N if n = 1.



From the definition and the properties of the holonomy representation we
conclude that

HY(A, L) ~ (Cy)>

We describe the action of Nig/A = (—=Is,41) X F on H'(A, L) following [2,
Example V.6.1]. F acts by permuting the direct factors, and (—1Is, 1) acts
trivially. We can now formulate the main result of this section. It follows
from Lemmas 3.1 and 3.3. (For n =1, see [5, pp. 128,129] and [15, pp. 321-
323].)

Theorem 3.4 Let M?"*! n > 2, be the generalized Hantzsche-Wendt flat
manifold of dimension 2n + 1. Then Aff(M**1) is a split extension of
HYA,L) and (—Iy, 1) x F, i.e., it is isomorphic to Cy X (Cy U F). The
subgroup of AF(M**1) which preserves orientation is isomorphic to Co L F.

Proof: Lemma 3.3 and the sequence (2) show that Aff(M?"*1) is an exten-
sion of H'(A, L) by (—Iy,+1) X F. Since |F| is odd, the extension H'(A, L)
by F splits, so Aff(M?" 1) has a subgroup B of index 2 isomorphic to Cy? F'.

We embed Iy, in the usual way into the group As,; of affine motions
of R*"*1. Then M?"*1 = R*™ /Ty, and Aff(M*") = Ny, .., (T'2,) /T2, (see
2, Lemma V.6.1]). It is clear that B can be represented by elements of Asg,,+1
whose linear part has determinant 1. Thus —I5,,1, having determinant —1,
gives rise to a non-trivial element of Aff(M?"*1) not lying in B. It also

follows that B is equal to the subgroup of orientation preserving elements of
AfF(M2Y.

4 Extra-special 2-groups

We continue with the notation of the previous section. Let T5, be the sub-
lattice of L generated by

2U1,'LL1 — Ug, U2 — U3, ..., U2n — U2n+1-

Then T, has index 2 in L and the group Gs, := 'y, /T, is a finite group
of order 22", Tt is proved in [11] that G, is extraspecial (of type varying
with n). We can use the construction of the generalized Hantzsche-Wendt
manifolds to prove that the extraspecial groups Gs,, occur as holonomy groups
of Bieberbach groups with finite outer automorphism groups. Such groups
were called R-groups in [6].



Proposition 4.1 For each n > 1, Gs, is an Ri-group.

Proof: It is easy to give a list of all irreducible complex representations
of the group Gs,. There are 22" 1-dimensional representations arising from
the commutator factor group and one faithful representation of dimension
2™ (see [8, Problem 2.13]). If G, is a central product of dihedral groups of
order 8, the complex irreducible representation of degree 2™ can be realized
over Q. Otherwise, it has Frobenius-Schur indicator —1, and thus can not
be realized over R. It follows that any Q-irreducible representation of G, is
R-irreducible.

Let K be a faithful integral representation of G,, which, as a rational
representation, is multiplicity free and does not contain a 1-dimensional direct
summand. Then the ZG,,-module T5, ® K is a translation lattice for a
Bieberbach group with finite outer automorphism group and holonomy Gs,.
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