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A crystallographic group Γ of dimension n is a discrete, cocompact sub-
group of isometries of euclidean space IRn. From Bieberbach’s theorems any
such group contains a free abelian subgroup ZZn of finite index. Moreover the
finite group G = Γ/ZZn acts faithfully by conjugation on ZZn. We shall call
the correspond representation G → GL(n,ZZ) the holonomy representation
of Γ and G a holonomy group of Γ. A Bieberbach group is a torsion free
crystallographic group.

We shall use the notations from [4] and [8]. It is well known (cf. [8]) that
the outer automorphism group of a crystallographic group Γ is finite if and
only if in the holonomy representation of Γ all IQ-irreducible components are
multiplicity free and IR-irreducible.

Definition 1 The finite group G is an (R1) R′
1-group if it is the holonomy

group of a (Bieberbach) crystallographic group with finite outer automorphism
group. We shall the class of (R1) R′

1-groups denote by (R1) R′
1.

Let us recall the definition of the Whitehead group (cf. [5]). We start from
a group ring ZZ[G]. Then consider the linear group GL(n,ZZ[G]). There is an

inclusionGL(n,ZZ[G]) intoGL(n+1,ZZ[G]) given by the map A→
(
A 0
0 1

)
.

Let GL(ZZ[G]) =
⋃∞

n=1GL(n,ZZ[G]) denote the direct limit of the above linear
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groups and [GL(ZZ[G]), GL(ZZ[G])] = E(G) denote its commutator subgroup.
Hence the quotient group K1(G) = GL(ZZ[G])/E(G) is an abelian group.
The Whitehead group of G is defined by setting

Wh(G) = K1(G)/〈±g : g ∈ G〉.

The following observation is obvious:

Proposition 1 Let G be a finite group. If the Whitehead group Wh(G) is
finite then G ∈ R′

1.

Proof: It is clear that there exists a crystallographic group with holonomy
group G and IQ-multiplicity free holonomy representation. Hence it is enough
to use the following formula which follows from Dirichlet’s unit theorem (see
[5] page 49, Theorem 2.6.). Let r = {number of IR-irreducible representations
of G} and q = {number of IQ-irreducible representations of G}, then

rank(Wh(G)) = r − q.
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Example 1 Let Sn, n ≥ 1 be a symmetric group on n elements. It is known
(see [5]) that Wh(Sn) = 1. Hence Sn ∈ R′

1.

Example 2 A5 ∈ R′
1 \ R1 but Wh(A5) is infinite (cf. [4] Proposition 6.1).

Moreover the finite group SL3(2).2 from example 2.5 of [3] belongs to R1 but
its Whitehead group is also infinite.

We expect that the Proposition is also true for Bieberbach groups. But to
prove it we need the following.

Conjecture Let G be a finite group. There exists a Bieberbach group with
holonomy group G and IQ-multiplicity free holonomy representation.

We know a proof of it for some abelian groups (cf. [4] Theorem 4.2),
p-groups (cf. [4] Proposition 3.3), dihedral groups (cf. [4] Proposition 5.1)
and simple groups (cf. [4] section 6). Moreover, Theorem 5 in [1] proved it in
a special case of the trivial representation. That means, for any finite group
G there exists a Bieberbach group with holonomy group G and holonomy
representation with the trivial IQ-component of maximal dimension one.

Hence we have.
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Corollary 1 Let G be a finite group and assume that the above conjecture
is true. If the group Wh(G) is finite then G ∈ R1.

2

Then (under assumption of the corollary) we have the following relations
between the classes of finite groups:

R′
1 R1 Wh(G) <∞

From example 1 we can expect that all symmetric groups are in R1. The
following theorem is the first step in that direction.

Theorem 1 Let n ≤ 6 then Sn ∈ R1.

Proof: For n = 2, 3 the result follows from [3]. Moreover, for n = 4 we refer
the reader to [7] page 386. Let us start a proof for n = 5.We have to construct
a special element α ∈ H2(S5,M), where M is a faithfully multiplicity free S5

- lattice. For the prime number 5, let us define an S5-lattice M(5) of rank 6
which corresponds to a 6-dimensional irreducible representation of S5. From
CARAT1 (see [6]) it is known that among lattices we can find one with
H2(S5,M(5)) = Z5. For the prime number 3, again from CARAT, there
exists an S5-lattice M(3) of rank 4, which corresponds to a 4-dimensional
irreducible representation of S5, with H2(S5,M(3)) = Z3. Finally, for the
prime number 2 we have two conjugacy classes in S5. For the first one, to
construct a special element, we use the A5-lattice L(2) from [2] page 894.
L(2) corresponds to a 5-dimensional irreducible representation of A5. For
the second one, it is enough to use the trivial S5-representation ZZ. Then
M(2) = ZZ ⊕ indS5

A5
L(2). Put M = M(2) ⊕ M(3) ⊕ M(5). By Frobenius

reciprocity lattice M is the multiplicity free. Hence from the above the group
H2(S5,M) has a special element which defines a Bieberbach group with S5

holonomy and finite outer automorphism group.

1We thank Tilman Schulz for help.
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For S6 we start with the prime number 5. Let N = indS6
S5
M(5), where

M(5) is defined as above. It is not difficult to see that as Z5[S6] lattice
N is a direct sum of three lattices. The two 10-dimensional and the 16-
dimensional ones. The first ones are projective (of defect 0), and hence
do not contribute to the cohomology group H2(S6, N). Then finally N(5)
is the 16-dimensional irreducible S6-lattice. For the prime number 2 it is
not difficult to see that the S6-lattice N(2) = ZZ ⊕ indS6

A6
χ3, where χ3 is

9 dimensional irreducible lattice of A6, can be used to define a 2-special
element in H2(S6, N(2)). For a 3-special element let us consider a subgroup
B′ ⊂ S6 of order 18 which is a normal subgroup of a Borel subgroup of A6 '
PSL(2, 9). From the definition H2(B′, sgn) has an element which restricts
non trivialy to two conjugacy classes of order 3. Hence the second cohomology
group H2(S6, ind

S6
B′sgn) contains a special 3-element. It is obvious that the

coefficient lattice N(3) = indS6
B′sgn is multiplicity free. Moreover, from the

above, the S6-lattice N = N(2) ⊕N(3) ⊕N(5) is a translation subgroup of
a Bieberbach group Γ with Γ/N ' S6 and finite outer automorphism group.
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