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October 15, 2008

Abstract

Using a criterion of Johnson-Rees [9] we give a list of all four and six dimensional flat
Kähler manifolds. We calculate their R–cohomology, including the Hodge numbers. As
a corollary, we classify all flat complex manifolds of dimension 3 whose holonomy groups
are subgroups of SU(3). Moreover, we define a family of flat Kähler manifolds which are
generalizations of the oriented Hantzsche-Wendt Riemannian manifolds [14].
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1 Introduction

We shall present a complete list of flat manifolds of R-dimension 4 and 6 which have a complex
Kähler structure of dimension 2 and 3 correspondingly. We compare it with the classification
of hyperelliptic varietes of low dimensions. Moreover, we shall calculate the real cohomology of
such objects, including their Hodge numbers. Hence we obtain the flat Kähler manifolds with
holonomy groups enclosed in the special unitary group. Inspired by the recently introduced
and in the meantime well studied class of generalized Hantzsche-Wendt manifolds we define
an infinite family of complex flat Kähler manifolds, compute their Hodge numbers and answer
positively the question about the existence of a spin structure on such a manifold.
This work is an extended and modified version of [16].

Let us introduce the basic definitions and conventions. A closed flat Riemannian manifold
M is isometric to one of the form M = Γ\E(n)/O(n) where E(n) = O(n) n R

n is the group
of Euclidean motions of R

n and Γ is a cocompact, discrete and torsion free subgroup of E(n).
¿From the Bieberbach theorems it is well known that (cf. [1]) π1(M) = Γ and the subgroup
T of Γ consisting of all pure translations is of finite index and the quotient group Γ/T is
isomorphic to holonomy group of M. Hence we have a short exact sequence of groups

0 → T → Γ → H → 0,

where T is a torsion free maximal abelian group Z
n. Conjugation inside Γ, the above short

exact sequence defines a faithful (cf. [1]) holonomy representation ϕ : H → GL(n, Z). We
shall call such a group Γ a Bieberbach group.
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Now, let us assume that n is an even number. We say that ϕ is essentially complex if there
exist a real vector space isomorphism i : R

n → C
n

2 and a representation φC : H → GL(n
2 , C)

such that the following diagram commutes for each h ∈ H:

R
n

∼=

i
//

ϕ(h)

��

C
n

2

φC(h)
��

R
n

∼=

i
//
C

n

2

Equivalently, this means that there exist a ϕ–invariant linear map t : R
n → R

n, such that
t2 = −id, (see [10, part 3]). In [9, Theorem 3.1] the following is proved

Theorem 1.1 The following conditions on the group Γ ⊂ E(n) are equivalent

(i) Γ is the fundamental group of Kähler flat manifold

(ii) Γ is a Bieberbach group and its holonomy representation is essentially complex

(iii) Γ is a discrete cocompact torsion-free subgroup of U( n
2 ) n C

n

2 .

The following characterization of an essentially complex representation is given in ([9, Propo-
sition 3.2], [10, Proposition 3.1])

Proposition 1.2 Let H be a finite group and ϕ : H → GL(m, R) be some representation.
Then ϕ is essentially complex if and only if m is even and each R-irreducible summand of ϕ
which is also C-irreducible occurs with even multiplicity.

Definition 1.3 ([12, page 495]) A hyperelliptic variety is a complex projective variety, not
isomorphic to an abelian variety, but admitting an abelian variety as a finite covering.

It is proved in [10] that the class of fundamental groups of complex flat manifolds (with
exception of the complex torus) and hyperelliptic varieties coincide. However, in dimension
three there are nonalgebraic Kähler flat manifolds. An example of such manifold is given in
[12, page 495, page 501 Remark 3.9].

In the next part, using the above results, we shall give a list of the Kähler flat manifolds of
R-dimension 4 and 6.

2 Kähler flat manifolds in low dimensions

Before we start our investigation of Kähler flat manifolds in low dimensions, we first prove a
lemma providing constraints on the possible holonomy groups of such manifolds.

Lemma 2.1 Let Z
k
2 be the holonomy group of an n–dimensional, complex flat Kähler mani-

fold. Then k ≤ n − 1.

Proof: Let ϕ : Z
k
2 → GL(2n, R) denote the realization of the holonomy representation. Then,

seen as a Z
k
2–module, R

2n can be written as a direct sum

R
2n = V l1

1 ⊕ V l2
2 ⊕ · · · ⊕ V lm

m ,

where each Vi is an R-irreducible Z
k
2–module and Vi and Vj are not equivalent if i 6= j. Of

course, as a vector space, each of the Vi = R and the corresponding representation Z
k
2 →
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GL(R) has its image lying inside {1,−1} ∼= Z2. Note that the R-irreducible components are
also C–irreducible and hence all li are even numbers (Proposition 1.2).

It follows that, because the holonomy representation ϕ is faithful, m must be at least k.
We can also exclude the case where m = k. For if m = k, the case where Vi is the trivial
module does not occur. It follows that we can find for any i an element ai ∈ Z

k
2 acting as −1

on Vi and as +1 on the other components. This would imply that the element a1a2 · · · am

acts as −1 on the total space, which is impossible. So we have that k + 1 ≤ m.
Finally, as each of li is even, we have that the real dimension of the manifold is at least

2m or the complex dimension n ≥ m, which finishes the proof. �

Lemma 2.2 In complex dimension 2, the only groups appearing as a holonomy group of a
Kähler flat manifold are 1, Z2, Z3, Z4 and Z6. In fact there are exactly eight Kähler flat
manifolds in dimension 2.

Proof: Looking at the classification (cf. [2], [3] and [6]) of flat manifolds in real dimension 4,
one sees that the groups occuring as a holonomy group of a 4-dimensional flat manifold are

1, Z2, Z
2
2, Z

3
2, Z3, Z6, Z2 × Z6, Z4, Z2 × Z4, D8, D6, Z2 × D6,

where Dn is a finite dihedral group of order n. As all of the groups Z
2
2, Z

3
2, Z2×Z6, Z2×Z4, D8

and Z2 ×D6 contain a subgroup which is isomorphic to Z
2
2, we deduce from Lemma 2.1 that

those groups cannot occur as the holonomy group of a 2-dimensional Kähler flat manifold.
There are three flat manifolds in dimension 4 having D6 as their holonomy group. It is

however easy to see that all of them have first Betti number one, so that we can exclude this
group too. For the rest of the possible holonomy groups, there are flat manifolds supporting
a Kähler structure. Going through the list of all such groups, we find the following table of
2 dimensional Kähler flat manifolds.

holonomy CARAT symbols

1 15.1.1

Z2 18.1.1; 18.1.2

Z3 35.1.1; 35.1.2

Z4 25.1.2; 27.1.1

Z6 70.1.1

�

In the case of R-dimension 6 we have more cases.

Lemma 2.3 The following finite groups occur as holonomy groups of a three - dimensional
Kähler flat manifold: 1, Zn, for n = 2, 3, 4, 5, 6, 8, 10, 12, Z2 ×Z2, Z2 ×Z4, Z3 ×Z3, Z6 ×Z2,
Z4 × Z4, Z6 × Z3, Z6 × Z4, Z6 × Z6, D8.

Proof: In [6], [3] a list of all holonomy groups of six-dimensional flat manifolds is given. We
use the notation of [3].

We shall now go through the list of all finite groups appearing as the holonomy group of a
6-dimensional flat manifold. We first remark that all the groups

[64, 250], [32, 47], [32, 46], [32, 36], [32, 33], [24, 11], Z2 × [16, 9], [16, 9],
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Z2 × D8, Z2 × Z2 × D8, Z4 × D8, Z2 × Z2 × A4, Z2 × A4,

Z
2
2 × Z4, Z

3
2 × Z4, Z

3
2 × Z3, Z

4
2 × Z3, Z

n
2 , n = 3, 4, 5,

have a group (Z2)
3 as a subgroup, hence by Lemma 2.1 they can be eliminated.

Moreover the finite groups

Z2 × [80, 52], [80, 52], [32, 31], [16, 11], Z2 × D10, D10, Z6 × D8, Z3 × D8,

Z2 × (Z2
3 o Z2), Z

2
3 o Z2, Z3 o Z8, Z3 × (Z3 o Z4), Z2 × (Z3 o Z4),

Z3 o Z4, Z3 × Q8, Q8, Z2 × Z4 × A4, Z6 × A4, Z3 × A4, Z
3
2 × A4,

Z3 × S4, Z2 × S4, D
2
6, Z2 × Z4 × D6, Z4 × D6, Z

3
2 × D6, Z3 × D8,

Z6 × D8, Z2 × Z8, Z2 × Z10, Z2 × Z4 × Z6, Z4 × A4, Z2 × D24

only occur as holonomy groups of flat manifolds with first Betti number one. By Proposi-
tion 1.2 these can be eliminated too.

Let M ∼= Z
6 be any faithful D6–module which is essentialy complex and where the D6-

sublattice MD6 is of rank 2. Then using similar methods as in the proof of Proposition
1 in [15, p. 192] and properties of the group H2(D6, Z) we can show that any cocycle
α ∈ H2(D6,M) is mapped to zero by homomorphism resD6

<x> : H2(D6,M) → H2(< x >,M),
where x is an element of order three. Hence we can eliminate the groups:

D6, Z2 × D6, Z3 × D6, D24, S4, Z6 × D6, Z2 × Z2 × D6.

There exists one Kähler flat manifold with holonomy group D8 and first Betti number equal
to zero. It has in CARAT notations symbol 207.1.1. As a subgroup of E(6), it is generated
by the following elements

(I, (0, 0, 1, 0, 0, 0)), (I, (0, 0, 0, 1, 0, 0)), (I, (0, 0, 0, 0, 1, 0)),

(I, (0, 0, 0, 0, 0, 1)), (A1, (1/2, 0, 0, 0, 1/4, 0)), (A2, (0, 1/2, 0, 0, 0, 0)),

where I denotes identity 6 × 6 matrix and

A1 =

















1 0 0 0 0 0
0 0 0 −1 0 0
0 0 −1 0 0 0
0 −1 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

















, A2 =

















0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

















.

Moreover it is known [7] that any flat manifold with holonomy group D6 has a non zero first
Betti number.

The group A4 has one absolutely irreducible faithful representation of rank 3. Hence, by
Proposition 1.2 it cannot be on our list (there are no 6-dimensional flat manifolds with holon-
omy group A4 and with first Betti number 0).

Let us now consider the group of order sixteen which is refered to as [16, 10] in the notations
of [3] and which we have not yet considered. It is the holonomy group of 31 Bieberbach groups
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of rank 6 with non trivial center. We can prove that all of them have the first Betti number
one (cf. [15, Lemma 1, page 194].) Moreover it is also the holonomy group of 3 Bieberbach
groups of rank 6 with trivial center. In this case it is easy to see, for example from elementary
representation theory, that the conditions of Proposition 1 are not satisfied. By an analogous
procedure we can eliminate the groups [16.8], [16, 13] and D16 completing the proof. �

Finally, we have:

Theorem 2.4 There are 174 3 dimensional Kähler flat manifolds.

Proof: We shall use the results about the holonomy groups proved in Lemma 2.3 and the
list of six dimensional Bieberbach group from CARAT, [6], [3]. To prepare the final list we
shall use mainly Proposition 1.2. �

Let us present a final table.

holonomy number CARAT symbols and β1

1 1 β1 = 6, 170.1.1,

Z2 5 β1 = 2, 174.1.1, 174.1.2,
β1 = 4, 173.1.1, 173.1.2, 173.1.3,

Z3 4 β1 = 2, 291.1.1, 291.1.2,
β1 = 4, 311.1.1, 311.1.2,

Z4 22 β1 = 2, 202.1.1, 202.1.2, 225.1.1, 225.1.10, 225.1.11,
225.1.12 (2 groups), 225.1.13, 225.1.2, 225.1.3,
225.1.4 (2 groups), 225.1.5, 225.1.6 (2 groups),
225.1.7 (2 groups), 225.1.8 (2 groups), 225.1.9,
β1 = 4, 219.1.1, 219.1.2

Z5 2 β1 = 2, 626.1.1, 626,1,2

Z6 14 β1 = 2, 1611.1.1, 318.1.1, 318.1.2, 318.1.3, 318.1.5,
319.1.1, 319.1.2, 319.1.3, 319.1.5, 404.1.1,
404.1.2, 404.1.3, 404.1.4
β1 = 4, 1694.1.1

Z8 1 β1 = 2, 468.1.1

Z10 1 β1 = 2, 7093.1.1

Z12 6 β1 = 2, 359.1.1, 359.1.3, 359.1.4,
361.1.1, 361.1.2, 554.1.1

Z2 × Z2 33 β1 = 0, 185.1 (4 groups),
β1 = 2, 186.1 (29 groups)

Z2 × Z4 45 β1 = 2, 257.1 (19 groups), 1135.1 (26 groups)

Z3 × Z3 13 β1 = 2, 405.1.1 (5 groups), 405.1.2 (3 groups),
405.1.3 (3 groups), 405.1.4, 405.1.5

Z6 × Z2 7 β1 = 2, 1732.1 (5 groups), 2701.1 (2 groups)

Z4 × Z4 8 β1 = 2, 1264.1 (8 groups)

Z6 × Z3 6 β1 = 2, 2719.1 (2 groups), 2720.1 (4 groups)

Z6 × Z4 4 β1 = 2, 1920.1 (4 groups)

Z6 × Z6 1 β1 = 2, 2752.1

D8 1 β1 = 0, 207.1.1

It is interesting to compare the above classification with the classification of the hyperelliptic
varieties, [12]. There is crucial difference. It is the case of the group D8 which is not present
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on the list in [12, Theorem 6.1].

Lemma 2.3 should be also compared with [17]. The main theorem of this work contains a
list of possible finite quotients G/G0 where G is cocompact group of affine transformations
acting freely and properly discontinuously on C

3, and G0 is its normal subgroup consisting
of translations. In fact, it is a list of holonomy groups of Kähler flat manifolds and contains
all groups occuring in Lemma 2.3. It contains also the dihedral group D8 of order 8.

We want to say that the methods in [12] and [17] are different from ours.

Finally we would like to mention that in [10] it has been observed that using “the double”
construction it is possible to construct for any finite group G, a Kähler flat manifold with
holonomy group G.

3 The Hodge diamond for Kähler flat manifolds

In this section we shall show how to compute the real cohomology and Hodge numbers for
any flat Kähler manifold. We shall explicitely list all possible Hodge diamonds up to complex
dimension 3. We shall continue this study in the next section where we shall be dealing with
a general class of flat Kähler manifolds in arbitrary high dimensions.

Any flat Kähler complex n-dimensional manifold M is a quotient of the form T 2n/H,
where T 2n is a real 2n-dimensional torus and H ⊂ U(n) is a finite group. From the standard
observations we have:

Hp.q(M) = (Λp,q(Cn ⊕ (Cn)∗))H ,

where H∗,∗ denotes the Hodge cohomology. Recall that Λp,q(Cn ⊕ (Cn)∗) is the vector space
with basis elements

dzi1 ∧ dzi2 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ dz̄j2 ∧ dz̄jq
, 1 ≤ i1 < i2 < · · · < ip ≤ n,

1 ≤ j1 < j2 < · · · < jq ≤ n
(1)

on which the action of H is induced by the holonomy representation H → U(n). For a given
flat manifold M , such a representation is unique up to conjugation in GL(2n, R), however,
sometimes it is not unique up to conjugation in GL(n, C). When this is the case, such a flat
Riemannian manifold M carries different kinds of complex structures, with possibly different
Hodge numbers. For example, we will see that every complex 3-dimensional Kähler flat man-
ifold with β1 = 2 and β2 = 5 has two different complex structures leading to different Hodge
numbers, (see the example below). We can also calculate the Betti numbers directly from the
holonomy representation G → GL(2n, R), using the equation: βi(M) = dim(Λi(R2n))G. Let
us present the table of Kähler flat manifolds from section 2 with their Betti numbers. 1

1Note that β4 = β2, β5 = β1, β6 = β0 = 1, moreover as the Euler characteristic of such a manifold is 0, we
also have the relation β3 = 2 − 2β1 + 2β2.
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β1 β2 β3 Holonomy CARAT symbol

0 3 8 Z2 × Z2 185.1
0 2 6 D8 207.1

2 3 4 Z4 225.1
Z5 all
Z6 318.1, 319.1, 404.1
Z8 all
Z10 all
Z12 all
Z2 × Z2 186.1
Z2 × Z4 all
Z3 × Z3 all
Z6 × Z2 all
Z4 × Z4 all
Z6 × Z3 all
Z6 × Z4 all
Z6 × Z6 all

2 5 8 Z3 291.1
Z4 202.1
Z6 1611.1

2 7 12 Z2 174.1

4 7 8 Z2 173.1
Z3 311.1
Z4 219.1
Z6 1694.1

6 15 20 1 170.1.1 (M = T 6)

Below we present some calculations of the Hodge numbers {hp,q}, for some of the manifolds
above. The case β1 = 0 and holonomy Z2 × Z2 is also being considered in the next section.
As we are working in complex dimension 3, we have that p, q ∈ {0, 1, 2, 3}.

Example To illustrate several possibilities, we consider as an example what happens in case
the holonomy group G is isomorphic to Z6. If t denotes the generator of Z6, we can distinguish,
up to conjugation inside GL(3, C), 4 possibilities for the representation Z6 → U(3) given by
the following possible images for t:

t 7→





1 0 0
0 z 0
0 0 w



 ,





1 0 0
0 z 0
0 0 z



 ,





1 0 0
0 z 0
0 0 z̄



 , or





1 0 0
0 1 0
0 0 z



 ,

where z denotes a primitive 6-th root of unity and 1 6= w denotes a non-primitive 6-th root
of unity.
One can easily check that the second and third possibility, when regarded as representations
in GL(6, R), are conjugate to each other.

When we make these computations for all possible holonomy groups, we find the following
table of Hodge diamonds, where in the case of manifolds with β1 = 2 and β2 = 5, there are
always 2 possibilities, depending on a choice of complex structure.
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Manifold with β1 = 6 (T 6): Manifolds with β1 = 2 and β2 = 3:

1
3 3

3 9 3
1 9 9 1

3 9 3
3 3

1

1
1 1

0 3 0
0 2 2 0

0 3 0
1 1

1

Manifolds with β1 = 2 and β2 = 5

1
1 1

0 5 0
0 4 4 0

0 5 0
1 1

1

or

1
1 1

1 3 1
1 3 3 1

1 3 1
1 1

1

Manifolds with β1 = 2 and β2 = 7: Manifolds with β1 = 4

1
1 1

1 5 1
1 5 5 1

1 5 1
1 1

1

1
2 2

1 5 1
0 4 4 0

1 5 1
2 2

1

Manifold with holonomy Z2 × Z2: Manifolds with holonomy D8:

1
0 0

0 3 0
1 3 3 1

0 3 0
0 0

1

1
0 0

0 2 0
1 2 2 1

0 2 0
0 0

1

In the same way we can compute the Hodge diamond of all hyperelliptic surfaces in which
case we always find:

1
1 1

0 2 0
1 1

1
A Calabi-Yau manifold is a Kähler manifold with holonomy group group contained in
SU(n).

There are also other definitions of Calabi-Yau manifolds. In [11] the author mentions five non-
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equivalent definitions. For example one definition requires that such a manifold be projective.
Moreover there are two definitions which are not interesting in case of flat manifolds: the first
defines Calabi-Yau manifolds as Ricci-flat Kähler manifolds, while the second requires that
the holonomy group be the full SU(n). These two definitions are out of our interest, since
any flat manifold is Ricci-flat and the holonomy group of a flat manifold is always finite. We
have.

Proposition 3.1 ([11, Corollary 6.2.5]) Let M be a flat Kähler manifold of complex dimen-
sion n with induced holonomy representation ϕ : H → U(n). Then hn,0 = 1 if and only if
ϕ(H) ⊆ SU(n).

Proof: hn,0 is the dimension of (Λn,0(Cn ⊕ (Cn)∗)H . Therefore, hn,0 is 1 if and only if
dz1 ∧ dz2 ∧ · · · ∧ dzn is fixed under the action of any element h ∈ H. However as the action
of h on this basis vector is given by

h(dz1 ∧ dz2 ∧ · · · ∧ dzn) = Det(ϕ(h))dz1 ∧ dz2 ∧ · · · ∧ dzn,

we have that h fixes this basis vector if and only if Det(ϕ(h)) = 1. Therefore hn,0 = 1 ⇔
ϕ(H) ⊆ SU(n). �

Corollary 3.2 There are no Calabi-Yau hyperelliptic surfaces. In complex dimension three,
there are twelve Calabi-Yau flat Kähler manifolds with non-trivial holonomy:

1. five manifolds with the first Betti number equal to zero, where four manifolds have
holonomy Z2 × Z2 and one has holonomy D8;

2. two manifolds with the first Betti number equal to 2 and holonomy Z2;

3. five manifolds with the following Betti numbers: β1 = 2, β2 = 5, where two manifolds
have holonomy Z3, two have holonomy Z4 and one has holonomy Z6.

4 Complex Hantzsche-Wendt manifolds

The original Hantzsche-Wendt manifold is the unique flat manifold in dimension 3 with van-
ishing first betti number, (cf. [8]). It is an orientable flat manifold, with holonomy group Z

2
2.

Several generalizations were given: a Hantzsche-Wendt manifold is an orientable flat manifold
of dimension n and with holonomy group Z

n−1
2 , while a generalized Hantzsche Wendt manifold

of dimension n is an non-necessarily orientable manifold of dimension n with holonomy group
Z

n−1
2 . In each dimension n ≥ 2, there are generalized Hantzsche-Wendt manifolds, while

orientable Hantzsche-Wendt manifolds only occur in each odd dimension n ≥ 3. Remark that
n is the minimal dimension in which a flat manifold with holonomy Z

n−1
2 exists. Lemma 2.1

shows that also in the complex case we cannot expect to find a Kähler flat manifold with
holonomy group Z

n−1
2 below dimension n. For this reason we introduce analogously as in the

real case a concept of complex (generalized) Hantzsche-Wendt manifold.

Definition 4.1 A flat Kähler n-manifold of holonomy Z
n−1
2 is called a complex general-

ized Hantzsche-Wendt manifold (abbreviated as complex GHW). It will be called complex
Hantzsche-Wendt manifold if, in addition the holonomy representation Z

n−1
2 → U(n) has

its image lying inside SU(n) (complex HW in short).
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Lemma 4.2 For each n ≥ 2, there exists a complex GHW of complex dimension n. Complex
HW only exist in odd dimensions and for each odd n ≥ 3, there exists a complex HW of
dimension n.

Proof: First we show that complex HW only exist in odd dimensions. Let M be a complex
HW of dimension n and with holonomy representation ϕ : Z

n−1
2 → SU(n). After conjugation

inside GL(n, C) we may assume that the image of ϕ consists of diagonal n× n matrices with
±1’s on the diagonal. As the total subgroup of SU(n) consisting of diagonal matrices with
±1’s on the diagonal is isomorphic to Z

n−1
2 and ϕ is faithful, the image of ϕ is completely

determined. Now, if n is even −In, minus the n × n-identity matrix belongs to SU(n).
However, this would imply that −I2n belongs to the image of the real holonomy representation
Z

n−1
2 → GL(2n, R), which is a contradiction. Therefore n has to be odd.

Now, given n we show that there exist a complex (G)HW of complex dimension n. First
of all, there exist a (real) GHW of real dimension n, which we take to be orientable (HW)
when n is odd, and where the fundamental group π1(M) satisfies a short exact sequence

0 → Z
n → π1(M) → Z

n−1
2 → 0.

Hence π1(M) is given by a 2-cohomology class 〈f〉 ∈ H2(Zn−1
2 , Zn). Now, consider

〈f〉 ⊕ 〈f〉 ∈ H2(Zn−1
2 , Zn) ⊕ H2(Zn−1

2 , Zn) ∼= H2(Zn−1
2 , Z2n).

This 2-cohomology class determines a Bieberbach group π ′ and the direct sum of modules Z
n⊕

Z
n automatically statisfies the criterion of Proposition 1.2. Therefore, π ′ is the fundamental

group of a complex GHW, which is a complex HW in case n is odd. �

As the image of the representation Z
n−1
2 → SU(n) is fixed for a complex HW, we are able

to compute the Hodge diamonds for any complex HW and we prove:

Theorem 4.3 Let n ≥ 3 be an odd number and let M be a complex Hantzsche-Wendt flat
manifold of complex dimension n. Then it is Calabi-Yau and has the following Betti numbers:

β1 = β3 = · · · = βn−2 = βn+2 = β2n−1 = 0 and βn = 2n,

β0 =

(

n

0

)

, β2 =

(

n

1

)

, . . . β2k =

(

n

k

)

, . . . β2n =

(

n

n

)

.

Proof: We compute the Hodge diamond for these manifolds, from which the result follows
easily. As in the proof of Lemma 4.2 we may assume that the representation ϕ : Z

n−1
2 →

SU(n) is diagonal and that the image consists of all diagonal matrices with ±1 on the diagonal
(and of course with determinant 1).

Let us compute the upper left corner of the Hodge diamond, this is, the entries hp,q with
0 ≤ q ≤ p ≤ n. The other terms then follow by symmetry. As the action of the holonomy
group is diagonal, we have to look for those (p, q)–forms

dzi1 ∧ dzi2 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ dz̄j2 ∧ dz̄jq
(2)

which are fixed under the action of the holonomy group. As a conclusion, we have that
hp,q =

(

n
p

)

.
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Summarizing all of the above situations, we find the following Hodge diamond for a com-
plex HW of complex dimension n:

(

n
0

)

0 0
0

(

n
1

)

0
0 0 0 0

0 0
(

n
2

)

0 0
· · · · · · · · · · · · · · · · · ·

(

n
0

) (

n
1

) (

n
2

)

· · · · · ·
(

n
n−1

) (

n
n

)

· · · · · · · · · · · · · · · · · ·
0 0

(

n
n−2

)

0 0
0 0 0 0

0
(

n
n−1

)

0
0 0

(

n
0

)

The rest of the theorem now follows easily, because βi =
∑

p+q=1

hp,q. �

There are exactly four manifolds of this type in real dimension 6 (complex dimension 3), cf.
[16]. Of all 174 six dimensional flat manifolds admitting a complex structure only five of them
are having a first Betti number equal to zero and four of them are complex HW.

In the real case, all generalized HW manifolds are having a holonomy representation which is
diagonizable over Z. This does no longer hold in the complex case.

Proposition 4.4 Any complex Hantzsche-Wendt manifold has a spin structure.

Proof: (See also [13, Example 4.6].) Let M be a complex Hantzsche-Wendt manifold of
complex dimension n. There is a short exact sequence

0 → Z
2n → π1(M) → (Z2)

n−1 → 0,

inducing a holonomy representation ϕ : Z
n−1
2 → GL(2n, Z). When we consider R

2n as a Z
n−1
2 –

module via ϕ, we have that R
2n is the direct sum M ⊕ M of two identical Z

n−1
2 –modules,

where the action on M is given via matrices belonging to SO(n). Hence it is enough to
apply the definition of the spin structure for the “double” construction from the proof of the
Theorem 1 of [4]. �
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