Hantzsche-Wendt manifolds

Andrzej Szczepański

University of Gdańsk, Poland

Moscow, September 16, 2016

Hantzsche-Wendt manifolds

A. Szczepański

Definitions and examples

Some properties

Homology

Homology over \mathbb{F}_2

Spin structure

 $\mathbb{C}\text{omplex GHW}$

Hantzsche-Wendt manifolds

A. Szczepański

Crystallographic groups

Let \mathbb{R}^n be *n*-dimensional Euclidean space, with isometry group $E(n) = O(n) \ltimes \mathbb{R}^n$. Definition

 Γ is a crystallographic group of rank *n* iff it is a discrete and cocompact subgroup of E(n).

A Bieberbach group is a torsion free crystallographic group.

Basic properties

Theorem (Bieberbach, 1910)

- If Γ is a crystallographic group of dimension n, then the set of all translations of Γ is a maximal abelian subgroup of a finite index.
- There is only a finite number of isomorphic classes of crystallographic groups of dimension n.
- ► Two crystallographic groups of dimension n are isomorphic if and only if there are conjugate in the group affine transformations A(n) = GL(n, ℝ) κ ℝⁿ.

Pure abstract point of view

Theorem

(Zassenhaus, 1947) A group Γ is a crystallographic group of dimension *n* if and only if, it has a normal maximal abelian subgroup \mathbb{Z}^n of a finite index.

Holonomy representation

Definition

Let Γ be a crystallographic group of dimension *n* with translations subgroup $A \simeq \mathbb{Z}^n$. A finite group $\Gamma/A = G$ we shall call a holonomy group of Γ .

Let $(A, a) \in E(n)$ and $x \in \mathbb{R}^n$. Γ acts on \mathbb{R}^n in the following way:

$$(A,a)(x) = Ax + a.$$

Definition

Let Γ be *n*-dimensional Bieberbach group. We have the following short exact sequence of groups.

$$0 \to \mathbb{Z}^n \to \Gamma \xrightarrow{p} \Gamma / \mathbb{Z}^n = H \to 0.$$

Let us define a homomorphism $h_{\Gamma} : H \to GL(n, \mathbb{Z})$. Put

$$\forall h \in H, h_{\Gamma}(h)(e_i) = \bar{h}^{-1}e_i\bar{h},$$

where $p(\bar{h}) = h$ and $e_i \in \mathbb{Z}^n$ is a standard basis. h_{Γ} is called a holonomy representation of a group Γ .

Flat manifold

Let $\Gamma \subset E(n)$ be a torsion free crystallographic group. Since Γ is cocompact and discrete subgroup, then the orbit space \mathbb{R}^n/Γ is a manifold. If Γ is not torsion free then the orbit space \mathbb{R}^n/Γ is an orbifold.

Definition

The above manifolds (orbifolds) we shall call "flat".

From elementary covering theory any compact Riemannian manifold (orbifold) with sectional curvature equal to zero is flat.

Example Flat surfaces:

- torus $S^1 \times S^1$,
- Klein bottle $S^1 \times S^1/\mathbb{Z}_2$

We shall see that many properties of the Bieberbach Groups correspond to properties of flat manifolds.

Definition

Definition

Any flat manifold of dimension *n* with holonomy group $(\mathbb{Z}_2)^{n-1}$ we shall call Generalized Hantzsche-Wendt (GHW for short) manifold. An oriented GHW we shall call Hantzsche-Wendt manifold (HW for short).

A fundamental group of GHW (HW) flat manifolds we shall call GHW (HW) Bieberbach group.

Exercise: Let M^n be a flat Hantzsche-Wendt manifold of dimension n. Shaw that n is an odd natural number.

Example

Klein Bottle is GHW, 3-dimensional flat oriented manifold M^3 with non-cyclic holonomy $\mathbb{Z}_2 \times \mathbb{Z}_2$ is HW manifold. J.Conway called it "didicosm".

It can be proved that $\pi_1(M^3)$ is a Fibonacci group F(2,6), where

$$F(2,6) = \{x_1, ..., x_6 \mid x_1 x_2 = x_3, x_2 x_3 = x_4, ..., x_6 x_1 = x_2\}.$$

It is clear, that any *n*-dimensional HW group is related to an element of the second cohomology group $H^2(\mathbb{Z}_2^{n-1}, \mathbb{Z}^n)$. Hence the number of non-isomorphic GHW groups of given dimension growth exponentialy.

Theorem

(J.P.Rossetti, A.S. 2005) Let Γ be a *n*-dimensional GHW group. Then

 $h_{\Gamma}((\mathbb{Z}_2)^{n-1}) \subset GL(n,\mathbb{Z})$

is a set of the diagonal matrices with ± 1 on diagonal.

The proof is by induction and used the following lemmas.

Lemma 1 Let $\rho : \mathbb{Z}_2^{n-1} \to GL(n, \mathbb{Z})$ be a diagonal faithful integral representation with $-\operatorname{Id} \notin Im(\rho)$. Then there are $g \in \mathbb{Z}_2^{n-1}$ and $1 \le i \le n$ such that $\rho(g) = \operatorname{diag}[-1, -1, ..., -1, \underbrace{1}_{i}, -1, ..., -1]$. Moreover, if $Im(\rho) \notin SL(n, \mathbb{Z})$, then there are $g \in \mathbb{Z}_2^{n-1}$ and $1 \le i \le n$ such that $\rho(g) = \operatorname{diag}[1, ..., 1, \underbrace{-1}_{i}, 1, ..., 1]$. **Lemma 2** Let Γ be a *n*-rank Bieberbach group with translation lattice Λ . Suppose that $(B, b) \in \Gamma$ and *B* has eigenvalues 1 and -1, with corresponding eigenspaces V^+ and V^- of dimension 1 and n - 1 respectively.

Then $\Lambda = (\Lambda \cap V^+) \oplus (\Lambda \cap V^-)$, and the orthogonal projection of b onto V^+ lies in $1/2(\Lambda \cap V^+) \setminus (\Lambda \cap V^+)$.

Rational homology sphere

Theorem

If $M = \mathbb{R}^n / \Gamma$, where Γ is HW, then M is a rational homology sphere.

We calculate rational homology of M from the following formula

$$H_i(M,\mathbb{Q}) = (\Lambda^i(\mathbb{Z}^n))^{\mathbb{Z}_2^{n-1}}.$$

From definition of the holonomy representation they are zero for all $i \neq 0, n$. Since HW is connected and oriented, then *M* is a rational homology sphere.

Theorem

(B.Putrycz, 2006) Let M be any HW flat manifold of dimension n > 3, then

 $H_1(M,\mathbb{Z})=(\mathbb{Z}_2)^{n-1}.$

In the proof are used methods proposed by R. Miatello and J. P. Rossetti.

In 2008 K. Dekimpe and N. Petrosyan calculate, by constructing a free resolution, homology of low dimensional oriented GHW groups/manifolds. In dimension five there are this same (for 2 groups). But in dimension 7 there are four classes on 62 groups. They find an algorithm.

Let us present the table for dimension five (2 groups):

$H_k(\Gamma)$	k = 0	k = 1	k = 2	k = 3	k = 4	k = 5
	Z	\mathbb{Z}_2^4	\mathbb{Z}_2^2	\mathbb{Z}_2^4	0	Z

for dimension seven (62 groups):

$H_k(\Gamma)$	k=0	k=1	k=2	k=3	k=4	k=5	k=6	k=7
I	\mathbb{Z}	\mathbb{Z}_2^6	\mathbb{Z}_2^8	\mathbb{Z}_4^6	\mathbb{Z}_2^8	\mathbb{Z}_2^6	0	\mathbb{Z}
II	\mathbb{Z}	\mathbb{Z}_2^6	\mathbb{Z}_2^9	$\mathbb{Z}_2^{10}\oplus\mathbb{Z}_4^2$	\mathbb{Z}_2^9	\mathbb{Z}_2^6	0	\mathbb{Z}
III	\mathbb{Z}	\mathbb{Z}_2^6	\mathbb{Z}_2^8	$\mathbb{Z}_2^4\oplus\mathbb{Z}_4^4$	\mathbb{Z}_2^8	\mathbb{Z}_2^6	0	\mathbb{Z}
IV	\mathbb{Z}	\mathbb{Z}_2^6	\mathbb{Z}_2^8	$\mathbb{Z}_2^8\oplus\mathbb{Z}_4^2$	\mathbb{Z}_2^8	\mathbb{Z}_2^6	0	\mathbb{Z}

Cohomological rigidity

Definition

Two flat manifolds M_1 and M_2 are cohomological rigid iff a homeomorphism between M_1 and M_2 is equivalent to an isomorphism of graded rings $H^*(M_1.\mathbb{F}_2)$ and $H^*(M_2,\mathbb{F}_2)$.

Theorem

(J. Popko, A.S. 2013) Hantzsche-Wendt manifolds are cohomological rigid.

Idea of proof:

We apply the Lyndon-Hochschild-Serre spectral sequence $\{E_r^{p,q}, d_r\}$ of the covering $T^n \to T^n/(\mathbb{Z}_2)^{n-1}$ with \mathbb{F}_2 coefficients. Since a holonomy representation h_{Γ} is diagonal $E_2^{p,q} = H^p((\mathbb{Z}_2)^{n-1}) \otimes H^q(\mathbb{Z}^n)$. We only use the multiplicative structure of the first and second cohomology group. We have an exact sequence

$$H^1(\mathbb{Z}^n, \mathbb{F}_2) \xrightarrow{d_2} H^2((\mathbb{Z}_2)^{n-1}, \mathbb{F}_2) \xrightarrow{p^*} H^2(\Gamma, \mathbb{F}_2),$$

where d_2 is a transgression, p^* is induced by the homomorphism $p: \Gamma \to \mathbb{Z}_2^{n-1}$ and Γ is a HW-group.

Hantzsche-Wendt manifolds

Idea of proof:

A \mathbb{F}_2 - rank of

 $\mathsf{Im}(d_2) \subset H^2((\mathbb{Z}_2)^{n-1}, \mathbb{F}_2) \subset H^*((\mathbb{Z}_2)^{n-1}, \mathbb{F}_2) \simeq \mathbb{F}_2[x_1, x_2, ..., x_{n-1}]$

is equal to *n*. Let $T_i = d_2(t_i)$, where $t_1, t_2, ..., t_n$ is the standard \mathbb{F}_2 - basis of $H^1(\mathbb{Z}^n, \mathbb{F}_2)$ for i = 1, 2, ..., n. Moreover, let

 $D = \{y \in Im(d_2) \mid y \in is a \text{ product of two polynomials of degree 1}\}.$

Main Lemma. The set *D* define a HW-manifold in an unique way up to affine equivalence.

Remark. 1. $D = \{T_1, T_2, ..., T_n\}$ or 2. we can rediscover the set of generators $T_1, T_2, ..., T_n$ from the set *D*.

(The set *D* has less than n + 2 elements.)

Definition

A Bieberbach group $\Gamma \subset SO(n) \ltimes \mathbb{R}^n$ has a spin structure if and only if there exists a homomorphism $\epsilon : \Gamma \to Spin(n)$ such that $pr_1 = \lambda_n \circ \epsilon$. Here pr_1 is a projection on the first component, and $\lambda_n : Spin(n) \to SO(n)$ is a universal covering.

It is well known that $H^2(SO(n), \mathbb{Z}_2) = \mathbb{Z}_2$. We define a group Spin(n) as a middle group in a non-trivial short exact sequence

$$0 \to \mathbb{Z}_2 o Spin(n) \stackrel{\lambda_n}{ o} SO(n) o 0.$$

More about Spin

Let C_n be Clifford's algebra over the real numbers. By definition it is an associative algebra with unity, generated by elements

$$\{e_1, e_2, \ldots, e_n\}$$

and with relations

$$\forall i, e_i^2 = -1,$$

 $\forall i, j, e_i e_i = -e_i e_i,$

where $1 \le i, j \le n$. We define $C_0 = \mathbb{R}$. It is easy to see that $C_1 = \mathbb{C}$ and $C_2 = \mathbb{H}$, where \mathbb{H} is the four-dimensional quaternion algebra. Moreover, $\mathbb{R}^n \subset C_n$ and $\dim_{\mathbb{R}} C_n = 2^n$, where \mathbb{R}^n is *n*-dimensional \mathbb{R} -vector space with the basis e_1, e_2, \ldots, e_n .

Hantzsche-Wendt manifolds

We have the following homomorphisms (involutions) on C_n :

(i) *:
$$e_{i_1}e_{i_2} \dots e_{i_k} \mapsto e_{i_k}e_{i_{k-1}} \dots e_{i_2}e_{i_1}$$
,
(ii) ': $e_i \mapsto -e_i$,
(iii) $^-: a \mapsto (a')^*, a \in C_n$.

Suppose $C_n^0 = \{x \in C_n \mid x' = x\}$. It is easy to observe that

$$\forall a, b \in C_n, (ab)^* = b^*a^*.$$

We define subgroups of C_n ,

$$Pin(n) = \{x_1x_2\ldots x_k \mid x_i \in S^{n-1} \subset \mathbb{R}^n \subset C_n, i = 1, 2, \ldots k\},\$$

$$Spin(n) = Pin(n) \cap C_n^0.$$

Hantzsche-Wendt manifolds

Theorem

(B. Putrycz, J. P. Rossetti, 2009) Let Γ be an oriented Hanztsche-Wendt group of dimension $2n + 1 \ge 5$, then Γ has not a spin structure.

A few words about the proof.

Let $\beta_i = (B_i, b_i) \in \Gamma$ be generators of Γ , for i = 1, 2, ..., 2n, where $B_i = \text{diag}[-1, -1, ... - 1, \underbrace{1}_{i}, -1, ..., -1]$. It is easy to see that $\lambda_n(\pm e_1e_2, ..., e_{i-1}e_{i+1}...e_{2n+1}) = B_i$ and $\lambda_n(\pm e_ie_j) =$ diag $[1, ..., 1, \underbrace{-1}_{i}, 1, ..., 1, \underbrace{-1}_{j}, 1, ... 1]$. Moreover $\forall i, j \ (e_ie_j)^2 = -1$ and $(e_{i_1}e_{i_2}...e_{i_{2m}})^2 = (-1)^m \mod 2$. Let n = 2m + 1 and let $\epsilon : \Gamma \to Spin(n)$ be a homomorphism s.t. $\lambda_n \circ \epsilon = \operatorname{pr}_1$. From above $\forall i \ \epsilon(\beta_i) = \pm e_1 e_2 \dots e_{i-1} e_{i+1} \dots e_{2m+1}$. Hence $\epsilon(t_i) = \epsilon((\beta_i)^2) = (-1)^{m \mod 2}$. We consider two cases. For *m* even $\epsilon(Z^n) = 1$. We have $\epsilon(\beta_1\beta_2) = \pm e_1 e_2$. Finally $\epsilon((\beta_1\beta_2)^2) = 1 = (\pm e_1 e_2)^2 = -1$, and we have a contradiction.

For *m* odd a proof is rather more difficult.

Let $M = \mathbb{R}^n / \Gamma$ be a flat manifold.

Definition

A holonomy representation $\Psi_{\Gamma} : H \to GL(n, \mathbb{Z})$ is essentially complex if there exists a matrix $A \in GL(n, \mathbb{R})$, such that,

$$\forall h \in H, A\Psi_{\Gamma}(h)A^{-1} \in GL(\frac{1}{2}n, \mathbb{C}).$$

Theorem

(F.E.A. Johnson, E. Rees, 1991) The following conditions are equivalent:

- M is a flat Kähler manifold,
- Ψ_{Γ} is essentially complex,
- Γ is a discrete cocompact torsion-free subgroup of U(¹/₂n) κ ℂ¹/₂n.

In the same paper is given the following characterization of an essentially complex representation.

$$\Psi_{\Gamma}: H \to GL(n,\mathbb{Z})$$

is essentially complex if and only if *n* is an even number and each \mathbb{R} -irreducible summand of Ψ_{Γ} which is also \mathbb{C} -irreducible occurs with even multiplicity.

Definition

A flat manifold has a \mathbb{C} omplex structure if and only if their holonomy representation is essentially complex.

In Algebraic geometry the flat Kähler manifolds are called hyperelliptic varieties.

2-dimensional hyperelliptic varieties :

holonomy	CARAT notations			
1	15.1.1			
\mathbb{Z}_2	18.1.1; 18.1.2			
\mathbb{Z}_3	35.1.1; 35.1.2			
\mathbb{Z}_4	25.1.2; 27.1.1			
\mathbb{Z}_6	70.1.1			

There is also a list of all 3-dimensional complex flat manifolds. There are 174 such objects. If a holonomy group of a flat manifold M is a subgroup of SU(n), then M is called Calabi-Yau manifold.

Theorem

(Hodge, 1941) Let *M* be *n*-dimensional complex Kähler manifold. We have:

$$\blacktriangleright H^{r}(M,\mathbb{C}) = \Sigma_{p+q=r} H^{p,q}(M),$$

• if
$$h^{p,q}(M) = \dim_{\mathbb{C}} H^{p,q}(M)$$
, then $h^{p,q}(M) = h^{q,p}(M)$,

• number
$$b_r(M) = \sum_{p+q=r} h^{p,q}(M)$$
 is even if r is odd.

The table of numbers $\{h^{p,q}(M), 0 \le p, q \le n\}$ is called the Hodge diamond of *M*.

Definition

A flat Kähler manifold of complex - dimension n with \mathbb{Z}_2^{n-1} holonomy group is called a complex Hantzsche-Wendt manifold.

They are Calabi-Yau manifolds. (Holonomy group is a subgroup of SU(n).) Here we present their Hodge diamond:

Hantzsche-Wendt manifolds

A. Szczepański

Thank You.