A short note about diffuse Bieberbach groups

A. Gąsior, R. Lutowski, A. Szczepański *

March 24, 2017

Abstract

We consider low dimensional diffuse Bieberbach groups. In particular we classify diffuse Bieberbach groups up to dimension 6. We also answer a question from [5, page 887] about minimal dimension of a nondiffuse Bieberbach group which does not contain three-dimensional Hantzsche-Wendt group.

1 Introduction

The class of diffuse groups was introduced by B. Bowditch in [2]. By definition a group Γ is *diffuse*, if every finite non-empty subset $A \subset \Gamma$ has an extremal point, i.e. an element $a \in A$ such that for any $g \in \Gamma \setminus \{1\}$ either gaor $g^{-1}a$ is not in A. Equivalently (see [5]) a group Γ is diffuse if it does not contain a non-empty finite set without extremal points.

The interest in diffuse groups follows from the Bowditch's observation that they have the unique product property ¹. Originally unique products were introduced in the study of group rings of discrete, torsion-free groups. More precisely, it is easily seen that if a group Γ has unique product property, then it satisfies Kaplansky's unit conjecture. In simple terms this means that

^{*}All authors are supported by the Polish National Science Center grant 2013/09/B/ST1/04125.

²⁰¹⁰ Mathematics Subject Classification: Primary 20E40; Secondary 20H15, 20F65.

¹The group Γ is said to have the unique product property if for every two finite nonempty subsets $A, B \subset \Gamma$ there is an element in the product $x \in A\dot{B}$ which can be written uniquely in the form x = ab with $a \in A$ and $b \in B$.

the units in the group ring $\mathbb{C}[\Gamma]$ are all trivial, i.e. of the form λg with $\lambda \in \mathbb{C}^*$ and $g \in \Gamma$. For more information about these objects we send a reader to research and survey articles [1], [7, Chapter 10] and [5]. In part 3 of [5] the authors prove that any torsion-free crystallographic group (Bieberbach group) with trivial center is not diffuse. By definition a crystallographic group is a discrete and cocompact subgroup of the group $O(n) \ltimes \mathbb{R}^n$ of isometries of the Euclidean space \mathbb{R}^n . From Bieberbach theorem (see [10]) the normal subgroup T of all translations of any crystallographic group Γ is a free abelian of finite rank group and the quotient group (holonomy group) $\Gamma/T = G$ is finite.

In [5, Theorem 3.5] there is proved that for a finite group G:

- 1. If G is not solvable then any Bieberbach group the holonomy group isomorphic to G is not diffuse.
- 2. If every Sylow subgroup of G is cyclic then any Bieberbach group with the holonomy group isomorphic to G is diffuse.
- 3. If G is solvable and has a non-cyclic Sylow subgroup then there are examples of Bieberbach groups with the holonomy group isomorphic to G which are and which are not diffuse.

Using the above the authors of [5] classify non-diffuse Bieberbach groups in dimensions ≤ 4 . One of the most important non-diffuse group is 3-dimensional Hantzsche-Wendt group

$$\Delta_P = \{x, y \mid x^{-1}y^2x = y^{-1}, y^{-1}x^2y = x^{-2}\},\$$

see [9], [10]. At the end of the part 3.4 of [5] the authors ask the following question.

Question 1. What is the smallest dimension d_0 of a non-diffuse Bieberbach group which does not contain Δ_P ?

The answer for the above question was the main motivation for us. In fact we prove, in the next section, that $d_0 = 5$. Moreover, we extend the results of the part 3.4 of [5] and with support of computer, we present the classification of all Bieberbach groups in dimension $d \leq 6$ which are (non)diffuse.

2 (Non)diffuse Bieberbach groups in dimension ≤ 6 .

We use the computer system CARAT [8] to list all Bieberbach groups of dimension ≤ 6 .

Our main tools are the following observations:

- 1. The property of being diffuse is inherited by subgroups (see [2, page 815]).
- 2. If Γ is a torsion-free group, $N \triangleleft \Gamma$, and that N and Γ/N are both diffuse then Γ is diffuse (see [2, Theorem 1.2 (1)]).

Note that we are only interested in Bieberbach groups with non-trivial center. Let Γ be a such group. We shall use a method of E. Calabi [10, Propostions 3.1 and 4.1]. By the first Betti number $\beta_1(\Gamma)$ we mean the rank of the abelianization $\Gamma/[\Gamma, \Gamma]$. We have an epimorphism

$$f: \Gamma \to \mathbb{Z}^k$$
, where $k = \beta_1(\Gamma)$. (1)

From assumptions ker f is a Bieberbach group of dimension < 6. Since \mathbb{Z}^k is a diffuse group our problem is reduced to the question about the group ker f. If Γ has rank 4 we know that the only non-diffuse Bieberbach group of dimension less than or equal to 3 is Δ_P . Using the above facts we obtain 17 non-diffuse groups. Note that the list from [5, section 3.4] consists of 16 groups. The following example presents the one which is not in [5].

Example 1. Let Γ be a crystallographic group denoted by "05/01/06/006" in [3] as a subgroup of $GL(5, \mathbb{R})$. Its non-lattice generators are as follows

A =	$\begin{pmatrix} -1 \\ 0 \end{pmatrix}$	0 0	1 1	0 0	$1/2 \\ 0 \\ 1/2 \\ 1/2$	and $B =$	$\begin{array}{c} 0 \\ -1 \end{array}$	1 1	0 0	0 0	$1/2 \\ 1/2 \\ 0 \\ 0$	
	0	0	0	-1	1/2		0	0	0	-1	0	
	$\begin{bmatrix} 0 \end{bmatrix}$	0	0	0	1		$\begin{bmatrix} 0 \end{bmatrix}$	0	0	0	1	

Conjugating the above matrices by

$$Q = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \in \operatorname{GL}(5, \mathbb{Z})$$

one gets

$$A^{Q} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1/2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } B^{Q} = \begin{bmatrix} -1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 1/2 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Now its easy to see that the rank of the center of Γ equals 1 and the kernel of the epimorphism $\Gamma \to \mathbb{Z}$ is isomorphic to a 3-dimensional Bieberbach group Γ' with the following non-lattice generators:

	[1	0	0	1/2		$\left[-1\right]$	0	0	0]
A' =	0	-1	0	0	and $B' =$	0	1	0	1/2
	0	0	-1	1/2		0	0	-1	0
	0	0	0	1		0	0	0	1

Clearly the center of Γ' is trivial, hence it is isomorphic to the group Δ_P .

Now we formulate our main result.

Theorem 1. The following table summarizes the number of diffuse and nondiffuse Bieberbach groups of dimension ≤ 6 .

Dimension	Total	Non-diffuse	Diffuse
1	1	0	1
2	2	0	2
3	10	1	9
4	74	17	57
5	1060	352	708
6	38746	19256	19490

Proof: If a group has a trivial center then it is not diffuse. In other case we use the Calabi (1) method and induction. A complete list of groups was obtained using computer algebra system GAP [4] and it is available here [6].

.

Before we answer Question 1 from the introduction, let us formulate the following lemma:

Lemma 1. Let α, β be any generators of the group Δ_P . Let $\gamma = \alpha\beta, a = \alpha^2, b = \beta^2, c = \gamma^2$. Then the following relations hold:

$$\begin{array}{ll} [a,b] = 1 & a^{\beta} = a^{-1} & a^{\gamma} = a^{-1} \\ [a,c] = 1 & b^{\alpha} = b^{-1} & b^{\gamma} = b^{-1} \\ [b,c] = 1 & c^{\alpha} = c^{-1} & c^{\beta} = c^{-1} \end{array}$$
 (2)

where $x^y := y^{-1}xy$ denotes the conjugation of x by y.

The proof of the above lemma is omitted. Just note that the relations are easily checked if you take isomorphic to Δ_P group

$$\left\langle \begin{bmatrix} 1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \right\rangle \subset \mathrm{GL}(4, \mathbb{Q}).$$

Proposition 1. There exists an example of five dimensional non-diffuse Bieberbach group which has not the group Δ_P as a subgroup.

Proof. Let Γ be the Bieberbach group enumerated in CARAT as "min.88.1.1.15". It generated by the elements $\gamma_1, \gamma_2, l_1, \ldots, l_5$ where

$$\gamma_1 = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1/2 \\ 0 & 0 & 0 & -1 & 0 & 1/4 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } \gamma_2 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

and l_1, \ldots, l_5 generate the lattice L of Γ :

$$l_i := \begin{bmatrix} I_5 & e_i \\ 0 & 1 \end{bmatrix}$$

where e_i is the *i*-th column of the identity matrix I_5 . Γ fits into the following short exact sequence

 $1 \longrightarrow L \longrightarrow \Gamma \xrightarrow{\pi} D_8 \longrightarrow 1$

where π takes the linear part of every element of Γ :

$$\begin{bmatrix} A & a \\ 0 & 1 \end{bmatrix} \mapsto A$$

and the image D_8 of π is the dihedral group of order 8.

Now assume that Γ' is a subgroup of Γ isomorphic to Δ_P . Let T be its maximal normal abelian subgroup. Then T is free abelian group of rank 3 and Γ' fits into the following short exact sequence

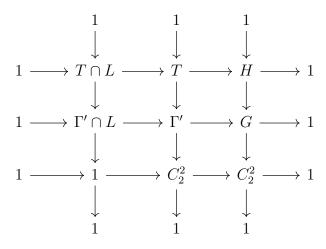
$$1 \longrightarrow T \longrightarrow \Gamma' \longrightarrow C_2^2 \longrightarrow 1,$$

where C_m is a cyclic group of order m. Consider the following commutative diagram

We get that H must be abelian subgroup of $D_8 = \pi(\Gamma)$ and $T \cap L$ is free abelian group of rank 3 which lies in the center of $\pi^{-1}(H) \subset \Gamma$. Now if H is isomorphic either to C_4 or C_2^2 then the center of $\pi^{-1}(H)$ is of rank at most 2. Hence H must be the trivial group or the cyclic group of order 2. Note that as $\Gamma' \cap L$ is normal abelian subgroup of Γ' it must be a subgroup of T:

$$T \cap L \subset \Gamma' \cap L \subset T \cap L,$$

hence $T \cap L = \Gamma' \cap L$. We get the following commutative diagram with exact rows and columns



where $G = \pi(\Gamma')$. Consider two cases:

1. *H* is trivial. In this case *G* is one of two subgroups of D_8 isomorphic to C_2^2 . Since arguments for both subgroups are similar, we present only one of them. Namely, let

$$G = \langle \operatorname{diag}(1, -1, -1, -1, 1), \operatorname{diag}(-1, -1, 1, 1, 1) \rangle$$

In this case Γ' is generated by the matrices of the form

	Γ1	0	0	0	0	$x_1 - \frac{1}{2}$		$\left\lceil -1 \right\rceil$	0	0	0	0	$y_1 + \frac{1}{2}$	
$\alpha =$	0	-1	0	0	0	x_2	and $\beta =$	0	-1	0	0	0	$y_2 - \frac{1}{2}$	
	0	0	-1	0	0	$\begin{array}{c} x_3 \\ x_4 \end{array}$		0	0	1	0	0	y_3	
	0	0	0	-1	0	x_4		0	0	0	1	0	$y_4 + \frac{1}{2}$,
	0	0	0	0	1	$x_5 - \frac{1}{2}$							y_5	
	0	0	0	0	0	1]		0	0	0	0	0	1	

where $x_i, y_i \in \mathbb{Z}$ for i = 1, ..., 5. If $c = (\alpha \beta)^2$ then by Lemma 1 $c^{\alpha} = c^{-1}$, but

Obviously solutions of the equation $4y_5 + 4x_5 - 2 = 0$ are never integral and we get a contradiction.

2. *H* is of order 2. Then $G = D_8$ and *H* is the center of *G*. The generators α, β of Γ' lie in the cosets $\gamma_1 \gamma_2 L$ and $\gamma_2 L$, hence

$$\alpha = \begin{bmatrix} 0 & -1 & 0 & 0 & 0 & x_1 \\ 1 & 0 & 0 & 0 & 0 & x_2 - \frac{1}{2} \\ 0 & 0 & -1 & 0 & 0 & x_3 - \frac{1}{2} \\ 0 & 0 & 0 & 1 & 0 & x_4 + \frac{1}{4} \\ 0 & 0 & 0 & 0 & -1 & x_5 + \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } \beta = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & y_1 - \frac{1}{2} \\ 0 & -1 & 0 & 0 & 0 & y_2 \\ 0 & 0 & -1 & 0 & 0 & y_3 \\ 0 & 0 & 0 & -1 & 0 & y_4 \\ 0 & 0 & 0 & 0 & 1 & y_5 - \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

where $x_i, y_i \in \mathbb{Z}$ for i = 1, ..., 5, as before. Setting $a = \alpha^2, b = \beta^2$ we get

and again the equation $2 - 4y_1 = 0$ does not have an integral solution.

The above considerations show that Γ does not have a subgroup which is isomorphic to Δ_P .

References

- A. Bartels, W. Lück, H. Reich, On the Farrell-Jones conjecture and its applications, J. Topol. 1 (2008), no. 1, 57-86
- [2] Brian H. Bowditch, A variation on the unique product property, J. London Math. Soc. (2) 62 (2000), no. 3, 813 - 826
- [3] H. Brown, R. Bülow, J. Neubüser, W. Wondratschek and H. Zassenhaus, Crystallographic groups of four-dimensional space, New York, 1978
- [4] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.8.3, 2016, http://www.gap-system.org/
- [5] S. Kionke, J. Raimbault, On geometric aspects of diffuse groups, Doc. Math. 21 (2016), 873 - 915.
- [6] R. Lutowski, (Non)Diffuse Bieberbach groups in low dimensions, http://mat.ug.edu.pl/~rlutowsk/diffuse/
- [7] W. Lück, L²-invariants; theory and applications to geometry and Ktheory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge., vol. 44, Springer-Verlag, Berlin 2002.
- [8] J. Opgenorth, W. Plesken, T. Schultz CARAT Crystallographic Algorithms and Tables - http://www.math.rwth-aachen.de/CARAT/

- [9] S. David Promislow, A simple example of a torsion-free, nonunique product group, Bull. London Math. Soc. **20** (1988), no. 4, 302-304
- [10] A. Szczepański, Geometry of crystallographic groups, World Scientifice, 2012

Institute of Mathematics, Maria Curie-Skłodowska University Pl. Marii Curie-Skłodowskiej 1 20-031 Lublin Poland E-mail: anna.gasior@poczta.umcs.lublin.pl

Institute of Mathematics, University of Gdańsk ul. Wita Stwosza 57, 80–952 Gdańsk, Poland E-mail: rlutowsk@mat.ug.edu.pl, matas@univ.gda.pl