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Crystallographic groups

Let Rn be n-dimensional Euclidean space, with isometry group
E(n) = O(n) nRn.

Definition
Γ is a crystallographic group of rank n iff it is a discrete and
cocompact subgroup of E(n).

A Bieberbach group is a torsion free crystallographic group.
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Basic properties

Theorem
(Bieberbach, 1910)

I If Γ is a crystallographic group of dimension n, then the set
of all translations of Γ is a maximal abelian subgroup of a
finite index.

I There is only a finite number of isomorphic classes of
crystallographic groups of dimension n.

I Two crystallographic groups of dimension n are isomorphic
if and only if there are conjugate in the group affine
transformations A(n) = GL(n,R) nRn.
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Pure abstract point of view

Theorem
(Zassenhaus, 1947) A group Γ is a crystallographic group of
dimension n if and only if, it has a normal maximal abelian
subgroup Zn of a finite index.
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Holonomy representation

Definition
Let Γ be a crystallographic group of dimension n with
translations subgroup A ' Zn. A finite group Γ/A = G we shall
call a holonomy group of Γ.

Let (A, a) ∈ E(n) and x ∈ Rn. Γ acts on Rn in the following way:

(A, a)(x) = Ax + a.
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Definition
Let Γ be n-dimensional Bieberbach group. We have the
following short exact sequence of groups.

0→ Zn → Γ
p→ Γ/Zn = H → 0.

Let us define a homomorphism hΓ : H → GL(n,Z). Put

∀h ∈ H, hΓ(h)(ei) = h̄−1eih̄,

where p(h̄) = h and ei ∈ Zn is a standard basis. hΓ is called a
holonomy representation of a group Γ.
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Flat manifold

Let Γ ⊂ E(n) be a torsion free crystallographic group. Since Γ is
cocompact and discrete subgroup, then the orbit space Rn/Γ is
a manifold. If Γ is not torsion free then the orbit space Rn/Γ is
an orbifold.

Definition
The above manifolds (orbifolds) we shall call "flat".
From elementary covering theory any compact Riemannian
manifold (orbifold) with sectional curvature equal to zero is flat.
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Example
Flat surfaces:

I torus S1 × S1,
I Klein bottle S1 × S1/Z2

We shall see that many properties of the Bieberbach Groups
correspond to properties of flat manifolds.
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Classification

From the second Bieberbach theorem there is only a finite
number of flat manifolds of given dimension.
For example in dimension 3 there are 10 flat manifolds. Here
classifiction was made in 1936. Then we have a computer
program CARAT see
https:
//www.mathb.rwth-aachen.de/carat/index.html.
We have:
in dimension 4 - 74,
in dimension 5 - 1060,
in dimension 6 - 38746.

Remark: There exists G ⊂ GL(6,Z) s.t.
| H2(G,Z6) |= 230 = 1073741824.
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Classification I

Theorem
(Calabi - 1957) Let Γ be a torsion free crystallographic group of
dimension n with an epimorphism f : Γ→ Z. Then kerf is a
torsion free crystallographic group of dimension n− 1.

"the induction method of Calabi"
1. classify all torsion free crystallographic groups of rank < n;

2. classify all torsion free crystallographic groups of dimension
n with finite abelianization;
3. classify all torsion free c.g. Γ of dimension n defined by the
short exact sequence

0→ Γn−1 → Γ→ Z→ 0,

where Γn−1 is from point 1.
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Classification II

Definition
Let M be a flat manifold with the fundamental group Γ, which
acts by isometries on a flat torus Tk. Then Γ also acts by
isometris on the space M̃ × Tk. We shall call the space
(M̃ × Tk)/Γ a flat toral extension of the manifold M.

Theorem
(A.T.Vasquez - 1970) For any finite group G there exists a
natural number n(G) with the following property: if M is any flat
manifold with holonomy group G, then M is a flat toral extension
of some flat manifold of dimension ≤ n(G).
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Classification II

The third way of the classification is called the
Auslander-Vasquez method. It is related only to flat manifolds
with given holonomy group G and has the following steps:
1. calculate the Vasquez invariant n(G);
2. describe all flat toral extensions of the manifolds of
dimension ≤ n(G);
3. classify all flat manifolds of dimension ≤ n(G).
For example for p-group, n(G) = ΣC∈X | G : C |, where X is a
set of representatives of conjugacy classes of subgroups of G
of prime order; G. Cliff, A. Weiss 1989. n(A5) = 16; G. Cliff,
Hongliu Zheng 1996.
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Boundary problem

Theorem
(G. Hamrick, D.Royster, Inv. Math.1982) Every compact
Riemannian flat manifold bounds a compact manifold.
We can ask: Does every compact Riemannian flat manifold
bound a compcat hyperbolic manifold ?

Example
Let V be a hyperbolic (complete Riemannian with constant
sectional curvature −1) manifold with one cusp. After cut a
cusp we have a compact hyperbolic monifold V ′ with boundary
∂V ′, where ∂V ′ is flat.
We can ask: Let Mn be a flat manifold of dimension n. Is there
some V(n+1) such that (∂((V ′)(n+1)) ' Mn ?
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η invariant

In 2000 D. D. Long and A. Reid proved:

Theorem
Let V be a hyperbolic manifold with one cusp of dimension 4n.
If a flat manifold M(4n−1) of dimension (4n− 1) has geometric
realization as ∂V ′, then η(M(4n−1)) ∈ Z.
The proof is consequence of the Atiyah, Patodi and Singer
theorem. Here we consider η-invariant of signature operator.
Already in dimension 3 there exists a flat manifold M3 such that
η(M3) = 3/4 /∈ Z.
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Definition

A Bieberbach group Γ ⊂ SO(n) nRn has a spin structure if and
only if there exists a homomorphism ε : Γ→ Spin(n) such that
pr1 = λn ◦ ε. Here pr1 is a projection on the first component, and
λn : Spin(n)→ SO(n) is a universal covering.
It is well known that H2(SO(n),Z2) = Z2. We define a group
Spin(n) as a middle group in a non-trivial short exact sequence

0→ Z2 → Spin(n)
λn→ SO(n)→ 0.
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More about Spin

Let Cn be Clifford’s algebra over the real numbers. By definition
it is an associative algebra with unity, generated by elements

{e1, e2, . . . , en}

and with relations
∀i, e2

i = −1,

∀i, j, eiej = −ejei,

where 1 ≤ i, j ≤ n. We define C0 = R. It is easy to see that
C1 = C and C2 = H, where H is the four-dimensional quaternion
algebra. Moreover, Rn ⊂ Cn and dimRCn = 2n, where Rn is
n-dimensional R-vector space with the basis e1, e2, . . . , en.
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We have the following homomorphisms (involutions) on Cn :

(i) ∗ : ei1ei2 . . . eik 7→ eik eik−1 . . . ei2ei1 ,

(ii) ′ : ei 7→ −ei,

(iii) − : a 7→ (a′)∗, a ∈ Cn.

Suppose C0
n = {x ∈ Cn | x′ = x}. It is easy to observe that

∀a, b ∈ Cn, (ab)∗ = b∗a∗.

We define subgroups of Cn,

Pin(n) = {x1x2 . . . xk | xi ∈ Sn−1 ⊂ Rn ⊂ Cn, i = 1, 2, . . . k},

Spin(n) = Pin(n) ∩ C0
n.
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Theorem
(B. Putrycz, J. P. Rossetti, 2009) Let Γ be an oriented
Hanztsche-Wendt group of dimension 2n + 1 ≥ 5, then Γ has
not a spin structure.
A few words about the proof.
Let βi = (Bi, bi) ∈ Γ be generators of Γ, for i = 1, 2, ...., 2n,
where Bi = diag[−1,−1, ...− 1, 1︸︷︷︸

i

,−1, ...,−1]. It is easy to see

that λn(±e1e2, ..., ei−1ei+1...e2n+1) = Bi and λn(±eiej) =
diag[1, ..., 1, −1︸︷︷︸

i

, 1, ..., 1, −1︸︷︷︸
j

, 1, ...1]. Moreover ∀i, j (eiej)
2 = −1

and (ei1ei2 ...ei2m)2 = (−1)m mod 2.
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Let n = 2m + 1 and let ε : Γ→ Spin(n) be a homomorphism s.t.
λn ◦ ε = pr1. From above ∀i ε(βi) = ±e1e2...ei−1ei+1...e2m+1.
Hence ε(ti) = ε((βi)

2) = (−1)m mod 2.
We consider two cases. For m even ε(Zn) = 1. We have
ε(β1β2) = ±e1e2. Finally ε((β1β2)2) = 1 = (±e1e2)2 = −1, and
we have a contradiction.
For m odd a proof is rather more difficult.
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Spin structures in dimensions 4, 5 and 6

dim # flat manifolds # orientable flat manifolds # spin flat manifolds
4 74 27 24
5 1060 174 88
6 38746 3314 760
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Thank You.
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