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1 Introduction

Let M be a closed Riemannian manifold of dimension n. We shall call M a
Generalized Hantzsche-Wendt manifold (GHW manifold for short) (cf. [11])
if the holonomy group of M is isomorphic to (Z2)

n−1, where Z2 is the ring of
integers modulo 2. Likewise, we shall call the fundamental group Γ = π1(M).
By theorems of Cartan-Ambrose-Singer and Bieberbach [13, Cor. 3.4.7, p.
110], the fundamental group Γ is an extension of Z

n by Z
n−1
2 . Hence, we have

the short exact sequnce of groups

(∗) 0 → Z
n → Γ

p
→ (Z2)

n−1 → 0.

Moreover, Γ is a discrete and torsion free subgroup of E(n) = O(n) n R
n.

Let us recall some known properties of the GHW manifolds (groups). In the
oriented case, when Γ is contained in SO(n) n R

n, which is only possible for
n odd, they are rational homology spheres (cf.[11]), and there are pairs of
such manifolds that are isospectral and but are not homeomorphic ([7]). It
is also known that for all oriented GHW manifolds, the first homology group

∗The author was supported by Polish grant KBN - 0524/H03/2006/31 and IHES in
France
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is exactly the holonomy group, (cf. [10]). We should also mention that there
are relations between the oriented GHW groups and the Fibonacci groups
F (2n, 2(2n + 1)), (cf. [12]). More precisely, there exists an epimorphism
Φ2n : F (2n, 2(2n+1)) → Γ2n+1, n ≥ 1, where Γ2n+1 will be defined in section
3, Example 2 as a specific oriented GHW group of rank (2n + 1). Moreover,
the Nielsen number is the absolute value of the Lefschetz number for any
continuous map on a given orientable GHW; this is an analogue of a theorem
of Anosov for continuous maps on nilmanifolds (cf. [2]). The number of
GHW manifolds grows exponentially with the dimension ([7]). Recently,
K.Dekimpe and N.Petrosyan [3] determined the homology of some oriented
GHW in low dimension. They proved that in dimension 5 two oriented GHW
groups have the same homology and in dimension 7 there are 4 classes of such
manifolds with different homology.

In this note we establish a connection between the GHW groups and the
theory of quadratic forms over Z2. Based on it, we introduce a new invariant
that may be useful in the classification or recognition of Hantzsche-Wendt
groups. We consider the quotient by subgroups of index two of the maximal
abelian subgroup Z

n. Let A ⊂ Z
n be a subgroup, such that | Z

n : A |= 2. We
shall prove (see Lemma 2) that A ⊂ Γ is a normal subgroup and F = Γ/A
is a central extension of Z2 by (Z2)

n−1. Then, to each such extension we
shall associate (Theorem 1) a quadratic form QΓ

A (over Z2) together with an
alternating, bilinear, symmetric form BΓ

A. It is not difficult to present the
Gram-Matrix of BΓ

A. In the last section, we shall give examples, and discuss
some relations between the properties of BΓ

A and the group F. For some
special subgroups D ⊂ Z

n, we shall present these relations with all details
(see Theorem 4).

Roughly speaking, our method is to try to use this central extension to
recognize the GHW groups. Computer calculations show that this method
works at least in dimension 5 and 7.

In a special case this method was used in [4, Prop. 3.5,p.184] and [12, p.371-
378].

The author would like to thank B.Putrycz for his help with the computer
calculations, Andreas Zastrow for his help in the improving the final presen-
tation and the referee for the constructive remarks.
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2 Definition of quadratic form

In this section Γ will denote a generalized Hantzsche-Wendt group. The
above sequence (∗) defines, by conjugation, a holonomy representation

hΓ : (Z2)
n−1 → GL(n, Z).

From [11] it is known that the image hΓ((Z2)
n−1) in GL(n, Z) is a group of

diagonal matrices with diagonal entries ±.

We have,

Lemma 1 The free abelian group Z
n has precisely 2n − 1 subgroups of index

2.

Proof: We have a short exact sequence of abelian groups

0 → 2(Zn) → Z
n → (Z2)

n → 0.

There are 2n − 1 different, nontrivial elements of (Z2)
n. Any such element

defines a subgroup of index two.

�

Lemma 2 Let A ⊂ Z
n be a subgroup of index two of the maximal abelian

subgroup of Γ. Then A is a normal subgroup of Γ, and F is the central ex-
tension of Z2 = Z

n/A by Z
n−1
2 .

Proof: Assume Γ ⊂ E(n) = O(n) n R
n. For any a ∈ A and (G, g) ∈ Γ,

where G ∈ O(n) and g ∈ R
n, we have

(G, g)(I, a)(G, g)−1 = (G, G(a) + g)(G−1,−G−1(g)) =

= (I,−g + G(a) + g) = (I, G(a)).

By definition and from Lemma 1, we have 2(Zn) ⊂ A. Moreover, since G is
the diagonal matrix, then (G− I)x ∈ 2(Zn), for any x ∈ Z

n. Hence G(a) ∈ A
and the Lemma is proved.

�
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Theorem 1 To any generalized Hantzsche-Wendt group Γ of dimension n ≥
3 and any subgroup A of index two of the maximal abelian subgroup Z

n, we
can associate a quadratic function

QΓ

A : (Z2)
n−1 → Z2

and the associated alternating, bilinear quadratic form

BΓ

A : (Z2)
n−1 × (Z2)

n−1 → Z2.

Moreover, if n > 3, and Γ is oriented, then BΓ
A 6≡ 0 for any A.

Proof: We shall define the quadratic form QΓ
A and its associated alternating,

bilinear quadratic form BΓ
A with the help of our group Γ ⊂ E(n) = O(n)nR

n.
Let (X, x), (Y, y) ∈ Γ, mapped by p to X, Y ∈ V := (Z2)

n−1, where X, Y ∈
O(n) and x, y ∈ R

n. We have

BΓ

A(X, Y ) = (X, x)(Y, y)(X, x)−1(Y, y)−1 = (X−I)y−(Y −I)x ∈ Z2 = Z
n/A

and
QΓ

A(X) = (X, x)2 = (X + I)x ∈ Z2 = Z
n/A.

It is easy to see that BΓ
A and QΓ

A are well defined. It means that they do
not depend on the choice of an element (X, x) ∈ Γ. The bilinear form BΓ

A is
alternating. In fact,

BΓ

A(X, X) = (X − I)(x + a) − (X − I)x = (X − I)a ∈ A,

where (X, x), (X, x+a) ∈ p−1(X) and a ∈ Z
n. We still have to prove the last

assertion. But this follows because the commutator subgroup of Γ is equal
to the translation subgroup, cf. [10, Theorem 3.1].

�

Remark 1 A. We shall see in the next section that for different translation
subgroups A1, A2 it can happen that BΓ

A1
= BΓ

A2
. Moreover, for different Γ1

and Γ2, BΓ1

A can be equal to BΓ2

A .

B. The function QΓ
A and the form BΓ

A correspond to the central short exact
sequence of finite groups (cf. Corollary 1)

0 → Z2 → F → (Z2)
n−1 → 0.
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Let us recall the basic facts about the quadratic forms over the field Z2. We
shall follow [1] and [5]. Let V be a finite dimensional vector space over Z2

and Q : V → Z2 be a function. We shall call Q a quadratic form if Q(0) = 0
and

(∗∗) B(x, y) = Q(x + y) + Q(x) + Q(y)

is bilinear, where x, y ∈ V.

Example 1 Let V be the 2-dimensional vector space with basis a, b and
B(a, b) = 1, B(a, a) = B(b, b) = 0. There are two quadratic forms Q1 :
V → Z2, Q2 : V → Z2 compatible with B, with Q1(a) = Q1(b) = 1, and
Q2(a) = Q2(b) = 0. Note that Q1(a + b) = Q2(a + b).

For a bilinear form B, satisfying (∗∗) we define the radical

R = {x ∈ V | B(x, y) = 0 ∀y ∈ V },

and its subspace R1 = {x ∈ R | Q(x) = 0}. Observe that B induces a
non-degenerate alternating bilinear form B̄ on V/R, hence dimZ2

V/R = 2m
(cf. [6, Theorem 8.1, p.586]). Let us assume that the radical R = 0. In that
case we may find a basis {ai, bi | 1 ≤ i ≤ m} for V such that B(ai, bj) =
δij, B(ai, aj) = B(bi, bj) = 0. Then, with respect to the symplectic basis
{ai, bi}, we define for Q the Arf invariant (see [1, p. 54]):

c(Q) = Σm
i=1Q(ai)Q(bi) ∈ Z2.

It can be proved that c is independent of the choice of basis, [1]. If R 6= 0,
let us assume that R = R1. Then, it easy to see that Q defines Q′ on V/R
and the radical of Q′ is zero. In that case we define c(Q) = c(Q′).

Let p(Q) = number of elements of x ∈ V such that Q(x) = 1 and let n(Q) =
number of x ∈ V such that Q(x) = 0. Obviously p(Q) + n(Q) =| V | . Put
r(Q) = p(Q) − n(Q). We have the following equivalent results.

Theorem 2 ([1, Theorem III.1.14]) Let Q : V → Z2 be a quadratic form over
Z2, and let R denote the radical of the associated bilinear form. Then the Arf
invariant c(Q) is defined if and only if R = R1. In general, if R = R1, Q is
determined up to isomorphism by rank V, rank R and c(Q), while if R 6= R1,
then Q is determined by rank V and rank R. Note that in the latter case
r(Q) = 0.
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�

Theorem 3 ([5, Theorem 2.15]) Any quadratic form Q : V → Z2 is equiva-
lent to Qr

1 ⊕Qs
2 ⊕Et ⊕Gh, where s = 0 or 1, E is the one-dimensional form

and G is the zero form. Moreover t can be chosen to be 0 or 1, and if t = 1
then s can be chosen to be 0.

�

Suppose that G1 and G2 are 2-groups and that Gi has unique normal sub-
group 〈zi〉 of order 2 for i = 1, 2. The central product G1 ∗ G2 is defined
by

G1 ∗ G2 = (G1 × G2)/〈(z1, z2)〉.

It is not difficult to check that D8 ∗D8 ' Q8 ∗Q8 and that D8 ∗Z4 ' Q8 ∗Z4.
Here D8 is the dihedral group of order 8 and Q8 is the quaternion group of
order 8. Finally, we have the following corollary of Theorems 1 and 3. Recall,
that F = Γ/A.

Corollary 1 Let Γ be a generalized Hantzsche-Wendt group of dimension
n ≥ 3 and A be a subgroup of index two of the maximal abelian subgroup Z

n.
Moreover, let QΓ

A ∼ Qr
1 ⊕Qs

2 ⊕Et ⊕Gh. Then F is isomorphic to one of the
following: D8 ∗ ... ∗ D8

︸ ︷︷ ︸

r

×Z
h
2 , D8 ∗ ... ∗ D8

︸ ︷︷ ︸

r

∗Z4 ×Z
h
2 or D8 ∗ ... ∗ D8

︸ ︷︷ ︸

r

∗Q8 ×Z
h
2 .

�

3 Examples

Using the previous results, we shall describe the groups F in low dimensions
and for the special family of the GHW groups.

Assume that BΓ
A is non-degenerate or (equivalently) that the determinant of

the Gram-Matrix of BΓ
A is 1. Then we shall call F an extraspecial group, (cf.

[12]) and its isomorphism class depends on the value of the Arf invariant.

Example 2 Let D ⊂ Z
n be generated by the following elements:

2e1, e1 − e2, e2 − e3, ..., en−1 − en,
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where {e1, . . . , en} is the standard basis of Z
n. It is easy to see that D is a

subgroup of index two in Z
n, see [12, p. 387]. For n ≥ 2, let Γn be the

subgroup of E(n) generated by the set {(Bi, s(Bi)) | 1 ≤ i ≤ n − 1}. Here Bi

is the diagonal matrix

Bi = diag(−1, . . . ,−1, 1
︸︷︷︸

i

,−1, . . . ,−1)

and

s(Bi) = ei/2 + ei+1/2 for 1 ≤ i ≤ n − 1.

These groups are Hantzsche-Wendt for odd n, [11]. From the definition (cf.
the proof of Theorem 1), we have

BΓn

D (Bi, Bj) =







0 if i = j
1 if i = j + 1
0 if i ≥ j + 2

and a matrix

X =









0 1 0 . . . 0
1 0 1 0 . . . 0

. . . . . . . . . . . .
0 . . . 0 1 0 1
0 . . . 0 1 0









.

Moreover, for any Bi ∈ (Z2)
n−1, where 1 ≤ i ≤ n − 1,

QΓn

D (Bi) = (Bi + I)(ei/2 + ei+1/2) = ei /∈ D.

From the above, we have n = 2k + 1 for some k ∈ N. In order to calculate
the Arf invariant c of QΓn

D we have to transform X into a symplectic matrix.
Let us introduce a new basis f1, f2, . . . , fk, fk+1, . . . , f2k :

fi = B2i−1, 1 ≤ i ≤ k

and
fk+i = B2i + B2i+2 + B2i+4 + · · · + B2k, 1 ≤ i ≤ k.

It is easy to see that the matrix X with respect to the new basis is a symplectic
one. From the previous section, we have

c(QΓn

D ) = Σk
i=1Q

Γn

D (fi)Q
Γn

D (fk+i) ∈ Z2 = Z
n/D.
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Summing up, we obtain the following result:

Theorem 4 For any odd number n = 2k+1, the group Γn/D is an extraspe-
cial group of order 22k+1. In addition:

If k = 2l − 1 or 2l and if l is odd, then Γn/D = D8 ∗ D8 ∗ . . .D8
︸ ︷︷ ︸

k−1

∗Q8.

If k = 2l − 1 or 2l and if l is even, then Γn/D = D8 ∗ D8 ∗ . . .D8
︸ ︷︷ ︸

k

.

If k = 1, then Γ3/D = Q8.

Proof: The bilinear form BΓn

A above is non-degenerate. From the above,
QΓn

D (f2k) = QΓn

D (fj) = 1 for j = 1, 2, . . . k and QΓn

D (f2k−1) = 0. We have

c(QΓn

D ) = Σk
i=1Q

Γn

D (fi)Q
Γn

D (fk+i) =

= Σk
i=1Q

Γn

D (fk+i),

where

QΓn

D (fk+i) =

{
1 if i ≡ k mod 2
0 if i ≡ (k − 1) mod 2.

Finally

c(QΓn

D ) =

{
1 if k = 2l − 1, 2l for l odd
0 if k = 2l − 1, 2l for l even.

�

Now we concentrate on generalized Hantzsche-Wendt groups Γ with de-
generate bilinear forms BΓ

A and a Gram-Matrix X. We have to find the rad-
ical R of BΓ

A. In fact, dimZ2
R = dimZ2

V − rk(X). When R = R1, we have
F = E × Z

k
2, where k = dimZ2

R and E is an extraspecial group. From
Theorems 2 and 3, we know that, if R 6= R1, then t = 1 and r(QΓ

A) = 0.

Let us see what happens in dimension 3. From Theorem 4, we know
that Γ3/D = Q8. It is easy to see, that there are seven possibilities for the
subgroup A ⊂ Z

3 of index two. For example, if

A1 = gen{2e1, e2, e3}

we get the quadratic form Q2 and hence Γ3/A1 = D8. But for the subgroup

A2 = gen{e1 + e2, 2e2, e3}

8



the Gram-Matrix is zero. It is easy to see that Γ3/A2 = Z4×Z2 and r(QΓ3

A2
) =

0. As a comment to the last part of Theorem 1, we mention here, that the
abelianization of Γ3 is equal to Z4 × Z4, see [13, Corollary 3.5.10].

For the 12 GHW-groups of dimension 4 (cf. [9]), and our subgroup D of
index two we have the following possibilities.

Γ/D Z4 × (Z2)
2 Q8 × Z2 Q8 ∗ Z4

rk(BΓ
D) 0 2, R = R1, c(Q

Γ
D) = 0 2, R 6= R1

] 1 7 4
.

The next example shows that our invariant distinguishes two oriented five-
dimensional Hantzsche-Wendt groups.

Example 3 There are only two oriented Hantzsche-Wendt groups of dimen-
sion five (cf. [11]), namely G1 = Γ5 and G2 is the subgroup

{(B1, (1/2, 0, 1/2, 0, 0)), (B2, (0, 1/2, 0, 0, 0)),

(B3, (0, 0, 1/2, 1/2, 0)), (B4, (0, 0, 0, 1/2, 1/2))},

of the isometry group SO(5) n R
5. We know already the form BΓ5

D = BG1

D . In
the second case, we have

BG2

D =







0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0







.

QG1

D corresponds to the extraspecial 2-group G1/D = D8 ∗Q8, see [12, p.388]
and Theorem 4. Since the rank of the above matrix is 2, it is easy to see that
QG2

D corresponds to the group G2/D = (Z2)
2 × Q8.

There are 62 orientable, 7-dimensional GHW groups (cf. [8]). We have the
following possibilities

Γ/D E1 E2 E3 × Z2 E4 × (Z2)
2 Q8 × (Z2)

4

rk(BΓ
D) 6, c(QΓ

D) = 0 6, c(QΓ
D) = 1 4, R 6= R1 4, R = R1 2, R = R1

] 1 17 2 32 10
,
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where E1 and E2 are extraspecial groups of order 128, E3 = Q8 ∗Q8 ∗Z4 and
E4 is an extraspecial group of order 32.

Remark 2 Only in two cases, and both for the group Q8 ∗ Q8 ∗ Z4 × Z2, is
the number t defined by Theorem 3 non - zero. In other words, in these cases
R 6= R1.

Finally, computer calculation give another observation. Let Γ be any oriented
GHW-group of dimension 7 and let A1, . . . , A127 be the subgroups of index
2 in the maximal abelian subgroup. By the Theorem 2 it is easy to see, that
there are only 8 possibilties for the groups Γ/Ai: D8× (Z2)

4, Q8× (Z2)
4, D8 ∗

Z4 × (Z2)
3, D8 ∗D8 × (Z2)

2, D8 ∗Q8 × (Z2)
2, Q8 ∗Q8 ∗ Z4 × Z2, D8 ∗D8 ∗D8

and D8 ∗ D8 ∗ Q8.

Remark 3 All 62 sequences (Γ/Ai))i=1,...,127 are different.
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