Introduction to flat manifolds

Andrzej Szczepański

University of Gdańsk, Poland

Geometry Days in Novosibirsk September 21-24, 2016

Introduction to flat manifolds

A. Szczepański

Crystallographic groups

Let \mathbb{R}^n be *n*-dimensional Euclidean space, with isometry group $E(n) = O(n) \ltimes \mathbb{R}^n$. Definition

 Γ is a crystallographic group of rank *n* iff it is a discrete and cocompact subgroup of E(n).

A Bieberbach group is a torsion free crystallographic group.

Basic properties

Theorem (Bieberbach, 1910)

- If Γ is a crystallographic group of dimension n, then the set of all translations of Γ is a maximal abelian subgroup of a finite index.
- There is only a finite number of isomorphic classes of crystallographic groups of dimension n.
- ► Two crystallographic groups of dimension n are isomorphic if and only if there are conjugate in the group affine transformations A(n) = GL(n, ℝ) ⊨ ℝⁿ.

Pure abstract point of view

Theorem

(Zassenhaus, 1947) A group Γ is a crystallographic group of dimension *n* if and only if, it has a normal maximal abelian subgroup \mathbb{Z}^n of a finite index.

Holonomy representation

Definition

Let Γ be a crystallographic group of dimension *n* with translations subgroup $A \simeq \mathbb{Z}^n$. A finite group $\Gamma/A = G$ we shall call a holonomy group of Γ .

Let $(A, a) \in E(n)$ and $x \in \mathbb{R}^n$. Γ acts on \mathbb{R}^n in the following way:

$$(A,a)(x) = Ax + a.$$

Definition

Let Γ be *n*-dimensional Bieberbach group. We have the following short exact sequence of groups.

$$0 \to \mathbb{Z}^n \to \Gamma \xrightarrow{p} \Gamma / \mathbb{Z}^n = H \to 0.$$

Let us define a homomorphism $h_{\Gamma} : H \to GL(n, \mathbb{Z})$. Put

$$\forall h \in H, h_{\Gamma}(h)(e_i) = \bar{h}^{-1}e_i\bar{h},$$

where $p(\bar{h}) = h$ and $e_i \in \mathbb{Z}^n$ is a standard basis. h_{Γ} is called a holonomy representation of a group Γ .

Flat manifold

Let $\Gamma \subset E(n)$ be a torsion free crystallographic group. Since Γ is cocompact and discrete subgroup, then the orbit space \mathbb{R}^n/Γ is a manifold. If Γ is not torsion free then the orbit space \mathbb{R}^n/Γ is an orbifold.

Definition

The above manifolds (orbifolds) we shall call "flat".

From elementary covering theory any compact Riemannian manifold (orbifold) with sectional curvature equal to zero is flat.

Example Flat surfaces:

- torus $S^1 \times S^1$,
- Klein bottle $S^1 \times S^1/\mathbb{Z}_2$

We shall see that many properties of the Bieberbach Groups correspond to properties of flat manifolds.

Classification

From the second Bieberbach theorem there is only a finite number of flat manifolds of given dimension.

For example in dimension 3 there are 10 flat manifolds. Here classification was made in 1936. Then we have a computer program CARAT see

https: //www.mathb.rwth-aachen.de/carat/index.html. We have: in dimension 4 - 74, in dimension 5 - 1060,

in dimension 6 - 38746.

Remark: There exists $G \subset GL(6, \mathbb{Z})$ s.t. $| H^2(G, \mathbb{Z}^6) | = 2^{30} = 1073741824.$

Classification I

Theorem

(Calabi - 1957) Let Γ be a torsion free crystallographic group of dimension n with an epimorphism $f : \Gamma \to \mathbb{Z}$. Then kerf is a torsion free crystallographic group of dimension n - 1.

"the induction method of Calabi"

- 1. classify all torsion free crystallographic groups of rank < n;
- 2. classify all torsion free crystallographic groups of dimension *n* with finite abelianization;
- 3. classify all torsion free c.g. Γ of dimension *n* defined by the short exact sequence

$$0\to\Gamma_{n-1}\to\Gamma\to\mathbb{Z}\to0,$$

where Γ_{n-1} is from point 1.

Classification II

Definition

Let *M* be a flat manifold with the fundamental group Γ , which acts by isometries on a flat torus T^k . Then Γ also acts by isometris on the space $\tilde{M} \times T^k$. We shall call the space $(\tilde{M} \times T^k)/\Gamma$ a flat toral extension of the manifold *M*.

Theorem

(A.T.Vasquez - 1970) For any finite group G there exists a natural number n(G) with the following property: if M is any flat manifold with holonomy group G, then M is a flat toral extension of some flat manifold of dimension $\leq n(G)$.

Classification II

The third way of the classification is called the Auslander-Vasquez method. It is related only to flat manifolds with given holonomy group G and has the following steps:

- 1. calculate the Vasquez invariant n(G);
- 2. describe all flat toral extensions of the manifolds of dimension $\leq n(G)$;

3. classify all flat manifolds of dimension $\leq n(G)$.

For example for *p*-group, $n(G) = \sum_{C \in \mathcal{X}} | G : C |$, where \mathcal{X} is a set of representatives of conjugacy classes of subgroups of *G* of prime order; G. Cliff, A. Weiss 1989. $n(A_5) = 16$; G. Cliff, Hongliu Zheng 1996.

Boundary problem

Theorem

(G. Hamrick, D.Royster, Inv. Math.1982) Every compact Riemannian flat manifold bounds a compact manifold.

We can ask: Does every compact Riemannian flat manifold bound a compcat hyperbolic manifold ?

Example

Let *V* be a hyperbolic (complete Riemannian with constant sectional curvature -1) manifold with one cusp. After cut a cusp we have a compact hyperbolic monifold *V'* with boundary $\partial V'$, where $\partial V'$ is flat.

We can ask: Let M^n be a flat manifold of dimension n. Is there some $V^{(n+1)}$ such that $(\partial((V')^{(n+1)}) \simeq M^n$?

η invariant

In 2000 D. D. Long and A. Reid proved:

Theorem

Let *V* be a hyperbolic manifold with one cusp of dimension 4n. If a flat manifold $M^{(4n-1)}$ of dimension (4n-1) has geometric realization as $\partial V'$, then $\eta(M^{(4n-1)}) \in \mathbb{Z}$.

The proof is consequence of the Atiyah, Patodi and Singer theorem. Here we consider η -invariant of signature operator. Already in dimension 3 there exists a flat manifold M^3 such that $\eta(M^3) = 3/4 \notin \mathbb{Z}$.

Definition

A Bieberbach group $\Gamma \subset SO(n) \ltimes \mathbb{R}^n$ has a spin structure if and only if there exists a homomorphism $\epsilon : \Gamma \to Spin(n)$ such that $pr_1 = \lambda_n \circ \epsilon$. Here pr_1 is a projection on the first component, and $\lambda_n : Spin(n) \to SO(n)$ is a universal covering.

It is well known that $H^2(SO(n), \mathbb{Z}_2) = \mathbb{Z}_2$. We define a group Spin(n) as a middle group in a non-trivial short exact sequence

$$0 \to \mathbb{Z}_2 o Spin(n) \stackrel{\lambda_n}{ o} SO(n) o 0.$$

More about Spin

Let C_n be Clifford's algebra over the real numbers. By definition it is an associative algebra with unity, generated by elements

$$\{e_1, e_2, \ldots, e_n\}$$

and with relations

$$\forall i, e_i^2 = -1,$$

 $\forall i, j, e_i e_j = -e_j e_j,$

where $1 \le i, j \le n$. We define $C_0 = \mathbb{R}$. It is easy to see that $C_1 = \mathbb{C}$ and $C_2 = \mathbb{H}$, where \mathbb{H} is the four-dimensional quaternion algebra. Moreover, $\mathbb{R}^n \subset C_n$ and $\dim_{\mathbb{R}} C_n = 2^n$, where \mathbb{R}^n is *n*-dimensional \mathbb{R} -vector space with the basis e_1, e_2, \ldots, e_n .

Introduction to flat manifolds

We have the following homomorphisms (involutions) on C_n :

(i) *:
$$e_{i_1}e_{i_2} \dots e_{i_k} \mapsto e_{i_k}e_{i_{k-1}} \dots e_{i_2}e_{i_1}$$
,
(ii) ': $e_i \mapsto -e_i$,
(iii) $^-: a \mapsto (a')^*, a \in C_n$.

Suppose $C_n^0 = \{x \in C_n \mid x' = x\}$. It is easy to observe that

$$\forall a, b \in C_n, (ab)^* = b^*a^*.$$

We define subgroups of C_n ,

$$Pin(n) = \{x_1x_2\ldots x_k \mid x_i \in S^{n-1} \subset \mathbb{R}^n \subset C_n, i = 1, 2, \ldots k\},\$$

$$Spin(n) = Pin(n) \cap C_n^0.$$

Introduction to flat manifolds

A. Szczepański

Theorem

(B. Putrycz, J. P. Rossetti, 2009) Let Γ be an oriented Hanztsche-Wendt group of dimension $2n + 1 \ge 5$, then Γ has not a spin structure.

A few words about the proof.

Let $\beta_i = (B_i, b_i) \in \Gamma$ be generators of Γ , for i = 1, 2, ..., 2n, where $B_i = \text{diag}[-1, -1, ... - 1, \underbrace{1}_{i}, -1, ..., -1]$. It is easy to see that $\lambda_n(\pm e_1e_2, ..., e_{i-1}e_{i+1}...e_{2n+1}) = B_i$ and $\lambda_n(\pm e_ie_j) =$ $\text{diag}[1, ..., 1, \underbrace{-1}_{i}, 1, ..., 1, \underbrace{-1}_{j}, 1, ... 1]$. Moreover $\forall i, j \ (e_ie_j)^2 = -1$ and $(e_{i_1}e_{i_2}...e_{i_{2m}})^2 = (-1)^m \mod 2$. Let n = 2m + 1 and let $\epsilon : \Gamma \to Spin(n)$ be a homomorphism s.t. $\lambda_n \circ \epsilon = \operatorname{pr}_1$. From above $\forall i \ \epsilon(\beta_i) = \pm e_1 e_2 \dots e_{i-1} e_{i+1} \dots e_{2m+1}$. Hence $\epsilon(t_i) = \epsilon((\beta_i)^2) = (-1)^{m \mod 2}$. We consider two cases. For *m* even $\epsilon(Z^n) = 1$. We have $\epsilon(\beta_1\beta_2) = \pm e_1 e_2$. Finally $\epsilon((\beta_1\beta_2)^2) = 1 = (\pm e_1 e_2)^2 = -1$, and we have a contradiction.

For *m* odd a proof is rather more difficult.

Spin structures in dimensions 4, 5 and 6

dim	# flat manifolds	# orientable flat manifolds	# spin flat manifolds
4	74	27	24
5	1060	174	88
6	38746	3314	760

Thank You.