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Crystallographic group

Let us denote by E (n) the isometry group Isom(Rn) = O(n) nRn
of the n-dimensional Euclidean space.

Definition
A crystallographic group of dimension n is a cocompact and
discrete subgroup of E (n).

Example

1. Zn

2. If (B,
(
1/2
0

)
), (I ,

(
0
1

)
) ∈ E (2), where B =

(
1 0
0 −1

)
, then

the group Γ ⊂ E (2) generated by the above elements is a
crystallographic group of dimension 2.
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Bieberbach theorems

The first part of the eighteenth Hilbert problem was about the
description of discrete and cocompact groups of isometries of Rn.
The answer for the above Hilbert problem was given by the
German mathematician L. Bieberbach in 1913.

Theorem

(Bieberbach) 1. If Γ ⊂ E (n) is a crystallographic group then the
set of translations Γ ∩ (I × Rn) is a torsion free and finitely
generated abelian group of rank n, and is a maximal abelian and
normal subgroup of finite index.

2. For any natural number n, there are only a finite number of
isomorphism classes of crystallographic groups of dimension n.

3. Two crystallographic groups of dimension n are isomorphic if
and only if they are conjugate in the group A(n) = GL(n,R) nRn.
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Flat manifold I

Definition
A flat manifold Mn of dimension n is a compact connected
Riemannian manifold without boundary with sectional curvature
equal to zero.

Example

1. torus Rn/Zn ' S1 × S1 × · · · × S1︸ ︷︷ ︸
n

2. Rn/Γ, where Γ ⊂ E (n) is a torsion free crystallographic group

Remark

Any flat manifold Mn ' Rn/Γ, where Γ = π1(Mn). Γ is a torsion
free crystallographic group of rank n.
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Flat manifold II

From the theorems of Bieberbach the fundamental group
π1(Mn) = Γ (Bieberbach group) determines a short exact sequence

0→ Zn → Γ
p→ G → 0,

where Zn is a torsion free abelian group of rank n and G is a finite
group with is isomorphic to the holonomy group of Mn.

Collorary

Any flat manifold Mn ' Rn/Γ ' Rn/Zn/Γ/Zn ' T n/G .
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Clifford algebra

Definition
By a Clifford algebra over the real numbers we shall understand an
associative algebra with unity, generated by elements

{e1, e2, . . . , en}

and with relations
∀i , e2i = −1,

∀i , j , eiej = −ejei ,

where 1 ¬ i , j ¬ n. We define C0 = R.

It is easy to see that C1 = C and C2 = H, where H is the
four-dimensional quaternion algebra. Moreover, Rn ⊂ Cn and
dimRCn = 2n, where Rn is n-dimensional R-vector space with the
basis e1, e2, . . . , en.
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A group Spin I

We have the following homomorphisms (involutions) on Cn :

(i) ∗ : ei1ei2 . . . eik 7→ eik eik−1 . . . ei2ei1 ,

(ii) ′ : ei 7→ −ei ,

(iii) − : a 7→ (a′)∗, a ∈ Cn.

Suppose C 0n = {x ∈ Cn | x ′ = x}. It is easy to observe that

∀a, b ∈ Cn, (ab)∗ = b∗a∗.

Definition
We define subgroups of Cn,

Pin(n) = {x1x2 . . . xk | xi ∈ Sn−1 ⊂ Rn ⊂ Cn, i = 1, 2, . . . k},

Spin(n) = Pin(n) ∩ C 0n .
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Spin-structure I

Definition
A closed oriented manifold W n has a Spin-structure if and only if
the second Stiefel-Whitney class w2(W n) = 0.

Remark

A Spin-structure on the manifold W n is a lift of δ to BSpin(n),
giving a commutative diagram:

BSpin(n)

W n BSO(n).
��
� �
� �
� �
� �
� �

B(λn)

??��������������
//δ
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Spin-structure II

For flat manifolds we have.

Theorem

An oriented flat manifold Mn (a Biebarbach group π1(Mn) = Γ)
has a Spin-structure if and only if there exists a homomorphism

ε : Γ→ Spin(n)

such that
λn ◦ ε = p,

where λn : Spin(n)→ SO(n) is a covering map.
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Proof:

Given a homomorphism ε with p = λn ◦ ε one defines
B(ε) : BΓ→ B Spin(n) and one gets a spin structure as described
above. For the proof of other direction we shall use the remark.
Since H2(SO(n),Z2) = Z2, the second Stiefel-Whitney class
w2 ∈ H2(Mn,Z2) = H2(Γ,Z2) defines the upper row of the
following diagram.

.

1 Z2 Γ̄ Γ 1

1 Z2 Spin(n) SO(n) 1

//

� �
� �
� �
� �
� �
�

� �
� �
� �
� �
� �
�

//

��
� �
� �
� �
� �
� �
�

//

��
� �
� �
� �
� �
� �
�

p

//

// // //
λn //

Summing up, if Mn has a spin-structure then w2 = 0 and the first
row of the above diagram splits. Hence, there exists a
homomorphism ε : Γ→ Spin(n), such that λn ◦ ε = p.

Andrzej Szczepański University of Gdańsk Spin and SpinC structure on flat manifolds



Proof:

Given a homomorphism ε with p = λn ◦ ε one defines
B(ε) : BΓ→ B Spin(n) and one gets a spin structure as described
above. For the proof of other direction we shall use the remark.
Since H2(SO(n),Z2) = Z2, the second Stiefel-Whitney class
w2 ∈ H2(Mn,Z2) = H2(Γ,Z2) defines the upper row of the
following diagram.

.

1 Z2 Γ̄ Γ 1

1 Z2 Spin(n) SO(n) 1

//

� �
� �
� �
� �
� �
�

� �
� �
� �
� �
� �
�

//

��
� �
� �
� �
� �
� �
�

//

��
� �
� �
� �
� �
� �
�

p

//

// // //
λn //

Summing up, if Mn has a spin-structure then w2 = 0 and the first
row of the above diagram splits. Hence, there exists a
homomorphism ε : Γ→ Spin(n), such that λn ◦ ε = p.

Andrzej Szczepański University of Gdańsk Spin and SpinC structure on flat manifolds



Proof:

Given a homomorphism ε with p = λn ◦ ε one defines
B(ε) : BΓ→ B Spin(n) and one gets a spin structure as described
above. For the proof of other direction we shall use the remark.
Since H2(SO(n),Z2) = Z2, the second Stiefel-Whitney class
w2 ∈ H2(Mn,Z2) = H2(Γ,Z2) defines the upper row of the
following diagram.

.

1 Z2 Γ̄ Γ 1

1 Z2 Spin(n) SO(n) 1

//

� �
� �
� �
� �
� �
�

� �
� �
� �
� �
� �
�

//

��
� �
� �
� �
� �
� �
�

//

��
� �
� �
� �
� �
� �
�

p

//

// // //
λn //

Summing up, if Mn has a spin-structure then w2 = 0 and the first
row of the above diagram splits. Hence, there exists a
homomorphism ε : Γ→ Spin(n), such that λn ◦ ε = p.

Andrzej Szczepański University of Gdańsk Spin and SpinC structure on flat manifolds



Proof:

Given a homomorphism ε with p = λn ◦ ε one defines
B(ε) : BΓ→ B Spin(n) and one gets a spin structure as described
above. For the proof of other direction we shall use the remark.
Since H2(SO(n),Z2) = Z2, the second Stiefel-Whitney class
w2 ∈ H2(Mn,Z2) = H2(Γ,Z2) defines the upper row of the
following diagram.

.

1 Z2 Γ̄ Γ 1

1 Z2 Spin(n) SO(n) 1

//

� �
� �
� �
� �
� �
�

� �
� �
� �
� �
� �
�

//

��
� �
� �
� �
� �
� �
�

//

��
� �
� �
� �
� �
� �
�

p

//

// // //
λn //

Summing up, if Mn has a spin-structure then w2 = 0 and the first
row of the above diagram splits. Hence, there exists a
homomorphism ε : Γ→ Spin(n), such that λn ◦ ε = p.

Andrzej Szczepański University of Gdańsk Spin and SpinC structure on flat manifolds



Proof:

Given a homomorphism ε with p = λn ◦ ε one defines
B(ε) : BΓ→ B Spin(n) and one gets a spin structure as described
above. For the proof of other direction we shall use the remark.
Since H2(SO(n),Z2) = Z2, the second Stiefel-Whitney class
w2 ∈ H2(Mn,Z2) = H2(Γ,Z2) defines the upper row of the
following diagram.

.

1 Z2 Γ̄ Γ 1

1 Z2 Spin(n) SO(n) 1

//

� �
� �
� �
� �
� �
�

� �
� �
� �
� �
� �
�

//

��
� �
� �
� �
� �
� �
�

//

��
� �
� �
� �
� �
� �
�

p

//

// // //
λn //

Summing up, if Mn has a spin-structure then w2 = 0 and the first
row of the above diagram splits. Hence, there exists a
homomorphism ε : Γ→ Spin(n), such that λn ◦ ε = p.

Andrzej Szczepański University of Gdańsk Spin and SpinC structure on flat manifolds



Proof:

Given a homomorphism ε with p = λn ◦ ε one defines
B(ε) : BΓ→ B Spin(n) and one gets a spin structure as described
above. For the proof of other direction we shall use the remark.
Since H2(SO(n),Z2) = Z2, the second Stiefel-Whitney class
w2 ∈ H2(Mn,Z2) = H2(Γ,Z2) defines the upper row of the
following diagram.

.

1 Z2 Γ̄ Γ 1

1 Z2 Spin(n) SO(n) 1

//

� �
� �
� �
� �
� �
�

� �
� �
� �
� �
� �
�

//

��
� �
� �
� �
� �
� �
�

//

��
� �
� �
� �
� �
� �
�

p

//

// // //
λn //

Summing up, if Mn has a spin-structure then w2 = 0 and the first
row of the above diagram splits. Hence, there exists a
homomorphism ε : Γ→ Spin(n), such that λn ◦ ε = p.

Andrzej Szczepański University of Gdańsk Spin and SpinC structure on flat manifolds



Proof:

Given a homomorphism ε with p = λn ◦ ε one defines
B(ε) : BΓ→ B Spin(n) and one gets a spin structure as described
above. For the proof of other direction we shall use the remark.
Since H2(SO(n),Z2) = Z2, the second Stiefel-Whitney class
w2 ∈ H2(Mn,Z2) = H2(Γ,Z2) defines the upper row of the
following diagram.

.

1 Z2 Γ̄ Γ 1

1 Z2 Spin(n) SO(n) 1

//

� �
� �
� �
� �
� �
�

� �
� �
� �
� �
� �
�

//

��
� �
� �
� �
� �
� �
�

//

��
� �
� �
� �
� �
� �
�

p

//

// // //
λn //

Summing up, if Mn has a spin-structure then w2 = 0 and the first
row of the above diagram splits. Hence, there exists a
homomorphism ε : Γ→ Spin(n), such that λn ◦ ε = p.

Andrzej Szczepański University of Gdańsk Spin and SpinC structure on flat manifolds



Proof:

Given a homomorphism ε with p = λn ◦ ε one defines
B(ε) : BΓ→ B Spin(n) and one gets a spin structure as described
above. For the proof of other direction we shall use the remark.
Since H2(SO(n),Z2) = Z2, the second Stiefel-Whitney class
w2 ∈ H2(Mn,Z2) = H2(Γ,Z2) defines the upper row of the
following diagram.

.

1 Z2 Γ̄ Γ 1

1 Z2 Spin(n) SO(n) 1

//

� �
� �
� �
� �
� �
�

� �
� �
� �
� �
� �
�

//

��
� �
� �
� �
� �
� �
�

//

��
� �
� �
� �
� �
� �
�

p

//

// // //
λn //

Summing up, if Mn has a spin-structure then w2 = 0 and the first
row of the above diagram splits. Hence, there exists a
homomorphism ε : Γ→ Spin(n), such that λn ◦ ε = p.

Andrzej Szczepański University of Gdańsk Spin and SpinC structure on flat manifolds



Group SpinC

The group SpinC(n) is given by

SpinC(n) = (Spin(n)× S1)/{1,−1}

where Spin(n) ∩ S1 = {1,−1}. Moreover, there is a
homomorphism of groups

λ̄n : SpinC(n)→ SO(n)

given by
λ̄n[g , z ] = λn(g),

where g ∈ Spin(n), z ∈ S1 and λn : Spin(n)→ SO(n) is the
universal covering.
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Group SpinC

Now, we recall some facts about the group SpinC. We start with
homomorphisms

i : Spin(n)→ SpinC(n) is the natural inclusion i(g) = [g , 1].

j : S1 → SpinC(n) is the natural inclusion, j(z) = [1, z ].

l : SpinC(n)→ S1 is given by l [g , z ] = z2.

p : SpinC(n)→ SO(n)× S1 is given by
p([g , z ]) = (λn(g), z2). Hence p = λn × l .
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SpinC-structure

The manifold W n has a SpinC-structure if and only if there exists
w̃2 ∈ H2(W n,Z) such that red(w̃2) = w2, where
w2 ∈ H2(W n,Z2) and red : H2(W n,Z)→ H2(W n,Z2) is a
homomorphism induced by the natural homomorphism Z→ Z2.
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SpinC - structure

Definition

A SpinC-structure on the manifold W n is a lift of δ to BSpinC(n),
giving a commutative diagram:

BSpinC(n)

W n BSO(n).
��
� �
� �
� �
� �
�

B(λ̄n)

??��������������
//δ
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Theorem 1

Theorem

Let Mn be a flat oriented manifold with H2(Mn,R) = 0. Mn has a
SpinC-structure if and only if there exists a homomorphism
ε : Γ→ SpinC(n) such that

λ̄n ◦ ε = p.
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Proof

Let us assume that there exists a homomorphism ε : Γ→ SpinC(n)
such that λ̄nε = p. Then, it defines a map
B(ε) : BΓ = Mn → BSpinC(n) such that B(λ̄n)B(ε) = B(p) up to
homotopy.
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Proof

To go the other way, assume Mn = BΓ admits a SpinC(n)
structure. We have a commutative diagram

0 Z2 Γ0 Γ 0

0 S1 Γ1 Γ 0

0 Z2 Spin(n) SO(n) 0

0 S1 SpinC(n) SO(n) 0
j λ̄n

r

r i

p

λn

where Γ0 is defined by the second Stiefel-Whitney class
w2 ∈ H2(Γ,Z2) and Γ1 is defined by the element
r∗(w2) ∈ H2(Γ, S1). Here r : Z2 → S1 is a group monomorphism.
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Proof

Let p2 : H2(SO(n),K )→ H2(Γ,K ) be a homomorphism induced
by the holonomy homomorphism p, for K = Z2,S1. From
definition there exists an element x2 ∈ H2(SO(n),Z2) = Z2 such
that p2(x2) = w2 and p2(r∗(x2)) = r∗(p2(x2)) = r∗(w2). Moreover
we have two infinite sequences of cohomology which are induced
by the following commutative diagram of groups

1 Z Z Z2 1

1 Z R S1 1

// //2

��

//

��

r

//

// // // //
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Proof

. . . H2(Γ,Z) H2(Γ,Z) H2(Γ,Z2) H3(Γ,Z) . . .

. . . H2(Γ,Z) H2(Γ,R) H2(Γ,S1) H3(Γ,Z) . . .

// //

��

//red

��r∗

// //

// // // // //

We have red(w̃2) = w2 and since H2(Γ,R) = 0, r∗(w2) = 0. It
follows that the row

0→ S1 → Γ1 → Γ→ 0

of the above ”big” diagram splits. Hence there exists a
homomorphism ε : Γ→ SpinC(n) which satisfies λ̄n ◦ ε = p. This
proves theorem.
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Corollary

As an immediate corollary we have

Collorary

Let Mn be an oriented flat manifold with fundamental group Γ. If
there exists a homomorphism ε : Γ→ SpinC(n) such that

λ̄n ◦ ε = p.

then Mn has a SpinC-structure.
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Examples

1 Because of the inclusion i : Spin(n)→ SpinC(n) each spin
structure on Mn induces a SpinC structure.

2 Any oriented compact manifold of dimension up to four has a
SpinC structure (see R. E. Gompf, ”SpinC-structures and
homotopy equivalences”)

3 From the Example 2 and B.Putrycz, A. Szczepański
”Existence of spin structure on flat four-manifolds” we have
that there exist three four dimensional flat manifolds without
Spin structure but with SpinC structure.

4 There exists a compact 5-dimensional manifold Q without
SpinC-structure with the fundamental group π1(Q) = 1. (see
T. Friedrich ”Dirac operators in Riemannian geometry”)
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HW-manifold

Definition

By Hantzsche-Wendt manifold (HW-manifold) Mn we shall
understand any oriented flat manifold of dimension n with a
holonomy group (Z2)n−1
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Examples in five-dimension

Proposition

Two HW-manifolds of dimension five have not the SpinC-structure.
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Theorem2

Definition
The HW-manifold Mn of dimension n, is cyclic if and only if
π1(Mn) is generated by the following elements

βi = (Bi , (0, 0, 0, . . . , 0, 1/2︸︷︷︸
i

, 1/2, 0, . . . , 0)), 1 ¬ i ¬ n − 1,

βn = (β1β2 . . . βn−1)
−1 = (Bn, (1/2, 0, . . . , 0,−1/2)).

We have

Theorem

Cyclic HW-manifolds have not the SpinC-structure.
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Theorem2

Definition
The HW-manifold Mn of dimension n, is cyclic if and only if
π1(Mn) is generated by the following elements

βi = (Bi , (0, 0, 0, . . . , 0, 1/2︸︷︷︸
i

, 1/2, 0, . . . , 0)), 1 ¬ i ¬ n − 1,

βn = (β1β2 . . . βn−1)
−1 = (Bn, (1/2, 0, . . . , 0,−1/2)).

We have

Theorem

Cyclic HW-manifolds have not the SpinC-structure.
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