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Institute of Mathematics, University of Gdańsk, ul. Wita Stwosza 57, 80-952
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Abstract

Let � be a crystallographic group of dimension n, i.e. a discrete, cocompact subgroup of
Isom (Rn) = O(n) � Rn . For any n � 2, we construct a crystallographic group with a trivial
center and trivial outer automorphism group.

1. Introduction

Let � be a discrete, cocompact subgroup of O(n)�Rn = Isom (Rn) i.e. a crystallographic
group. If � is a torsion free group, then M = Rn/� is a flat manifold (that is a compact
Riemannian manifold without boundary with the sectional curvature Kx = 0 for any x ∈
M). Moreover π1(M) = �.

In 2003 R. Waldmüller found a torsion free crystallographic group � ⊂ O(141) � R141

(a flat manifold M = R141/�) with the following properties:

Z(�) = {e} (1·1a)

and
Out (�) = {e}, (1·1b)

where Z(�) is the center of the group �, and Out (�) = Aut (�)/ Inn (�) denotes the group
of outer automorphisms of � (see [7, appendix C] and [8]). Equivalently, (1·1a ) means that
the abelianization of � is finite (the first Betti number of M is equal to zero). Moreover, if
both conditions (1·1a ) and (1·1b ) are satisfied, then the group of affine diffeomorphisms
Aff (M) of the manifold M is trivial (see [2] and [7]).

We do not know if there exist such flat manifolds in dimensions less than 141. For example
(see [4]), in dimensions up to six such Bieberbach groups do not exist. In this paper we are
interested in the existence of not necessarily torsion free crystallographic groups with the
above properties. We shall prove that for any n � 2 there exists a crystallographic group of
dimension n which satisfies conditions (1·1a–b).

The main motivation for us is the paper by M. Belolipetsky and A. Lubotzky, [1]. For any
n � 3 they found an infinite family of hyperbolic compact manifolds of dimension n with
the following property: for every manifold M from this family, Out (π1(M)) = {e}. Since the
center of the fundamental group of a compact hyperbolic manifold is trivial, the above result
gives us an infinite family of groups which satisfy conditions (1·1a–b). The construction of

† Both authors are supported by the Polish National Science Center grant 2013/09/B/ST1/04125.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004117000251
Downloaded from https://www.cambridge.org/core. University of Gdansk, on 30 May 2018 at 10:15:54, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004117000251
https://www.cambridge.org/core


364 RAFAŁ LUTOWSKI AND ANDRZEJ SZCZEPAŃSKI

the above hyperbolic examples uses the properties of simple Lie groups of R-rank one and,
in particular, follows from the existence of non arithmetic lattices.

In our construction the most important are Bieberbach theorems and specific properties
of crystallographic groups.

2. Crystallographic groups with trivial center and outer automorphism group

In this part we shall prove our main result. Let � be a crystallographic group. From
Bieberbach’s theorems (see [7, chapter 2]) we have a short exact sequence of groups

0 −→ Zn −→ �
p−→ G −→ 0,

where Zn is the maximal abelian normal subgroup of � and G is a finite group. Moreover,
let h� : G → GL (n, Z) be the integral holonomy representation, given by the formula

∀g∈G h�(g)(e) = ḡeḡ−1,

where ḡ ∈ �, p(ḡ) = g and e ∈ Zn . Let

N := NGL (n,Z)(h�(G)) = {X ∈ GL (n, Z) | ∀ f ∈h�(G) X f X−1 ∈ h�(G)}
be the normaliser of h�(G) in GL (n, Z). In the case when Z(�) = {e}, we have the follow-
ing commutative diagram [7, pp. 65–69] with exact rows and columns:

0 0 0

0 Zn � G 0

0 Z 1(G, Zn) Aut (�) Nα 0

0 H 1(G, Zn) Out (�) Nα/G 0

0 0 0

�� �� ��
��

��

��

��

��

��

h�

��

��

��

��

��

��F

��

��

��

��

��

��

��

��

��

(2·1)

where Z 1(G, Zn) is the group of 1-cocycles. Moreover

Nα = {n ∈ N | n � α = α}
and α ∈ H 2(G, Zn) is the cohomology class of the first row of the diagram. The action
� : N × H 2(G, Zn) → H 2(G, Zn) is defined by the formula

n � [a] = [n � a],
where n ∈ N , a ∈ Z 2(G, Zn), [a] is the cohomology class of a and

∀g1,g2∈G n � a(g1, g2) = na(n−1g1n, n−1g2n). (2·2)

We have the following proposition:
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PROPOSITION 2·1. Aut (�) is a crystallographic group if and only if Out (�) is a finite
group.

Proof. We start with an observation that Z 1(G, Zn) is a free abelian group of rank n
which is a faithful Nα module. First, assume that Aut (�) is a crystallographic group with the
maximal abelian subgroup M . From [2, proposition I·4·1], M is the unique normal maximal
abelian subgroup of Aut (�). Hence, M = Z 1(G, Zn), and Out (�) is a finite group. The
reverse implication is obvious. This completes the proof of the proposition.

Let us formulate our main result.

THEOREM 2·2. For every n � 2 there exists a crystallographic group � of dimension n
with Z(�) = Out (�) = {e}.

We shall need few lemmas and examples.

LEMMA 2·3. Let G, H be finite groups and H ⊂ G ⊂ GL (n, Z). If the group
NGL (n,Z)(H) is finite, then NGL (n,Z)(G) is finite.

Proof. From the assumption, Aut (H) and Aut (G) are finite. Moreover, we have mono-
morphisms:

NGL (n,Z)(H)/CGL (n,Z)(H)
φ̄−→ Aut (H)

and

NGL (n,Z)(G)/CGL (n,Z)(G)
φ̄−→ Aut (G),

where φ̄ is induced by φ(s)(g) = sgs−1, g ∈ G, s ∈ GL (n, Z). Since CGL (n,Z)(G) ⊂
CGL (n,Z)(H), our lemma is proved.

Using the above lemma for the groups h�(G) ⊂ Nα, Proposition 2·1 and [6, theorem 1]
we get

COROLLARY 2·4. If | Out (�) |< ∞, then | Out (Aut (�)) |< ∞.

LEMMA 2·5. Assume Z(�) = {e}, then:
(i) H 1(G, Zn) � (Qn/Zn)G = H 0(G, Qn/Zn);

(ii) A0(�) := {m ∈ Qn | ∀g∈G gm − m ∈ Zn} � Z 1(G, Zn) as Nα modules;
(iii) A(�) := NAff (Rn)(�) = {a ∈ Aff (Rn) | ∀γ∈� aγ a−1 ∈ �} � Aut (�).

Proof. To the short exact sequence of G-modules

0 −→ Zn −→ Qn −→ Qn/Zn −→ 0

we have the following long exact sequence of cohomology groups attached:

0−→H 0(G, Zn)−→H 0(G, Qn)−→H 0(G, Qn/Zn)−→H 1(G, Zn)−→H 1(G, Qn)−→· · ·
Since H 1(G, Qn) = 0 and by assumption Z(�) � (Zn)G = H 0(G, Zn) = 0 we also get
H 0(G, Qn) = (Qn)G = 0 and part (i) follows.

Now consider a homomorphism � : A0(�) → Z 1(G, Zn) of Nα modules given by the
formula

∀m∈A0(�)∀g∈G�(m)(g) = gm − m.

Note that the action ’∗’ defined by equation (2·2) can be extended to any cocycle group (see
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[2, page 168]) and this is the Nα module structure on Z 1(G, Zn) that we use. Recall that
H 1(G, Qn) = 0, hence every cocycle from the group Z 1(G, Qn) is a coboundary and � is
onto. Easy calculation shows that

ker � = (Qn)G = 0

and by the isomorphism theorem we prove part (ii) of the lemma.
By [7, theorem 5·2] we have the following short exact sequence

0 −→ (Rn)G −→ A(�) −→ Aut (�) −→ 1.

Using again the triviality of the center of � we get that (Rn)G = 0 and the groups A(�) and
Aut (�) are isomorphic.

We get the following modification of the diagram (2·1).

0 0 0

0 Zn � G 0

0 A0(�) A(�) Nα 0

0 (Qn/Zn)G Out (�) Nα/G 0

0 0 0

�� �� ��
��

��

��

��

��

��

h�

��

��

��

��

��

��F

��

��

��

��

��

��

��

��

��

. (2·3)

Let � be a crystallographic group of rank n with trivial center and holonomy group G.
Moreover, assume that the group H 1(G, Zn) = 0, and the group Out (�) is finite. Induct-
ively, put �0 = � and �i+1 = A(�i), for i � 0.

LEMMA 2·6. ∃N such that �N+1 = �N .

Proof. We start from observations that for i > 0, �i is a crystallographic group, Z(�i ) =
{e} and M0 = Mi , where Mi = A0(�i−1) ⊂ �i is the maximal abelian normal subgroup
(a subgroup of translations). Let Gi = �i/Mi . From definition we can consider (Gi) as
a nondecreasing sequence of finite subgroups of GL (n, Z). From Bieberbach theorems [7,
chapter 2] and from diagrams (2·1) and (2·3), there is only a finite number of possibilities
for Gi . Hence ∃N ∈ N such that ∀i>N Gi = G N . This finishes the proof.

Example 2·1. Let �1 = G1 � Z2 be the crystallographic group of dimension 2 with
holonomy group G1 = D12, where

D12 = gen

{[
0 1

−1 1

]
,

[
0 1
1 0

]}

is the dihedral group of order 12. Moreover, let �2 = G2 � Z3 be the crystallographic group
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of dimension 3, with holonomy group G2 = S4 × Z2 generated by matrices

B =
⎡
⎣1 1 0

0 −1 0
0 1 1

⎤
⎦ , C =

⎡
⎣ 0 0 1

0 −1 −1
−1 0 1

⎤
⎦ .

Here S4 denotes the symmetric group on four letters.

LEMMA 2·7. For i = 1, 2 �i is centerless and we have

NGL (ni ,Z)(Gi) = Gi

and

H 1(Gi , Zni ) = 0,

where ni is the rank of �i .

Proof. First of all note that the representations of both groups defined by the identity
maps are absolutely irreducible (and non-trivial). Hence the center

Z(�i) � (Zni )Gi = 0

is trivial and using Schur’s Lemma [5, proposition 4, page 13] one gets

CGL (ni ,Z)(Gi) = {±Ini } ⊂ Gi ,

where Ini id the identity matrix of degree ni , for i = 1, 2.
Now Out (Gi) is a cyclic group of order two for i = 1, 2. Consider non-inner automorph-

ism of G1 defined as follows[
0 1

−1 1

]
�−→

[
0 1

−1 1

]
,

[
0 1
1 0

]
�−→ −

[
0 1
1 0

]
.

An easy calculation shows that this automorphism cannot be realized as a conjugation by an
element of GL (2, Z).

As for the group G2, if you identify it with the group generated by the cycles
(1 2), (1 2 3 4) and (5, 6) you’ll get

B ←→ (1, 2) and C ←→ (2, 3, 4)(5, 6).

Consider an automorphism of G2 which corresponds to the automorphism of the permuta-
tion group defined by

(1 2) �−→ (1 2)(5 6), (1 2 3 4) �−→ (1 2 3 4)(5, 6), (5, 6) �−→ (5, 6).

In that case B is mapped to −B and hence traces of those matrices differ, the automorphism
cannot be realized by a conjugation inside GL (3, Z).

The cohomology groups can be calculated using Lemma 2·5.

COROLLARY 2·8. A(�i ) = �i and Out (�i) = {e} for i = 1, 2.

Now we are ready to finish the proof of the main theorem.

Proof of Theorem 2·2. The cases n = 2, 3 are done by Corollary 2·8. Assume n � 4.
Let n = 2k + 3i , where i ∈ {0, 1}. Put �′ = �k

1 × �i
2. Then �′ is centerless and since in
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[3, theorem 3·4] the torsion-free assumption is not really necessary, the bottom exact se-
quence of the diagram (2·3) looks as follows

0 −→ 0 −→ Out (�′) −→ Sk −→ 0.

Hence, �′ satisfies the assumption of Lemma 2·6 and the sequence �0 = �′, �i+1 = A(�i)

stabilizes, i.e., ∃N such that ∀i�N �i = �N . Moreover, Out (�N ) = {e} and Z(�N ) = {e}.
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