Hantzsche-Wendt manifolds

Andrzej Szczepański

University of Gdańsk, Poland
Moscow, September 16, 2016

Definitions and examples

Some properties

Homology

Homology over \mathbb{F}_{2}

Spin structure

Complex GHW

Crystallographic groups

Let \mathbb{R}^{n} be n-dimensional Euclidean space, with isometry group $E(n)=O(n) \ltimes \mathbb{R}^{n}$.
Definition
Γ is a crystallographic group of rank n iff it is a discrete and cocompact subgroup of $E(n)$.
A Bieberbach group is a torsion free crystallographic group.

Basic properties

Theorem
(Bieberbach, 1910)

- If Γ is a crystallographic group of dimension n, then the set of all translations of Γ is a maximal abelian subgroup of a finite index.
- There is only a finite number of isomorphic classes of crystallographic groups of dimension n.
- Two crystallographic groups of dimension n are isomorphic if and only if there are conjugate in the group affine transformations $A(n)=G L(n, \mathbb{R}) \ltimes \mathbb{R}^{n}$.

Pure abstract point of view

Theorem
(Zassenhaus, 1947) A group Γ is a crystallographic group of dimension n if and only if, it has a normal maximal abelian subgroup \mathbb{Z}^{n} of a finite index.

Holonomy representation

Definition

Let Γ be a crystallographic group of dimension n with translations subgroup $A \simeq \mathbb{Z}^{n}$. A finite group $\Gamma / A=G$ we shall call a holonomy group of Γ.

Let $(A, a) \in E(n)$ and $x \in \mathbb{R}^{n}$. Γ acts on \mathbb{R}^{n} in the following way:

$$
(A, a)(x)=A x+a
$$

Definition

Let Γ be n-dimensional Bieberbach group. We have the following short exact sequence of groups.

$$
0 \rightarrow \mathbb{Z}^{n} \rightarrow \Gamma \xrightarrow{p} \Gamma / \mathbb{Z}^{n}=H \rightarrow 0 .
$$

Let us define a homomorphism $h_{\Gamma}: H \rightarrow G L(n, \mathbb{Z})$. Put

$$
\forall h \in H, h_{\Gamma}(h)\left(e_{i}\right)=\bar{h}^{-1} e_{i} \bar{h},
$$

where $p(\bar{h})=h$ and $e_{i} \in \mathbb{Z}^{n}$ is a standard basis. h_{Γ} is called a holonomy representation of a group Γ.

Flat manifold

Let $\Gamma \subset E(n)$ be a torsion free crystallographic group. Since Γ is cocompact and discrete subgroup, then the orbit space \mathbb{R}^{n} / Γ is a manifold. If Γ is not torsion free then the orbit space \mathbb{R}^{n} / Γ is an orbifold.

Definition
The above manifolds (orbifolds) we shall call "flat".
From elementary covering theory any compact Riemannian manifold (orbifold) with sectional curvature equal to zero is flat.

Example

Flat surfaces:

- torus $S^{1} \times S^{1}$,
- Klein bottle $S^{1} \times S^{1} / \mathbb{Z}_{2}$

We shall see that many properties of the Bieberbach Groups correspond to properties of flat manifolds.

Definition

Definition

Any flat manifold of dimension n with holonomy group $\left(\mathbb{Z}_{2}\right)^{n-1}$ we shall call Generalized Hantzsche-Wendt (GHW for short) manifold. An oriented GHW we shall call Hantzsche-Wendt manifold (HW for short).
A fundamental group of GHW (HW) flat manifolds we shall call GHW (HW) Bieberbach group.
Exercise: Let M^{n} be a flat Hantzsche-Wendt manifold of dimension n. Shaw that n is an odd natural number.

Example

Klein Bottle is GHW, 3-dimensional flat oriented manifold M^{3} with non-cyclic holonomy $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is HW manifold. J.Conway called it "didicosm".
It can be proved that $\pi_{1}\left(M^{3}\right)$ is a Fibonacci group $F(2,6)$, where

$$
F(2,6)=\left\{x_{1}, \ldots, x_{6} \mid x_{1} x_{2}=x_{3}, x_{2} x_{3}=x_{4}, \ldots, x_{6} x_{1}=x_{2}\right\}
$$

It is clear, that any n-dimensional HW group is related to an element of the second cohomology group $H^{2}\left(\mathbb{Z}_{2}^{n-1}, \mathbb{Z}^{n}\right)$. Hence the number of non-isomorphic GHW groups of given dimension growth exponentialy.

Theorem

(J.P.Rossetti, A.S. 2005) Let Γ be a n-dimensional GHW group. Then

$$
h_{\Gamma}\left(\left(\mathbb{Z}_{2}\right)^{n-1}\right) \subset G L(n, \mathbb{Z})
$$

is a set of the diagonal matrices with ± 1 on diagonal.
The proof is by induction and used the following lemmas.
Lemma 1 Let $\rho: \mathbb{Z}_{2}^{n-1} \rightarrow G L(n, \mathbb{Z})$ be a diagonal faithful integral representation with -Id $\notin \operatorname{Im}(\rho)$. Then there are $g \in \mathbb{Z}_{2}^{n-1}$ and $1 \leq i \leq n$ such that $\rho(g)=\operatorname{diag}[-1,-1, \ldots,-1, \underbrace{1}_{i},-1, \ldots,-1]$.
Moreover, if $\operatorname{Im}(\rho) \not \subset S L(n, \mathbb{Z})$, then there are $g \in \mathbb{Z}_{2}^{n-1}$ and $1 \leq i \leq n$ such that $\rho(g)=\operatorname{diag}[1, \ldots, 1, \underbrace{-1}_{i}, 1, \ldots, 1]$.

Lemma 2 Let Γ be a n-rank Bieberbach group with translation lattice Λ. Suppose that $(B, b) \in \Gamma$ and B has eigenvalues 1 and -1 , with corresponding eigenspaces V^{+}and V^{-}of dimension 1 and $n-1$ respectively.
Then $\Lambda=\left(\Lambda \cap V^{+}\right) \oplus\left(\Lambda \cap V^{-}\right)$, and the orthogonal projection of b onto V^{+}lies in $1 / 2\left(\Lambda \cap V^{+}\right) \backslash\left(\Lambda \cap V^{+}\right)$.

Rational homology sphere

Theorem
If $M=\mathbb{R}^{n} / \Gamma$, where Γ is $H W$, then M is a rational homology sphere.
We calculate rational homology of M from the following formula

$$
H_{i}(M, \mathbb{Q})=\left(\Lambda^{i}\left(\mathbb{Z}^{n}\right)\right)^{\mathbb{Z}_{2}^{n-1}}
$$

From definition of the holonomy representation they are zero for all $i \neq 0, n$. Since HW is connected and oriented, then M is a rational homology sphere.

Abelianization

Theorem
(B.Putrycz, 2006) Let M be any HW flat manifold of dimension $n>3$, then

$$
H_{1}(M, \mathbb{Z})=\left(\mathbb{Z}_{2}\right)^{n-1} .
$$

In the proof are used methods proposed by R. Miatello and J. P. Rossetti.

Homology over \mathbb{Z}

In 2008 K. Dekimpe and N. Petrosyan calculate, by constructing a free resolution, homology of low dimensional oriented GHW groups/manifolds. In dimension five there are this same (for 2 groups). But in dimension 7 there are four classes on 62 groups. They find an algorithm.

Let us present the table for dimension five (2 groups):

$H_{k}(\Gamma)$	$\mathrm{k}=0$	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$	$\mathrm{k}=5$
	\mathbb{Z}	\mathbb{Z}_{2}^{4}	\mathbb{Z}_{2}^{2}	\mathbb{Z}_{2}^{4}	0	\mathbb{Z}

for dimension seven (62 groups):

$H_{k}(\Gamma)$	$\mathrm{k}=0$	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$	$\mathrm{k}=5$	$\mathrm{k}=6$	$\mathrm{k}=7$
I	\mathbb{Z}	\mathbb{Z}_{2}^{6}	\mathbb{Z}_{2}^{8}	\mathbb{Z}_{4}^{6}	\mathbb{Z}_{2}^{8}	\mathbb{Z}_{2}^{6}	0	\mathbb{Z}
II	\mathbb{Z}	\mathbb{Z}_{2}^{6}	\mathbb{Z}_{2}^{9}	$\mathbb{Z}_{2}^{10} \oplus \mathbb{Z}_{4}^{2}$	\mathbb{Z}_{2}^{9}	\mathbb{Z}_{2}^{6}	0	\mathbb{Z}
III	\mathbb{Z}	\mathbb{Z}_{2}^{6}	\mathbb{Z}_{2}^{8}	$\mathbb{Z}_{2}^{4} \oplus \mathbb{Z}_{4}^{4}$	\mathbb{Z}_{2}^{8}	\mathbb{Z}_{2}^{6}	0	\mathbb{Z}
IV	\mathbb{Z}	\mathbb{Z}_{2}^{6}	\mathbb{Z}_{2}^{8}	$\mathbb{Z}_{2}^{8} \oplus \mathbb{Z}_{4}^{2}$	\mathbb{Z}_{2}^{8}	\mathbb{Z}_{2}^{6}	0	\mathbb{Z}

Cohomological rigidity

Definition
Two flat manifolds M_{1} and M_{2} are cohomological rigid iff a homeomorphism between M_{1} and M_{2} is equivalent to an isomorphism of graded rings $H^{*}\left(M_{1} . \mathbb{F}_{2}\right)$ and $H^{*}\left(M_{2}, \mathbb{F}_{2}\right)$.

Theorem
(J. Popko, A.S. 2013) Hantzsche-Wendt manifolds are cohomological rigid.

Idea of proof:

We apply the Lyndon-Hochschild-Serre spectral sequence $\left\{E_{r}^{p, q}, d_{r}\right\}$ of the covering $T^{n} \rightarrow T^{n} /\left(\mathbb{Z}_{2}\right)^{n-1}$ with \mathbb{F}_{2} coefficients. Since a holonomy representation h_{Γ} is diagonal $E_{2}^{p, q}=H^{p}\left(\left(\mathbb{Z}_{2}\right)^{n-1}\right) \otimes H^{q}\left(\mathbb{Z}^{n}\right)$. We only use the multiplicative structure of the first and second cohomology group. We have an exact sequence

$$
H^{1}\left(\mathbb{Z}^{n}, \mathbb{F}_{2}\right) \xrightarrow{d_{2}} H^{2}\left(\left(\mathbb{Z}_{2}\right)^{n-1}, \mathbb{F}_{2}\right) \xrightarrow{p^{*}} H^{2}\left(\Gamma, \mathbb{F}_{2}\right)
$$

where d_{2} is a transgression, p^{*} is induced by the homomorphism $p: \Gamma \rightarrow \mathbb{Z}_{2}^{n-1}$ and Γ is a HW-group.

Idea of proof:

A \mathbb{F}_{2} - rank of

$$
\operatorname{lm}\left(d_{2}\right) \subset H^{2}\left(\left(\mathbb{Z}_{2}\right)^{n-1}, \mathbb{F}_{2}\right) \subset H^{*}\left(\left(\mathbb{Z}_{2}\right)^{n-1}, \mathbb{F}_{2}\right) \simeq \mathbb{F}_{2}\left[x_{1}, x_{2}, \ldots, x_{n-1}\right]
$$

is equal to n.
Let $T_{i}=d_{2}\left(t_{i}\right)$, where $t_{1}, t_{2}, \ldots, t_{n}$ is the standard \mathbb{F}_{2} - basis of $H^{1}\left(\mathbb{Z}^{n}, \mathbb{F}_{2}\right)$ for $i=1,2, \ldots, n$.
Moreover, let
$D=\left\{y \in \operatorname{Im}\left(d_{2}\right) \mid y \in\right.$ is a product of two polynomials of degree 1$\}$.

Idea of proof:

Main Lemma. The set D define a HW-manifold in an unique way up to affine equivalence.

Remark. 1. $D=\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ or
2. we can rediscover the set of generators $T_{1}, T_{2}, \ldots, T_{n}$ from the set D.
(The set D has less than $n+2$ elements.)

Definition

A Bieberbach group $\Gamma \subset S O(n) \ltimes \mathbb{R}^{n}$ has a spin structure if and only if there exists a homomorphism $\epsilon: \Gamma \rightarrow \operatorname{Spin}(n)$ such that $\mathrm{pr}_{1}=\lambda_{n} \circ \epsilon$. Here pr_{1} is a projection on the first component, and $\lambda_{n}: \operatorname{Spin}(n) \rightarrow S O(n)$ is a universal covering.
It is well known that $H^{2}\left(S O(n), \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$. We define a group $\operatorname{Spin}(n)$ as a middle group in a non-trivial short exact sequence

$$
0 \rightarrow \mathbb{Z}_{2} \rightarrow \operatorname{Spin}(n) \xrightarrow{\lambda_{n}} S O(n) \rightarrow 0
$$

More about Spin

Let C_{n} be Clifford's algebra over the real numbers. By definition it is an associative algebra with unity, generated by elements

$$
\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}
$$

and with relations

$$
\begin{gathered}
\forall i, e_{i}^{2}=-1 \\
\forall i, j, e_{i} e_{j}=-e_{j} e_{i}
\end{gathered}
$$

where $1 \leq i, j \leq n$. We define $C_{0}=\mathbb{R}$. It is easy to see that $C_{1}=\mathbb{C}$ and $C_{2}=\mathbb{H}$, where \mathbb{H} is the four-dimensional quaternion algebra. Moreover, $\mathbb{R}^{n} \subset C_{n}$ and $\operatorname{dim}_{\mathbb{R}} C_{n}=2^{n}$, where \mathbb{R}^{n} is n-dimensional \mathbb{R}-vector space with the basis $e_{1}, e_{2}, \ldots, e_{n}$.

We have the following homomorphisms (involutions) on C_{n} :
(i) ${ }^{*}: e_{i_{1}} e_{i_{2}} \ldots e_{i_{k}} \mapsto e_{i_{k}} e_{i_{k-1}} \ldots e_{i_{2}} e_{i_{1}}$,
(ii) ${ }^{\prime}: e_{i} \mapsto-e_{i}$,
(iii) ${ }^{-}: a \mapsto\left(a^{\prime}\right)^{*}, a \in C_{n}$.

Suppose $C_{n}^{0}=\left\{x \in C_{n} \mid x^{\prime}=x\right\}$. It is easy to observe that

$$
\forall a, b \in C_{n},(a b)^{*}=b^{*} a^{*}
$$

We define subgroups of C_{n},

$$
\operatorname{Pin}(n)=\left\{x_{1} x_{2} \ldots x_{k} \mid x_{i} \in S^{n-1} \subset \mathbb{R}^{n} \subset C_{n}, i=1,2, \ldots k\right\}
$$

$$
\operatorname{Spin}(n)=\operatorname{Pin}(n) \cap C_{n}^{0} .
$$

Theorem

(B. Putrycz, J. P. Rossetti, 2009) Let Γ be an oriented Hanztsche-Wendt group of dimension $2 n+1 \geq 5$, then Γ has not a spin structure.
A few words about the proof.
Let $\beta_{i}=\left(B_{i}, b_{i}\right) \in \Gamma$ be generators of Γ, for $i=1,2, \ldots, 2 n$, where $B_{i}=\operatorname{diag}[-1,-1, \ldots-1, \underbrace{1}_{i},-1, \ldots,-1]$. It is easy to see that $\lambda_{n}\left(\pm e_{1} e_{2}, \ldots, e_{i-1} e_{i+1} \ldots e_{2 n+1}\right)=B_{i}$ and $\lambda_{n}\left(\pm e_{i} e_{j}\right)=$ $\operatorname{diag}[1, \ldots, 1, \underbrace{-1}_{i}, 1, \ldots, 1, \underbrace{-1}_{j}, 1, \ldots 1]$. Moreover $\forall i, j\left(e_{i} e_{j}\right)^{2}=-1$ and $\left(e_{i_{1}} e_{i_{2}} \ldots e_{i_{2 m}}\right)^{2}=(-1)^{m \bmod 2}$.

Let $n=2 m+1$ and let $\epsilon: \Gamma \rightarrow \operatorname{Spin}(n)$ be a homomorphism s.t. $\lambda_{n} \circ \epsilon=\mathrm{pr}_{1}$. From above $\forall i \epsilon\left(\beta_{i}\right)= \pm e_{1} e_{2} \ldots e_{i-1} e_{i+1} \ldots e_{2 m+1}$. Hence $\epsilon\left(t_{i}\right)=\epsilon\left(\left(\beta_{i}\right)^{2}\right)=(-1)^{m} \bmod 2$.
We consider two cases. For m even $\epsilon\left(Z^{n}\right)=1$. We have $\epsilon\left(\beta_{1} \beta_{2}\right)= \pm e_{1} e_{2}$. Finally $\epsilon\left(\left(\beta_{1} \beta_{2}\right)^{2}\right)=1=\left(\pm e_{1} e_{2}\right)^{2}=-1$, and we have a contradiction.
For m odd a proof is rather more difficult.

Let $M=\mathbb{R}^{n} / \Gamma$ be a flat manifold.

Definition

A holonomy representation $\Psi_{\Gamma}: H \rightarrow G L(n, \mathbb{Z})$ is essentially complex if there exists a matrix $A \in G L(n, \mathbb{R})$, such that,

$$
\forall h \in H, A \Psi_{\Gamma}(h) A^{-1} \in G L\left(\frac{1}{2} n, \mathbb{C}\right) .
$$

Theorem
(F.E.A. Johnson, E. Rees, 1991) The following conditions are equivalent:

- M is a flat Kähler manifold,
- Ψ_{Γ} is essentially complex,
- Γ is a discrete cocompact torsion-free subgroup of $U\left(\frac{1}{2} n\right) \ltimes \mathbb{C}^{\frac{1}{2} n}$.

In the same paper is given the following characterization of an essentially complex representation.

$$
\Psi_{\Gamma}: H \rightarrow G L(n, \mathbb{Z})
$$

is essentially complex if and only if n is an even number and each \mathbb{R}-irreducible summand of Ψ_{Γ} which is also \mathbb{C}-irreducible occurs with even multiplicity.

Definition

A flat manifold has a Complex structure if and only if their holonomy representation is essentially complex.
In Algebraic geometry the flat Kähler manifolds are called hyperelliptic varieties.

2-dimensional hyperelliptic varieties:

holonomy	CARAT notations
1	15.1 .1
\mathbb{Z}_{2}	$18.1 .1 ; 18.1 .2$
\mathbb{Z}_{3}	$35.1 .1 ; 35.1 .2$
\mathbb{Z}_{4}	$25.1 .2 ; 27.1 .1$
\mathbb{Z}_{6}	70.1 .1

There is also a list of all 3-dimensional complex flat manifolds. There are 174 such objects. If a holonomy group of a flat manifold M is a subgroup of $S U(n)$, then M is called Calabi-Yau manifold.

Theorem

(Hodge, 1941) Let M be n-dimensional complex Kähler manifold. We have:

- $H^{r}(M, \mathbb{C})=\Sigma_{p+q=r} H^{p, q}(M)$,
- if $h^{p, q}(M)=\operatorname{dim}_{\mathbb{C}} H^{p, q}(M)$, then $h^{p, q}(M)=h^{q, p}(M)$,
- number $b_{r}(M)=\Sigma_{p+q=r} h^{p, q}(M)$ is even if r is odd.

The table of numbers $\left\{h^{p, q}(M), 0 \leq p, q \leq n\right\}$ is called the Hodge diamond of M.

Definition

A flat Kähler manifold of complex - dimension n with \mathbb{Z}_{2}^{n-1} holonomy group is called a complex Hantzsche-Wendt manifold.

They are Calabi-Yau manifolds. (Holonomy group is a subgroup of $S U(n)$.) Here we present their Hodge diamond:

$$
\begin{aligned}
& \binom{n}{0} \\
& 0 \quad 0 \\
& 0 \quad\binom{n}{1} \quad 0 \\
& 0 \quad 0 \quad 0 \quad 0 \\
& 0 \quad 0 \quad\binom{n}{2} \quad 0 \quad 0 \\
& \binom{n}{0} \quad\binom{n}{1} \quad\binom{n}{2} \quad \cdots \quad \cdots \quad\binom{n}{n-1} \quad\binom{n}{n} \\
& 0 \quad 0 \\
& \binom{n}{n-2} \quad 0 \quad 0 \\
& 0 \\
& 0 \\
& \left.0 \quad 0 \begin{array}{c}
n \\
n-1
\end{array}\right) 0 \\
& \binom{n}{0}
\end{aligned}
$$

Thank You.

