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By Hantzsche–Wendt manifold (for short HW -manifold) 
we understand any oriented closed Riemannian manifold
of dimension n with a holonomy group (Z2)n−1. Two
HW -manifolds M1 and M2 are cohomological rigid if and 
only if a homeomorphism between M1 and M2 is equivalent to 
an isomorphism of graded rings H∗(M1, F2) and H∗(M2, F2). 
We prove that HW -manifolds are cohomological rigid.
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1. Introduction

Let Mn be a flat manifold of dimension n. By definition, this is a compact connected, 
Riemannian manifold without boundary with sectional curvature equal to zero. From 
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the theorems of Bieberbach ([1,8]) the fundamental group π1(Mn) = Γ determines a 
short exact sequence:

0 → Z
n → Γ p→ G → 0, (1)

where Zn is a torsion free abelian group of rank n and G is a finite group which is isomor-
phic to the holonomy group of Mn. The universal covering of Mn is the Euclidean space 
R

n and hence Γ is isomorphic to a discrete cocompact subgroup of the isometry group 
Isom(Rn) = O(n) �R

n = E(n). In the above short exact sequence Zn ∼= (Γ ∩R
n) and p

can be considered as the projection p : Γ → G ⊂ O(n) ⊂ E(n) on the first component. 
An orthogonal representation p is equivalent (see [8]) to a holonomy representation. That 
is a homomorphism φΓ : G → GL(n, Z), given by a formula φΓ(g)(z) = ḡzḡ−1, where 
ḡ ∈ Γ, g ∈ G, z ∈ Z

n and p(ḡ) = g. Conversely, given a short sequence of the form (1), 
it is known that the group Γ is (isomorphic to) a Bieberbach group if and only if Γ is 
torsion free.

By Hantzsche–Wendt manifold (for short HW -manifold) Mn we understand any ori-
ented flat manifold of dimension n with a holonomy group (Z2)n−1. It is easy to see that 
n is always an odd number. Moreover, any HW-manifold has a diagonal holonomy repre-
sentation, see [7]. It means π1(Mn) is generated by βi = (Bi, bi) ∈ SO(n) �R

n, 1 ≤ i ≤ n, 
where

Bi = diag(−1,−1, ...,−1, 1︸︷︷︸
i

,−1,−1, ...,−1) (2)

and bi ∈ {0, 1/2}n. For other properties of Mn we send a reader to [8] and to next 
sections. We shall need

Definition 1. (See [4].) Two flat manifolds M1 and M2 are cohomological rigid if and only 
if a homeomorphism between M1 and M2 is equivalent to an isomorphism of graded rings 
H∗(M1, F2) and H∗(M2, F2).

Our main result is the following theorem.

Theorem. Hantzsche–Wendt manifolds are cohomological rigid.

The Theorem answers the question from [2, problem 4.3].
For the proof we introduce a new presentation of HW -manifolds. We consider these 

manifolds rather as a finite quotient of the torus than a quotient of the Rn. Here, we 
use an obvious equivalence Rn/Γ = (Rn/Zn)/G = Tn/G, where Γ is a Bieberbach group 
from (1). According to the definition of n-dimensional HW -manifold we shall define a 
(n × n)-HW -matrix A. The analysis of properties of the matrix A is used in the proof. 
Moreover, we apply the Lyndon–Hochschild–Serre spectral sequence {Ep,q

r , dr} of the 
covering Tn → Tn/G with F2 coefficients. Since a holonomy representation ΦΓ is diagonal 
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Ep,q
2 = Hp((Z2)n−1) ⊗Hq(Zn). We shall only use the multiplicative structure of the first 

and second cohomology group. In particular, we shall consider the properties of the 
transgression homomorphism d2 : H1(Zn) → H2((Z2)n−1). Finally, another important 
point of the proof is an isomorphism of cohomology groups H1((Z2)n−1) and H1(Γ), 
which was proved in [6, Theorem 3.1]. Hence, we can consider elements of the image of 
the transgression homomorphism d2 as homogeneous polynomials of degree two which 
are equivalent to polynomial functions.

Let us present a structure of the paper. In the next section, we give a “new-old” 
definition of HW -manifold and we outline the proof of the theorem. In section 3 we 
define HW -matrix and prove some of its properties.

At the last section, we present the proof of the Main Lemma.

2. Proof of the Main Theorem

Let D = {gi | i = 0, 1, 2, 3}, where gi : S1 → S1, and ∀z ∈ S1 ⊂ C,

g0(z) = z, g1(z) = −z, g2(z) = z̄, g3(z) = −z̄. (3)

Equivalently, if S1 = R/Z, ∀[t] ∈ R/Z,

g0([t]) = [t], g1([t]) = [t + 1
2], g2([t]) = [−t], g3([t]) = [−t + 1

2]. (4)

Let (t1, t2, ..., tn) ∈ Dn and (z1, z2, ..., zn) ∈ Tn = S1 × S1 × ...× S1︸ ︷︷ ︸
n

. It is easy to see 

that D = Z2 × Z2, and g3 = g1g2. For k = 1, 2, 3 we have different projections

p(k) : D → F2 = {0, 1} (5)

such that p(k)(gk) = 1 and for i = 1, 2, .., n we have homomorphisms

p(k) ◦ pri : Dn → D p(k)

→ F2 (6)

given by the formula p(k) ◦ pri(t1, t2, ..., ti, ..., tn) = p(k)(ti).

We summing up values of the projections p(2) and p(3) in Table 1.

Table 1
Values of the projections from D → F2.

g0 g1 g2 g3

p(2) 0 1 1 0
p(3) 0 1 0 1
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The next, obvious formula

∀x ∈ D x = p(2)(x)2 + p(3)(x)3 (7)

will be useful later. We can define an action Dn on Tn as follows:

(t1, t2, ..., tn)(z1, z2, ..., zn) = (t1z1, t2z2, ..., tnzn). (8)

We have

Proposition 1. Let Mn be a HW-manifold of dimension n. Then there exists a subgroup 
(Z2)n−1 ⊂ Dn such that Mn = Tn/(Z2)n−1, where the action (Z2)n−1 on Tn is defined 
by (2) and (8).

Proof. Let π1(Mn) = Γ and (Bl, bl) ∈ Γ be the generators (2), l = 1, 2, .., n. On each 
coordinate, (4) defines gj ∈ D, j = 0, 1, 2, 3 which are determinated by projections p(1) ◦
pri, p(2) ◦ pri, p(3) ◦ pri. �

Let us start to prove that the graded ring H∗(Mn, F2) defines a manifold Mn. We 
have an exact sequence

0 → Z
n → Γ p→ (Z2)n−1 → 0, (9)

where Γ = π1(Mn). As we mentioned already in the introduction the image of a holon-
omy representation ΦΓ((Z2)n−1), is a subgroup of the group of all diagonal matrices of 
GL(n, Z). Moreover (see [6]) H1(Γ, F2) = (F2)n−1 for any Hantzsche–Wendt group Γ of 
dimension n. That is an observation which we shall use during the proof.

Since (Z2)n−1 ⊂ Dn the above maps p(k) ◦pri, k = 1, 2, 3 define homomorphisms from 

(Z2)n−1 → F2 ∈ Hom((Z2)n−1, F2) = H1((Z2)n−1, F2) 
[6]= H1(Mn, F2). Hence we can 

define elements

Ti = (p(2) ◦ pri) ∪ (p(3) ◦ pri) ∈ H2((Z2)n−1,F2),

where ∪ is a cup product. It is well known that H∗((Z2)n−1, F2) is isomorphic to 
F2[x1, x2, ..., xn−1]. Hence the elements p(k) ◦ pri = p

(k)
i correspond to

n−1∑
j=1

p(k)(pri(bj))xj =
n−1∑
j=1

p(k)(Aji)xj ∈ F2[x1, x2, ..., xn−1], (10)

where b1, b2, ..., bn−1 is the basis of (Z2)n−1 and k = 2, 3; i = 1, 2, ..., n. Here the matrix 
Aij , i = 1, 2, . . . , n − 1; j = 1, 2, . . . , n is related to HW -matrix (Definition 2) from the 
next section.
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We shall apply the Lyndon–Hochschild–Serre spectral sequence {Ep,q
r , dr} of (9). Since 

a holonomy representation ΦΓ is diagonal Ep,q
2 = Hp((Z2)n−1) ⊗Hq(Zn). Hence (see [3, 

Corollary 7.2.3 on p. 77]) we have an exact sequence (see [2, p. 770])

H1(Zn,F2)
d2→ H2((Z2)n−1,F2)

p∗

→ H2(Γ,F2), (11)

where d2 is a transgression and p∗ is induced by the above homomorphism p : Γ →
(Z2)n−1. In what follows we shall prove (see also [2, Theorem 2.7]) that a rank of

Im(d2) ⊂ H2((Z2)n−1,F2) ⊂ H∗((Z2)n−1,F2) � F2[x1, x2, ..., xn−1]

is equal to n.

Let us define a basis t̂i, i = 1, 2, . . . , n of H1(Zn, F2) = Hom(Zn, F2). For k ∈ Z, we shall 
write k̄ = 0 if k is even and k̄ = 1 if k is odd. Let (k1, k2, . . . , kn) ∈ Z

n and let

t̂i(k1, k2, . . . , kn) = k̄i, i = 1, 2, . . . , n.

We have

Proposition 2. d2(t̂i) = Ti = (p(2)◦pri) ∪(p(3)◦pri). Moreover elements Ti, i = 1, 2, . . . , n
are a basis of Im(d2).

Proof. By Theorem 2.5 (ii) and Proposition 1.3 of [2] and using (10) it follows that

d2(t̂i) =
∑
Ail=1

x2
i +

∑
i�=j

xixj ,

where the second sum is taken for such i, j that

(Ail, Ajl) ∈ {(1, 2), (2, 1), (1, 3), (3, 1), (3, 1), (3, 2), (2, 3)}.

On the other hand

Tl = p
(2)
l p

(3)
l =

n−1∑
i=1

p(2)(Ail)p(3)(Ail)x2
i +

+
∑

1≤i<j≤n−1
(p(2)(Ail)p(3)(Ajl) + p(2)(Ajl)p(3)(Ail)xixj . (12)

Comparing coefficients of the above two polynomials finishes the proof. �
The main idea of the proof of rigidity is an application of the above Proposition 2. 

It means, we show that any HW -manifold M , of dimension greater than three, define 
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elements in the cohomology ring H∗(M, F2) which determines M up to affine equivalence. 
In the Main Lemma, we shall prove an existence of n linear independence elements 
T1, T2 . . . , Tn ∈ Im(d2) such that for any i = 1, 2, . . . , n Ti = piqi. At the end of this 
section we give a method of a reconstruction of HW -group from the set {Ti}i=1,2,...,n.

Let us define

D = {y ∈ Im(d2) | y is a product of two polynomials of degree 1}. (13)

We shall prove that D has less than n + 2 elements from which we can reconstruct the 
basis T1, T2, . . . , Tn of Im(d2).

Main Lemma. Let n > 3, then there are the following possibilities for the structure of 
the set D:

1. D = {T1, T2, . . . , Tn};
2. D = {T1, T2, . . . , Tn, Ti + Tj}, and we can find a polynomial p of degree one such 

that p | Ti and p | Tj for some 1 ≤ i, j ≤ n. In the second case we can rediscover the set 
of generators T1, T2, . . . , Tn. �

Let M be HW -manifold of dimension n. From the Main Lemma, we know that there 
is a set D = {T1, T2, ..., Tn} ⊂ Im(d2) such that any Ti is a product of two polynomials 
pi and qi, i = 1, 2, . . . , n of a degree one. Let V be (n − 1)-dimensional F2 vector space. 
We define a linear map h : V ∗ → Dn, which simple version is (7) such that

hi(x) = pi(x)2 + qi(x)3, for i = 1, 2, . . . , n, (14)

where pi, qi ∈ V � V ∗∗. Hence, through formulas (10), (12) and the Table 1, Im(h), 
defines a Hantzsche–Wendt group.

Example 1. 1. Let V = gen{x1, x2, x3} and D = {x2
1 + x1x2, x1x2 + x1x3 + x2

2 + x2x3}. 
Put p1 = x1, q1 = x1 + x2, p2 = x1 + x2, q2 = x2 + x3. Hence a homomorphism h(x∗

1) =
(1, 2), h(x∗

2) = (3, 1) and h(x∗
3) = (0, 3). Here x∗

1, x
∗
2, x

∗
3 is a dual basis of V ∗. Finally we 

define a subgroup of D2 which generators are rows of the matrix⎡
⎢⎣ 1 2

3 1
0 3

⎤
⎥⎦ .

2. Let Zn−1
2 ⊂ Dn be a HW -group, and D a set from the Proposition 2. Assume that 

D = {p1q1, p2q2, . . . , pnqn}. Then

hi(x) = pi(x)2 + qi(x)3 = p(xi)2 + q(xi)3 = xi.

Hence for x ∈ Z
n−1
2 , h(x) = x and Im(h) = Zn−1

2 .



1050 J. Popko, A. Szczepański / Advances in Mathematics 302 (2016) 1044–1068
Let φ : H∗(M1, F2) → H∗(M2, F2) be an isomorphism of cohomology rings of 
HW -manifolds M1 and M2. From the Main Lemma for the both manifolds we have 
the sets of elements D1 and D2 such that φ(D1) = D2. Hence we obtain the affine 
equivalence manifolds M1 and M2. �
3. Properties of Hantzsche–Wendt matrices

Let us illustrate the Proposition 1 on two HW -manifolds of dimension 5, (see [8]). 
We shall denote by Γ1 and Γ2 its fundamental groups.

Example 2. A group Γ1 ⊂ E(5) is generated by

(B1, (1/2, 1/2, 0, 0, 0)), (B2, (0, 1/2, 1/2, 0, 0)),

(B3, (0, 0, 1/2, 1/2, 0)), (B4, (0, 0, 0, 1/2, 1/2)).

From above R5/Γ1 � T 5/(Z2)4, where (Z2)4 ⊂ D5 is defined by

(g1, g3, g2, g2, g2), (g2, g1, g3, g2, g2),

(g2, g2, g1, g3, g2), (g2, g2, g2, g1, g3).

Moreover a group Γ2 ⊂ E(5) is generated by

(B1, (1/2, 0, 1/2, 1/2, 0)), (B2, (0, 1/2, 1/2, 1/2, 1/2)),

(B3, (1/2, 1/2, 1/2, 1/2, 1/2)), (B4, (1/2, 0, 1/2, 1/2, 1/2)).

Hence, R5/Γ2 � T 5/(Z2)4 where generators of a group (Z2)4 ⊂ D5 are following

(g1, g2, g3, g3, g2), (g2, g1, g3, g3, g3),

(g3, g3, g1, g3, g3), (g3, g2, g3, g1, g3).

In what follows we shall write i for gi, i = 0, 1, 2, 3. Let A be a (n ×m) matrix with 
coefficients Aij ∈ D. For short A ∈ Dn×m. Let Ai (Aj) denote i-row (j-column) of a 
matrix A.

Definition 2. By HW -matrix we shall understand a matrix A ∈ Dn×n such that Aii = 1, 
Aij ∈ {2, 3} for i = j, 1 ≤ i, j ≤ n and if X ⊂ {1, 2, ..., n} and 1 ≤ #X ≤ n − 1 then the 
row 

∑
i∈X Ai has 1 on a some position.

Lemma 1. Any HW-manifold of dimension n defines a (n × n) HW -matrix.

Proof. Let (βi, bi), 1 ≤ i ≤ n − 1 be generators of the fundamental group of 
some n-dimensional HW-manifold M . Then i-generator defines i-row of some (n × n)
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HW -matrix, cf. (2), (4). See also Example 2 and Proposition 1. The last row is defined 
by the product β1β2 . . . βn−1 or equivalently is a sum of the first (n − 1) rows. It is easy 
to see that the first property of the above matrix follows from a definition, see [5, p. 4]. 
Since a holonomy group (Z2)n−1 acts free on Tn (or equivalently π1(M) is a torsion free 
group) the last part of lemma follows. �

We shall present some properties of HW -matrices.

Remark 1. Let σ ∈ Sn and let Pσ be the corresponding permutation matrix. It is not 
difficult to see that if A is HW -matrix then PσAP−1

σ also satisfies conditions of the Defi-
nition 2. Moreover, if A′ is a conjugation matrix of A, where conjugation means exchange 
at some column numbers 2 for 3, then A′ is again a HW -matrix. The HW -matrix is 
related to the matrix defined on page 6 of [5].

Remark 2. Let A be a (n × n) HW -matrix. Then

(p(2) + p(3))(A) =

⎡
⎢⎢⎣

0 1 1 ... 1 1
1 0 1 ... 1 1
...

...
...

. . .
...

...
1 1 ... 1 0 1
1 1 ... 1 1 0

⎤
⎥⎥⎦ . (15)

Let A ∈ Dm×n be a (m ×n) matrix with coefficients in D and (α1, α2, ..., αn) ∈ {2, 3}n. 
By p(α)(A) we shall understand a (m ×n)-matrix with coefficients in F2 which a i-column 
is equal to p(αi)(Ai).

Let M be a matrix. By defect of M we shall understand a number

d(M) = {number of columns of M} − rk(M).

Lemma 2. 1. Let M1 be a matrix M from which we remove some columns. Then

d(M1) ≤ d(M).

2. If A is a HW -matrix of dimension n and α ∈ {2, 3}, then

d(p(α)(A)) ≤ 1.

Proof. The first statement is clear. For the proof of a second one, let us assume 
that d(p(α)(A)) > 1. Hence rk(p(α)(A)) < n − 1. By definition there exists a non-
trivial X ⊂ {1, 2, ..., n − 1}, such that 

∑
i∈X p(α)(Ai) = 0. Finally p(α)(

∑
i∈X Ai) =∑

i∈X p(α)(Ai) = 0. This contradicts the Definition 2. �
Lemma 3. Let m < n and W ∈ Dm×n is a sub-matrix of some (n × n) HW -matrix. 
Then rk(p(α)(W )) = m.
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Proof. Similar to the proof of the last Lemma. �
A symmetric (m × m) matrix A ∈ (F2)m×m defines a nonoriented graph, graph(A)

with set of vertices {1, 2, ..., m} and two different vertices i and j are connected if and 
only if Aij = 1. We say that a matrix A is connected if a graph(A) is connected. Let 
A ∈ Dm×m be a symmetric matrix, then p(i)(A) are symmetric with coefficients in 
F2, i = 2, 3. We shall write i ∼2 j if i, j are at the same connected component of a matrix 
p(2)(A). Similar definition is for a relation i ∼3 j.

Lemma 4. Let a HW -matrix M have the following decomposition on the blocks:

M =
[

∗ 2 ∗
C A D
∗ 3 ∗

]
, (16)

where A is a symmetric matrix and 2, 3 are block matrices with all rows and columns 
equal 2 and 3 correspondingly. Then

(I) if i ∼2 j =⇒ Di = Dj;
(II) if i ∼3 j =⇒ Ci = Cj.

Proof. For the proof of (I) let us assume that i, j (where i < j) are connected by a 
2-edge; i.e. Ai,j = 2. Let r be some column of a matrix D. Let us consider a diagonal 
submatrix of the matrix M related to (i, j, r). It looks like

[
1 2 a
2 1 b
3 3 1

]
. (17)

The sums of the first two columns are zero. Since Lemma 3 a sum of elements of the 
last one is not zero. Hence a = b. We have just proved that if Ai,j = 2 then Di = Dj . It 
also means that if i ∼2 j then Di = Dj . The proof of the second point of the lemma is 
similar. �

The next lemmas are about possibilities of complement of some matrices to a 
HW -matrix. We shall first consider an odd case.

Lemma 5. Let A ∈ Dm×m be a symmetric matrix with 1 on the diagonal and {2, 3} off 
the diagonal with a column sums equal to 1. Assume that m > 1. Then a matrix

KA =
[

2
A
3

]
, (18)

cannot be complement to HW -matrix.

Proof. Let us assume that there exists a HW -matrix
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[
∗ 2 ∗
C A D
∗ 3 ∗

]
. (19)

From assumption m is an odd number and heights of the blocks 2 and 3 are also odd. 
We shall use induction. For m = 3

A =
[

1 a a
a 1 a
a a 1

]
. (20)

Here a = 2 or 3. If a = 3 then rk(p(2)(A)) = 1 and d(p(2)(A)) = 3 − 1 = 2 > 1. From 
Lemma 2 it is impossible. For a = 3 the proof is the same. Let us assume that m > 3.

1. We shall consider a matrix p(2)(A). We claim that there is no such decomposition as

p(2)(A) = B ⊕E,

such that a dimension of a matrix B is odd and > 1. In fact, in that case

A =
[
B̃ 3
3 Ẽ

]
. (21)

Since a column sums of A are equal to 1 and height of a block 3 under B̃ is even, a 
column sums of B̃ are 1. If KA has complement then KB̃ has a complement (where a 
dimension of a block 3 is greater on a dimension of E). But by induction it is impossible, 
since 1 < dimension(B̃) < m.

2. We claim that there is no such a nontrivial decomposition as

p(2)(A) = B ⊕E ⊕ F.

In fact since m is odd we have two possibilities:
(a) dimension of one component is odd and other components have dimension even
(b) dimension of all components are odd.

In the case (a) dim(B ⊕ E) > 1 and odd. Hence we consider decomposition p(2)(A) =
(B ⊕E) ⊕ F . But it is a previous case 1.
In case (b), since m > 3 there exists a component (for example B) which dimension is 
> 1. In that case we have a decomposition p(2)(A) = B ⊕ (E ⊕ F ) which was already 
considered in the point 1.

3. By definition we have a decomposition

p(2)(A) = B1 ⊕ ...⊕Bs,

where all components are connected matrices. From the above we can assume that s = 2
and odd component has a graph equal to one point or s = 1. Equivalently,
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(a) A =
[ 1 3

3 B

]
and p(2)(B) is connected or

(b) p(2)(A) is connected.

In the first case

p(3)(A) =
[

1 1
1 p(3)(B)

]
. (22)

Hence p(3)(A) is connected. Summing up, we have

(a) A =
[ 1 3

3 B

]
and both p(2)(B) and p(3)(A) are connected or

(b) p(2)(A) is connected.

If we exchange p(2) for p(3) in the above points 1., 2. and 3. with the similar arguments, 
we obtain finally two cases:

(a) A =
[ 1 3

3 B

]
and both p(2)(B) and p(3)(A) are connected or

(b) both p(2)(A) and p(3)(A) are connected.

We come back to the beginning of the proof. We shall try to figure out matrices C
and D. From definition of ∼3 and because p(3)(A) is connected we conclude that all 
rows of the matrix C are identical. By conjugation we can assume that C = 2. Using 
the same arguments and definition of ∼2 together with a connectedness of p(2)(B) we 
conclude that with exception of the first row, all rows of the matrix D are the same. By 
conjugation and permutation we can assume that the first row of the matrix D is equal 
to [2, ...2, 3, ..., 3]. All other rows of a matrix D consist only 3. Summing up a matrix

W = [C A D]

is following

[
2
2

[
1 3
3 B

]
2
3

3
3

]
. (23)

Apply homomorphisms: p(3), [p(2), p(3)], p(2), p(2) to the corresponding columns we get a 
matrix

W ′ =
[

0
0

[
1 1
0 p(3)(B)

]
1
0

0
0

]
. (24)

We have rkW ′ = 1 + rk(p(3)(B)). From assumption sums of columns of a matrix A are 
equal to 1. Hence sums of columns of a matrix

(p(2), p(3))A =
[

1 1
(3)

]
(25)
0 p (B)
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are also equal to 1 and sums of columns of a matrix p(3)(B) are equal to 0. It means 
rk(p(3)(B)) < m − 1 and also rk(W ′) < m. From Lemma 3

rk(W ′) = rk(W ) = number of rows (W ) = m.

Hence a matrix W cannot be a matrix of some rows of HW -matrix.

We have to still consider a case when matrices p(2)(A) and p(3)(A) are connected. 
Similar to the above consideration, using relation ∼2 and ∼3 plus conjugation we can 
assume that

[C A D] = [2 A 3].

Hence all nonempty sums of rows of a matrix A include 1. For m > 1 it is impossible. �
The next lemma is an even version of the Lemma 5.

Lemma 6. Let A ∈ Dm×m be a symmetric matrix with 1 on the diagonal and {2, 3} off 
the diagonal with a column sums equal to 3. Assume that m > 1. Then a matrix

KA =
[

2
A
3

]
, (26)

cannot be a complement to some HW -matrix.

Proof. As in the proof of the previous lemma let us assume that there exists a 
HW -matrix [

∗ 2 ∗
C A D
∗ 3 ∗

]
. (27)

From assumption and Definition 2 m is an even number and a hight of the block 2 is 
even and 3 is odd. We shall use induction. For m = 4.

1. On the beginning let us consider the case, where p(2)(A) is not connected. We have 
two cases of matrices of dimension 4:

(a) A =
[ 1 3

3 B

]
, where B has a dimension 3 and

(b) A =
[
B 3
3 E

]
, where matrices A, B have rank two.

The case (a) is impossible since 1 +3 = 3. In the case (b) matrices A and B are symmetric 
with columns sums equal to 3. Hence B = E =

[ 1 2
2 1

]
, and

p(2)(A) =
[ 1 1 0 0

1 1 0 0
0 0 1 1

]
. (28)
0 0 1 1
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From the other side a matrix p(2)(KA) has rows of 1 (p(2)(2) = 1) and rows of 0
(p(2)(3) = 0). These rows are linear combination of rows of p(2)(A) and

rkp(2)(KA) = rkp(2)(A) = 2.

Finally d(KA) = 4 − 2 = 2 > 1 and from Lemma 2 we are done.

2. As the second step let us consider the case where p(3)(A) is not connected. We have 
to consider two cases of matrices of dimension 4:

(a) A =
[ 1 2

2 B

]
, and

(b) A =
[
B 2
2 E

]
, and B and E have dimension 2.

In the case (a) a matrix B is symmetric of dimension 3 with sums of columns 1. If 
KA has complement to HW -matrix then also a matrix KB has this possibility. But it is 
impossible by Lemma 5. In case (b) matrices B, E are symmetric with sums of columns 3. 
Hence B = E =

[ 1 2
2 1

]
and

p(2)(A) =
[ 1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

]
. (29)

In the matrix p(2)(KA) we have rows of 1 and 0. They are linearly dependent from the 
rows of p(2)(A). Hence

rkp(2)(KA) = rkp(2)(A) = 1

and

d(KA) = 4 − 1 = 3 > 1.

From Lemma 2 the matrix KA has not complement to the HW -matrix.

3. By the above points 1. and 2. we have that p(2)(A) and p(3)(A) are connected matrices. 
As in the proof of Lemma 5 using relations ∼2, ∼ 3 and conjugations of matrices we can 
assume that

[C A D] = [2 A 3].

By assumption a sum of all rows of the above matrix has 1 on a some position. We can 
see easily that it is impossible at the first and the third block. For a matrix A it is also 
impossible since m is even. This contradicts our assumption that m < n.

Let us assume that m > 4. We shall consider three steps.

1. Assume that p(2)(A) is not connected. We have to consider two cases:
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(a) p(2)(A) is a direct sum of two odd blocks,
(b) p(2)(A) is a direct sum of two even blocks.

Hence A =
[
B 3
3 E

]
. In the case (a) since dimensions of B, E are odd and sums of column 

of A are 3 we obtain that sums of column of B and E are 0. Moreover, if B is an 
odd diagonal submatrix of HW -matrix then by Definition 2 a sum of rows of B should 
enclose 1. But this is impossible and also case (a) is impossible.

In case (b) since dimensions of B, E are even and sums of column of A are 3 we obtain 
that sums of column of B and E are 3. Moreover either the matrix B or the matrix E has 
rank > 2. Assume the matrix B has such a property. If a matrix KA has complement, 
then a matrix KB has complement to HW -matrix. But by induction it is impossible.

2. Assume that p(3)(A) is not connected. We have to consider two cases. The same as in 
the step 1.

(a) p(3)(A) is a direct sum of two odd blocks,
(b) p(3)(A) is a direct sum of two even blocks.

Hence A =
[
B 2
2 E

]
. In the first case since dimensions of B, E are odd and sums of column 

of A are 3 we obtain that sums of column of B and E are 1. Moreover, either the matrix 
B or the matrix E has rank > 2. Assume the matrix B has such a property. If a matrix 
KA has complement then (after permutation of indexes) a matrix KB has complement 
to HW -matrix. But by Lemma 5 it is impossible. In the second case, since dimensions 
of B, E are even and sums of column of A are 3 we obtain that sums of column of B and 
E are 3. Moreover, either the matrix B or E has rank > 2. Assume the matrix B has 
such a property: If a matrix KA has complement then a matrix KB has complement to 
HW -matrix. But by induction it is impossible.

We can assume that matrices p(2)(A) and p(3)(A) are connected. As in the previous cases 
we can assume that

[C A D] = [2 A 3].

By Definition 2 a sum of all rows should enclose 1. Since m is even and m < n we have 
a contradiction. �
4. Proof of the Main Lemma

We keep the notation from previous sections, but we also need a new definitions. 
Denote by Pn an algebra of all subsets of the set {1, 2, . . . , n}. Let | U | denote the 
number of elements of a set U ∈ Pn modulo two. We have an isomorphism of algebras 
I : Fn

2 → Pn, where

I(x) = {i | xi = 1}, x ∈ F
n
2 (30)

is an indicator.
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Definition 3. Let A be a HW -matrix. The function J : Pn → Pn is defined by

J(U) = {s |
∑
i∈U

Ais = 1}, (31)

where U ∈ Pn.

Remark 3. In what follows we shall use a formula (10) with a basis bi, 1 ≤ i ≤ n − 1. Let 
us consider a map l : Pn → F2[x1, . . . , xn−1] given by a formula

lZ :=
∑
i∈Z

xi. (32)

In this language the formula (10) for k = 2, 3 we can write as

n−1∑
j=1

p(k)Ajixj = lS

where S = {p(k)(A1,i), p(k)(A2,i), ..., p(k)(An−1,i)}.

Proposition 3. The map J has the following properties:

1. U = 0, 1 then J(U) = 0, here 0, 1 denote the trivial additive and multiplicative 
element of the algebra Pn respectively;

2. J(U + 1) = J(U) where U + 1 = U ′ denotes a complement of the subset U in the set 
{1, 2, ..., n};

3. J({i}) = {i}, i = 1, 2, ..., n;
4. if | U |= 1 then J(U) ⊂ U ;
5. if | U |= 0 then J(U) ⊂ U ′.

Proof. Elementary calculations with support of the matrix (15). �
Any polynomial of F2[x1, x2, . . . , xn] we shall identify with a polynomial map Fn

2 →
F2. Hence by indicator function (30) the formula (32) has the following presentation 
lZ(ej) = {j ∈ Z}, where Z ∈ Pn. Since the transgressive elements Ti ∈ F2[x1, . . . , xn−1]
we define a split monomorphism of rings F2[x1, . . . , xn−1] 

φ→ F2[x1, . . . , xn] such that 
T̄i = φ(Ti) ∈ F2[x1, . . . , xn], i = 1, . . . , n. Here, φ(xi) = xi + xn, i = 1, 2, . . . , n − 1. 
Obviously #D = #φ(D).

From definition, for polynomial functions T̄i we have T̄i(ej) = δij , where 1 ≤ i, j ≤ n

and ei ∈ (F2)n is the standard basis. Hence, by the isomorphism (30) a map J (see 
Definition 3) is equivalent to a function T : Fn

2 → F
n
2 , T (x) = (T̄1(x), T̄2(x), . . . , T̄n(x)), 

where x ∈ F
n
2 . Hence and from an equation (12) we have a commutative diagram
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F
n
2 F

n
2

Pn Pn

I

T

I

J

. (33)

We shall use these observations in the proof of the Main Lemma. Moreover, we shall 
apply a remark that homogeneous polynomials of degree 2 are recognized by their poly-
nomial functions. Let S, Z1, Z2 ∈ Pn. From definition if

∑
i∈S

T̄i = lZ1 · lZ2

then S = Z1 ∩ Z2.

Proposition 4. The following conditions are equivalent.

(i) 
∑

i∈S T̄i = lZ1 · lZ2

(ii) ∀U ∈ Pn|J(U)S| = |UZ1| · |UZ2|.

Proof. We shall use (33) and an isomorphism I. Let x ∈ F
n
2 , U = I(x). We have

∑
i∈S

T̄i(x) =
∑

i∈S∩I(T̄ (x))

1 = | I(T̄ (x)) ∩ S |= | J(I(x)) ∩ S |= | J(U) ∩ S | .

From the other side

lZ1(x) · lZ2(x) =
∑

i∈Z1∩I(x))

1 ·
∑

i∈Z2∩I(x))

1 = |UZ1| · |UZ2|.

This finishes a proof. �
Corollary 1. Let us assume the condition (ii) of Proposition 4, then

1. |Z1| or |Z2| is even,
2. if S = 0 then |Z1| and |Z2| are even
3. if S = Z1 and S = Z2 then Z1 ∪ Z2 = 1.

Proof. 1. Since J(1) = J({1, 2, . . . , n}) = 0 the condition is true.

2. Since J(U) = J(U ′) = J(U + 1) we have

|UZ1||UZ2| = |(1 + U)Z1||(1 + U)Z2|.

Hence
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|Z1||Z2| + |Z1||UZ2| + |Z2||UZ1| = 0.

From a point 1. we can assume that |Z1| = 0 (or |Z2| = 0) and |Z2||UZ1| = 0. If |Z2| = 1
then ∀U ∈ Pn, |UZ1| = 0 and Z1 = 0. Since S = Z1 · Z2 = 0 we have a contradiction.

3. Let a ∈ Z1\S, b ∈ Z2\S and c /∈ Z1∪Z2. Put U = {a, b, c}. We have J(U)S ⊂ US = 0
and UZ1 = {a}, UZ2 = {b}. Hence

0 = |J(U)S| = |UZ1||UZ2| = 1 · 1 = 1.

This is a contradiction. �
Definition 4. Define

σS
a :=

∑
i∈S

Aa,i,

where a ∈ {1, 2, . . . , n}, S ⊂ {1, 2, . . . , n} and A ∈ Dn×n.

Let us present relations between the above definition and the function J .

Proposition 5. Let A be (n × n) HW -matrix, a, b ∈ {1, 2, . . . , n} and S ∈ Pn. Then

1. |J({a, b})S| = σS
a + σS

b , where a, b /∈ S;

2. |J({a, b})S| = σS
a + σS

b + Aa,b + 1, where a /∈ S, b ∈ S.

3. |J({a, b})S| = σS
a + σS

b + Aa,b + Ab,a, where a, b ∈ S.

Proof. 1. By a point 5. of Proposition 3 we know that J({a, b}) ⊂ {a, b}′. If 
J({a, b})S = ∅ we are done. On the contrary we shall consider the following 
cases.
(a) Assume |S| = 1 and |J({a, b})S| = 1. We have two rows, which correspond to a
and b,

2 2 . . . 2 2
2 3 . . . 3 2

(34)

with a number of columns equal to |S|, and a number of columns with different coefficients 
equal to J({a, b}). Hence a sum of the upper row is equal to 2 and a sum of the down 
row is equal to 3. This finishes a proof in this case.
(a’) Assume |S| = 1 and |J({a, b})S| = 0. We also have (34) and a sum of the upper row 
is equal to 2 and a sum of the down row is also equal to 2. This finishes a proof in this 
case.
(b) Assume |S| = 0. Then again we have two subcases |J({a, b})S| = 1, then a sum of 
the upper row of (34) is equal to 0 and a sum of the down row is equal to 1. The proof 
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of the case is complete. When |J({a, b})S| = 0 a sum of the upper row of (34) is 0 and 
a sum of the down row is also 0. This finished a proof of point 1. The proofs of other 
cases are similar and we put it as an exercise. �

Using the above language we shall prove that for a HW -manifold there exists only a 
limited number of transgressive elements which are a product of degree one nontrivial 
polynomials.

Proposition 6. Let A be a (n × n) HW -matrix, (n > 3) then there does not exist not 
empty set S ⊂ {1, 2, . . . , n} such that

∀U ∈ Pn|J(U)S| = |US|. (35)

Proof. It is the case S = Z1 = Z2. Let us assume (35). We are going to divide the proof 
into four steps.

Step 1. We claim that, if a1, a2 /∈ S and b ∈ S then Aa1,b = Aa2,b. In fact, from (35) for 
U = {a1, a2}, |J({a1, a2})S| = |{a1, a2}S| = 0. By Proposition 5 (1.), σS

a1
= σS

a2
:= σ. If 

a /∈ S then from Proposition 5 (2.)

1 = |J({a, b})S| = |{a, b}S| = σS
a + σS

b + Aa,b + 1 = σ + σS
b + Aa,b + 1.

Hence ∀a /∈ S, Aa,b = σ + σS
b and Step 1. is proved.

Step 2. We claim that, if US = 0 then J(U)S = 0. In fact from Step 1. all elements 
(numbers of columns) of J(U) which are considered have not the first indexes from S
and are equal each other. Then J(U)S = 0.
Step 3. We claim that, if S = 0 then #S = n − 1. From Step 2. if 0 = U ⊂ S′ then 
J(U)S′ = 0. Let B be a diagonal submatrix of the matrix A related to the set S′. Then 
B is a quadratic matrix with 1 on the diagonal and 2, 3 otherwise. Moreover all sums 
of rows of B have at some position an element 1. Hence, the only possible matrix B is 
(1 × 1) matrix.
Step 4. We claim that, if S = 0 then n ≤ 3. For the proof, let us assume that n > 3. From 
the Step 3. we can assume that S = {2, 3, . . . , n}. Let l2 denote a number of 2 at the first 
column of A. We shall prove that |l2| = 0. In fact, we can assume that 0 < l2 < n − 1
and at the first column, from the top we have first 2 then going down we have 3. On 
the contrary, suppose that l2 is odd and let v be a sum of the first 2l2 + 1 rows. Since 
l2 +1 is even v has not 1 on places 1, 2, . . . , l2 +1. Then it has 1 on the position > l2 +1. 
Hence there exists k ≥ l2 + 1 such that A1,r = Ak,r or equivalently A1,r +Ak,r = 1. Let 
us consider a diagonal submatrix

[
1 ∗ A1,r
2 1 Ak,r

]
. (36)
3 ∗ 1
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A sum of elements at the first column and at the third column is 0, then it at the second 
column has to be = 0. Let U = {1, k, r}. Since j(U) ⊂ U and n > 3, J(U) = {k}. Finally

1 = |{k}S| = |J(U)S| = |US| = |{k, r}S| = 0.

That is a contradiction and l2 is even. Moreover if l3 is a number of 3 at the first column 
then | l3 = n − 1 − l2 |= 0 and a sum 1 + l2 ∗ 2 + l3 ∗ 2 = 1. But a sum of all rows is zero 
and we have a contradiction. This finishes a proof. �
Corollary 2. At the space Im(d2) we have not squares.

Proof. If lZ ∈ Im(d2), then S = Z = Z. For n > 3 it is impossible. �
Proposition 7. Let S, Z ⊂ {1, 2, . . . , n} such that 0 = S = Z. Let A, J be as in Proposi-
tion 6. Assume that

∀U ∈ Pn | J(U)S |= | US | · | UZ |

then #S = 2, | Z |= 0 and S ⊂ Z.

Proof. On the beginning we claim that up to permutation and conjugation,

A =
[
∗ 2 ∗
∗ B ∗
∗ 3 ∗

]
, (37)

where B is a symmetric matrix with a column sums 3. Moreover a block 2 has rows 
indexed by numbers from the set Z \S and a block 3 has rows indexed by numbers from 
the set 1 + Z = Z ′. In fact, from Proposition 4, S ⊂ Z and Corollary 1, S ⊂ Z and 
|S| = |Z| = 0. Let us change the indexes of A such that

A =
[
∗ E ∗
∗ B ∗
∗ F ∗

]
, (38)

and E has rows indexed by numbers from the set Z \S, B has rows indexed by numbers 
from S and F is indexed by 1 + Z = Z ′. From the point 1 of Proposition 5, for a, b /∈ S

σS
a + σS

b = |J({a, b}S| = |{a, b}S| · |{a, b}Z| = 0.

Hence σS
a = σS

b . Let σ := σS
a , for a /∈ S.

By the point 2 of Proposition 5 for b ∈ S and a /∈ Z,

Aa,b = σ + σS
b . (39)

From the above all columns of the matrix F are constant. Again from the point 2 of 
Proposition 5 for b ∈ S, a ∈ Z \ S,
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Aa,b = σ + σS
b + 1. (40)

It follows that also columns of the matrix E are constant. Let us conjugate columns 
of the matrix A such that E = 2. In that case σ = 0 since for a ∈ Z \ S we have 
σ = σS

a = |S| · 2 = 0.

From (40), for b ∈ S, 2 = 0 +σS
b +1. Hence σS

b = 3 and F = 3, because from the formula 
(39) Aa,b = 0 +3, for a ∈ Z ′ and b ∈ S. Finally, from Proposition 5 for a, b ∈ S we have

Aa,b + Ab,a = 3 + 3 + Aa,b + Ab,a = σS
a + σS

b + Aa,b + Ab,a =

= |J({a, b})S| = |{a, b}S| · |{a, b}Z| = 0. (41)

To finish a proof it suffices to apply Lemma 6. �
Proposition 8. We keep the notation from the previous propositions. Let us assume 
S, Z1, Z2 ∈ Pn such that 0 = S, S = Z1, S = Z2 and

∀U ∈ Pn|J(U)S| = |UZ1| · |UZ2|

then #S = 1, |Z1| = |Z2| = 0 and Z1 + Z2 = 1.

Proof. A proof is similar to the proof of Proposition 7. On the beginning we show that 
(up to permutation and conjugation)

A =
[
∗ 2 ∗
∗ B ∗
∗ 3 ∗

]
, (42)

where B is a symmetric matrix of odd dimension with sums of columns 1, a block 2
is indexed by the set Z1 \ S and a block 3 is indexed by the set Z2 \ S. In fact, from 
assumption and Corollary 1, S = Z1Z2, |Z1| = |Z2| = 0 and Z1 +Z2 = 1. Hence |S| = 1. 
Let us change the order of rows in the matrix A such that

A =
[
∗ E ∗
∗ B ∗
∗ F ∗

]
(43)

and E is indexed by Z1 \ S, B by S and F by Z2 \ S. From Proposition 5 we have 
∀a, b ∈ Z1 \ S, σS

a = σS
b := σE . With similar consideration we have ∀a, b ∈ Z2 \ S, σS

a =
σS
b := σF . Moreover, by Proposition 5 (2) for b ∈ S and a ∈ Z1 \ S,

Aa,b = σE + σS
b + 1. (44)

From the above, all columns of the matrix E are the same. By analogy for b ∈ S and 
a ∈ Z2 \ S,

Aa,b = σF + σS
b + 1 (45)
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and columns of the matrix F are also constant. Let us conjugate columns of A such that 
E = 2. Then σE = 2, because for a ∈ Z1 \S, σE = σS

a = |S| ·2 = 2 and for b ∈ S, σS
b = 1. 

The last equality follows from (44) because 2 = 2 + σS
b + 1. Similarly, by (45) for b ∈ S

and a ∈ Z2 \S, we have Aa,b = σF + 1 + 1 = σF and the matrix F is constant and equal 
to σF . Finally, a matrix B is symmetric since from Proposition 5

σS
a + σS

b + Aa,b + Ab,a = |J({a, b}S|

what means,

Aa,b + Ab,a = |{a, b}Z1| · |{a, b}Z2| = 0.

We have still to show that σF = 3. In fact from assumption a column’s sums of B are 1. 
Since B is symmetric the same is true for rows. Let us calculate a sum of some column 
of A:

(|Z1| − |S|)2 + 1 + (|Z2| − |S|)σF = 2 + 1 + σF = 3 + σF = 0.

To finish a proof of Proposition we have to apply Lemma 5. �
Summing up we have the following two possibilities:

I. #S = 1 and Z1 + Z2 = 1;
II. #S = 2 and S = Z1, S = Z2 or S = Z2.S = Z1.

Let us recall that Im(d2) is a n-dimensional Z2-space generated by Ti, i = 1, 2, 3, . . . , n. 
We are interested in description of the set D of elements in Imd2 which are a product of 
two nontrivial linear polynomials, see (13). We claim that D ≤ n + 1. In what follows, if 
it does not give a contradiction we shall write Ti for T̄i, i = 1, . . . , n.

Lemma 7. Let w ∈ D, then w = Ti or w = Tj + Tk for some 1 ≤ i, j, k ≤ n.

Proof. On the beginning we shall prove that Ti +Tj is a product of two nontrivial linear 
polynomials if and only if Ti, Tj have a common component. It means there exists p = 0
s.t. p|Ti and p|Tj . Let Ti + Tj have a common component, then from the above case II 
we can assume that j = i + 1 and the matrix A enclose:

...

2 2[
1 2
2 1

]

3 3

... .
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By definition

Ti = (x1 + · · · + xi + xi+1)(xi + xi+2 + · · · + xn)

Ti+1 = (x1 + · · · + xi + xi+1)(xi+1 + · · · + xn).

For the proof of the opposite conclusion we shall need

Definition 5. Let X be a subset of some monoid. By ΓX we define a graph with the 
vertex set X and two vertices a, b are connected by an edge a f b if and only if f |a
and f |b. Put Γ := ΓT1,T2,...,Tn

.

We claim that for n > 3 the graph

i f j g k (46)

is not a subgraph of Γ, where i := Ti, i = 1, 2, . . . , n. In fact we have two possibilities:

1. f = g. Let i = 1, j = 2, k = 3 and let I be an ideal generated by (f, T4, . . . , Tn) in 
the polynomial ring. Since there exists a nontrivial solution of system of (n − 2) linear 
equation in (n − 1) linear space an algebraic set V(I) is not trivial. It means 0 = x ∈
V(I). From definition x ∈ V(I′), where I′ is an ideal generated by (T1, T2, . . . , Tn). But 
it is impossible.
2. f = g. Using permutation of indexes and conjugation we can assume that in 
HW -matrix A, j = i + 1, k = i + 2. Recall that S = {i, i + 1} and A is as in Lemma 6. 
Hence it has a diagonal block related to rows (columns) {i, i + 1, i + 2}

[
1 2 b
2 1 a
3 3 1

]
, (47)

and a matrix A has upper two first columns of (47) only elements 2, but lower only 
elements 3. Let us consider polynomials Ti, Ti+1 and Ti+2 for xs = 0, s /∈ {i, i + 1, i + 2}
and denote it by T̂i respectively. We have

T̂i = (xi + xi+1)(xi + xi+2)

and

T̂i+1 = (xi + xi+1)(xi+1 + xi+2).

The both polynomials are divided by (xi + xi+1). Hence T̂i+1 and T̂i+2 are divided by 
(xi+1 + xi+2). From the above we can observe that

T̂i+2 = (xi+1 + xi+2)(xi+2 + xi). (48)
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By (48) and definition we get a = b. Hence a sum of all columns of the matrix (47) are 
equal to 0. But it is impossible, since n > 3. This finishes a proof of our claim and we 
have

Corollary 3. For n > 3 all connected components of a graph Γ are points or edges 
i f j. �
Corollary 4. For n > 3, D = {T1, T2, ..., Tn} or D = {T1, T2, ..., Tn, Ti + Tj} for some 
1 ≤ i, j ≤ n.

Proof. Conversely, suppose that edges

1 f 2 and 3 g 4

are components of the graph Γ. Let us consider an ideal J = (f, g, T5, . . . , Tn) in poly-
nomial ring. Since there exists a nontrivial solution of system of (n − 2) linear equation 
in (n − 1) linear space an algebraic set V(J) is not trivial. It means 0 = x ∈ V(J). But 
from definition x ∈ V(I’), where J′ is an ideal generated by (T1, T2, . . . , Tn). But it is 
impossible. This finishes a proof. �

Let us prove the Main Lemma.

Main Lemma. Let n > 3, then there are the following possibilities for the structure of 
the set D:

1. D = {T1, T2, . . . , Tn};
2. D = {T1, T2, . . . , Tn, Ti + Tj}, and we can find a polynomial p of degree one such 

that p | Ti and p | Tj for some 1 ≤ i, j ≤ n. In the second case we can rediscover the set 
of generators T1, T2, . . . , Tn.

Proof. We start from the simple observation. If i = j and Ti = p · q, Tj = p · r then 
∀i = 1, 2, . . . , n q + r is not divided Ti. In fact q + r = p since in other case Ti + Tj =
p(q + r) = p2. By Corollary 2 it is impossible. Hence Ti and Tj are also not divided by 
q + r. Moreover, if Tr = (q + r)s then Ti + Tj + Tr = (q + r)(p + s). By Proposition 7, 
a decomposition for #S = 3 is impossible. Let us prove the second point of the above 
lemma. From definition the graph ΓT1,...,Tn

has connected components which are vertices 
for r /∈ {i, j}, of the triangle with vertices Ti, Tj , Ti + Tj and a constant label which is 
a component of Ti and Tj . Let Ti = p · q and Tj = p · r then Ti + Tj = p(q + r). The 
triangle is a connected component of a graph because by (46) for r /∈ {i, j} elements 
p, q, r do not divide Tr. Also from the above simple observation, the element (q +r) does 
not divide Tr.

We continue the proof of the Main Lemma. Let w = ξη where ξ and η are linear 
polynomials. Let us define s(w) := ξ+η. Since HW -manifolds are oriented 

∑
i s(Ti) = 0. 
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We claim that if Ti + Tj ∈ D, then s(ξ) + s(η) recognizes subsets of order two of the 
set {Ti, Tj , Ti + Tj}. In fact, let Ti = p · q, Tj = p · r, then Ti + Tj = p(q + r) and 
s(Ti) + s(Tj) = q + r, s(Ti) + s(Ti + Tj) = r, s(Tj) + s(Ti + Tj) = q.

Let n > 3, then there are the following possibilities for the structure of the set D:

1. D = {T1, T2, . . . , Tn};
2. D = {T1, T2, . . . , Tn, Ti + Tj}, for some 1 ≤ i, j ≤ n. Let n > 3 if D has n elements 

we are done. If it has (n + 1) elements then the graph ΓT1,T2,...,Tn
has (n − 2) discrete 

connected components Dc and a triangle. We proceed in two steps:

1. Put sDc :=
∑

a∈Dc s(a)

2. From the triangle we take a unique pair ξ, η such that

s(ξ) + s(η) + sDc = 0.

Hence {T1, T2, . . . , Tn} = {ξ, η} ∪D. This finishes a proof of the Main Lemma. �
For illustration of possibilities of the structure of the set D we present two examples.

Example 3. Let G ⊂ D5 correspond to HW -matrix

⎡
⎣ 1 2 2 2 2

2 1 3 2 2
3 2 1 3 2
3 2 3 1 3
3 3 3 2 1

⎤
⎦.

The set

D = {T1 = (x1 + x2)(x1 + x3 + x4), T2 = (x1 + x2 + x3 + x4)x2,

T3 = (x1 + x3)(x2 + x3 + x4)), T4 = (x1 + x2 + x4)(x3 + x4),

T5 = (x1 + x2 + x3)x4}.

(49)

From Remark 1 the above group is isomorphic to the group Γ1 of the Example 2. The 
next example illustrates the second case of the Main Lemma.

Example 4. Let a matrix 

⎡
⎣ 1 2 2 2 2

2 1 3 2 2
2 2 1 3 2
2 2 2 1 3
3 3 2 2 1

⎤
⎦ ∈ D5×5 be the second HW -matrix of dimension 5.

In this case we have

D = {T1 = (x1 + x2 + x3 + x4)x1, T2 = (x1 + x2 + x3 + x4)x2,

T3 = (x1 + x3 + x4)(x2 + x3), T4 = (x1 + x2 + x4)(x3 + x4),

T5 = (x1 + x2 + x3)x4, T1 + T2}.

(50)
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