Holonomy groups of crystallographic groups with finite outer automorphism groups

Andrzej Szczepański*

June 9, 2022

A crystallographic group Γ of dimension n is a discrete, cocompact subgroup of isometries of euclidean space \mathbb{R}^n . From Bieberbach's theorems any such group contains a free abelian subgroup \mathbb{Z}^n of finite index. Moreover the finite group $G = \Gamma/\mathbb{Z}^n$ acts faithfully by conjugation on \mathbb{Z}^n . We shall call the correspond representation $G \to GL(n, \mathbb{Z})$ the holonomy representation of Γ and G a holonomy group of Γ . A Bieberbach group is a torsion free crystallographic group.

We shall use the notations from [4] and [8]. It is well known (cf. [8]) that the outer automorphism group of a crystallographic group Γ is finite if and only if in the holonomy representation of Γ all \mathbb{Q} -irreducible components are multiplicity free and \mathbb{R} -irreducible.

Definition 1 The finite group G is an $(\mathcal{R}_1) \mathcal{R}'_1$ -group if it is the holonomy group of a (Bieberbach) crystallographic group with finite outer automorphism group. We shall the class of $(\mathcal{R}_1) \mathcal{R}'_1$ -groups denote by $(\mathcal{R}_1) \mathcal{R}'_1$.

Let us recall the definition of the Whitehead group (cf. [5]). We start from a group ring $\mathbb{Z}[G]$. Then consider the linear group $GL(n, \mathbb{Z}[G])$. There is an inclusion $GL(n, \mathbb{Z}[G])$ into $GL(n+1, \mathbb{Z}[G])$ given by the map $A \to \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$. Let $GL(\mathbb{Z}[G]) = \bigcup_{n=1}^{\infty} GL(n, \mathbb{Z}[G])$ denote the direct limit of the above linear

 $^{^{*}{\}rm The}$ author is grateful to SFB-343 at Bielefeld and Lehrstuhl D für Mathematik RWTH Aachen for financial support.

groups and $[GL(\mathbb{Z}[G]), GL(\mathbb{Z}[G])] = E(G)$ denote its commutator subgroup. Hence the quotient group $K_1(G) = GL(\mathbb{Z}[G])/E(G)$ is an abelian group. The Whitehead group of G is defined by setting

$$Wh(G) = K_1(G)/\langle \pm g : g \in G \rangle.$$

The following observation is obvious:

Proposition 1 Let G be a finite group. If the Whitehead group Wh(G) is finite then $G \in \mathcal{R}'_1$.

Proof: It is clear that there exists a crystallographic group with holonomy group G and \mathbb{Q} -multiplicity free holonomy representation. Hence it is enough to use the following formula which follows from Dirichlet's unit theorem (see [5] page 49, Theorem 2.6.). Let $r = \{$ number of \mathbb{R} -irreducible representations of $G \}$ and $q = \{$ number of \mathbb{Q} -irreducible representations of $G \}$, then

$$rank(Wh(G)) = r - q.$$

Example 1 Let $S_n, n \ge 1$ be a symmetric group on n elements. It is known (see [5]) that $Wh(S_n) = 1$. Hence $S_n \in \mathcal{R}'_1$.

Example 2 $A_5 \in \mathcal{R}'_1 \setminus \mathcal{R}_1$ but $Wh(A_5)$ is infinite (cf. [4] Proposition 6.1). Moreover the finite group $SL_3(2).2$ from example 2.5 of [3] belongs to \mathcal{R}_1 but its Whitehead group is also infinite.

We expect that the Proposition is also true for Bieberbach groups. But to prove it we need the following.

Conjecture Let G be a finite group. There exists a Bieberbach group with holonomy group G and \mathbb{Q} -multiplicity free holonomy representation.

We know a proof of it for some abelian groups (cf. [4] Theorem 4.2), p-groups (cf. [4] Proposition 3.3), dihedral groups (cf. [4] Proposition 5.1) and simple groups (cf. [4] section 6). Moreover, Theorem 5 in [1] proved it in a special case of the trivial representation. That means, for any finite group G there exists a Bieberbach group with holonomy group G and holonomy representation with the trivial \mathbb{Q} -component of maximal dimension one.

Hence we have.

Corollary 1 Let G be a finite group and assume that the above conjecture is true. If the group Wh(G) is finite then $G \in \mathcal{R}_1$.

Then (under assumption of the corollary) we have the following relations between the classes of finite groups:

From example 1 we can expect that all symmetric groups are in \mathcal{R}_1 . The following theorem is the first step in that direction.

Theorem 1 Let $n \leq 6$ then $S_n \in \mathcal{R}_1$.

Proof: For n = 2, 3 the result follows from [3]. Moreover, for n = 4 we refer the reader to [7] page 386. Let us start a proof for n = 5. We have to construct a special element $\alpha \in H^2(S_5, M)$, where M is a faithfully multiplicity free S_5 - lattice. For the prime number 5, let us define an S_5 -lattice M(5) of rank 6 which corresponds to a 6-dimensional irreducible representation of S_5 . From $CARAT^{1}$ (see [6]) it is known that among lattices we can find one with $H^2(S_5, M(5)) = Z_5$. For the prime number 3, again from CARAT, there exists an S_5 -lattice M(3) of rank 4, which corresponds to a 4-dimensional irreducible representation of S_5 , with $H^2(S_5, M(3)) = Z_3$. Finally, for the prime number 2 we have two conjugacy classes in S_5 . For the first one, to construct a special element, we use the A_5 -lattice L(2) from [2] page 894. L(2) corresponds to a 5-dimensional irreducible representation of A_5 . For the second one, it is enough to use the trivial S_5 -representation \mathbb{Z} . Then $M(2) = \mathbb{Z} \oplus ind_{A_5}^{S_5}L(2)$. Put $M = M(2) \oplus M(3) \oplus M(5)$. By Frobenius reciprocity lattice M is the multiplicity free. Hence from the above the group $H^2(S_5, M)$ has a special element which defines a Bieberbach group with S_5 holonomy and finite outer automorphism group.

¹We thank Tilman Schulz for help.

For S_6 we start with the prime number 5. Let $N = ind_{S_5}^{S_6}M(5)$, where M(5) is defined as above. It is not difficult to see that as $Z_5[S_6]$ lattice N is a direct sum of three lattices. The two 10-dimensional and the 16-dimensional ones. The first ones are projective (of defect 0), and hence do not contribute to the cohomology group $H^2(S_6, N)$. Then finally N(5) is the 16-dimensional irreducible S_6 -lattice. For the prime number 2 it is not difficult to see that the S_6 -lattice $N(2) = \mathbb{Z} \oplus ind_{A_6}^{S_6}\chi_3$, where χ_3 is 9 dimensional irreducible lattice of A_6 , can be used to define a 2-special element in $H^2(S_6, N(2))$. For a 3-special element let us consider a subgroup $B' \subset S_6$ of order 18 which is a normal subgroup of a Borel subgroup of $A_6 \simeq PSL(2, 9)$. From the definition $H^2(B', sgn)$ has an element which restricts non trivially to two conjugacy classes of order 3. Hence the second cohomology group $H^2(S_6, ind_{B'}^{S_6}sgn)$ contains a special 3-element. It is obvious that the coefficient lattice $N(3) = ind_{B'}^{S_6}sgn$ is multiplicity free. Moreover, from the above, the S_6 -lattice $N = N(2) \oplus N(3) \oplus N(5)$ is a translation subgroup of a Bieberbach group Γ with $\Gamma/N \simeq S_6$ and finite outer automorphism group.

We would like to thank Gerhard Hiss for cooperation in the proof of Theorem 1.

References

- G.Cliff, A.Weiss, Torsion free space groups and permutation lattices for finite groups, Contemporary Mathem., 93, 123-132, (1989)
- [2] G.Cliff, H.Zheng, Torsion-free Space Groups, 2-Cohomology, and Scott Modules, Journal of Algebra 180, 889-896, (1996)
- G.Hiss, A.Szczepański, Flat manifolds with only finitely many affinities, Bull.Polish A. Sc. (Mathematics), 45, 349-357, (1997)
- [4] G.Hiss, A.Szczepański, Holonomy groups of Bieberbach groups with finite outer automorphism groups, Arch. Math. 65, 8-14, (1995)
- [5] R.Oliver, Whitehead groups of finite groups, LMSLN 132, Cambridge Univ.Press 1988

- [6] J.Opgenorth, W.Plesken and T.Schulz, Crystallographic Algorithms and Tables, Acta Cryst. Sect. A, 54 (1998), 517-531
- [7] A.Szczepański, Holonomy groups of five dimensional Bieberbach groups, Manuscripta Math. 90, 383-389, (1996)
- [8] A.Szczepański, Outer automorphism groups of Bieberbach groups, Bull.Belg.Math.Soc. 3 (1996), 585-593

Institute of Mathematics University of Gdańsk ul.Wita Stwosza 57 80-952 Gdańsk Poland

E-mail: matas@paula.univ.gda.pl