Holonomy groups of flat manifolds with R_{∞} property

R. Lutowski, A. Szczepański
Institute of Mathematics
University of Gdańsk
ul. Wita Stwosza 57
80-952 Gdańsk
Poland
E-mail: rlutowsk@mat.ug.edu.pl, matas@univ.gda.pl

प

Abstract

Let M be a flat manifold. We say that M has R_{∞} property if the Reidemeister number $R(f)=\infty$ for every homeomorphism $f: M \rightarrow M$. In this paper, we investigate a relation between the holonomy representation ρ of a flat manifold M and the R_{∞} property. In case when the holonomy group of M is solvable we show that, if ρ has a unique \mathbb{R}-irreducible subrepresentation of odd degree, then M has R_{∞} property. The result is related to conjecture 4.8 from [3].

1 Introduction

Let M^{n} be a closed Riemannian manifold of dimension n. We shall call M^{n} flat if, at any point, the sectional curvature is equal to zero. Equivalently, M^{n} is isometric to the orbit space \mathbb{R}^{n} / Γ, where Γ is a discrete, torsion-free and co-compact subgroup of $O(n) \ltimes \mathbb{R}^{n}=\operatorname{Isom}\left(\mathbb{R}^{n}\right)$. From the Bieberbach theorem (see [1], [9]) Γ defines a short exact sequence of groups

$$
\begin{equation*}
0 \rightarrow \mathbb{Z}^{n} \rightarrow \Gamma \xrightarrow{p} G \rightarrow 0 \tag{1.1}
\end{equation*}
$$

where G is a finite group. Γ is called a Bieberbach group and G its holonomy group.

[^0]Since $\Gamma=\pi_{1}\left(M^{n}\right)$, any continuous map $f: M^{n} \rightarrow M^{n}$ induces a morphism $f_{\sharp}: \Gamma \rightarrow \Gamma$. We say that two elements $\alpha, \beta \in \Gamma$ are f_{\sharp}-conjugated if there exists $\gamma \in \Gamma$ such that $\beta=\gamma \alpha f_{\sharp}(\gamma)^{-1}$. The f_{\sharp}-conjugacy class $\left\{\gamma \alpha f_{\sharp}(\gamma)^{-1} \mid\right.$ $\gamma \in \Gamma\}$ of α is called a Reidemeister class of f. The number of Reidemeister classes is called the Reidemeister number $R(f)$ of f. A manifold M^{n} has the R_{∞} property if $R(f)=\infty$ for every homeomorphism $f: M^{n} \rightarrow M^{n}$, see [3]. It is evident that we can also define the above number $R(f)$ for a countable discrete group E and its automorphism f. We say that a group E has R_{∞} property if $R(f)=\infty$ for any automorphism f. Moreover, the following groups (see [4] for the list and history of the $R_{\infty^{-}}$groups and the complete bibliography) have the R_{∞} property: non-elemtary Gromovhyperbolic groups, Baumslag-Solitar groups $B S(m, n)=\langle a, b| b a^{m} b^{-1}=$ $\left.a^{n}\right\rangle$ except for $B S(1,1)$.
In this paper we shall consider the case of Bieberbach groups. We can define a holonomy representation $\rho: G \rightarrow \mathrm{GL}(n, \mathbb{Z})$ by the formula:

$$
\begin{equation*}
\forall g \in G, \rho(g)\left(e_{i}\right)=\tilde{g} e_{i}(\tilde{g})^{-1} \tag{1.2}
\end{equation*}
$$

where $e_{i} \in \Gamma$ are generators of the free abelian group \mathbb{Z}^{n} for $i=1,2, \ldots, n$, and $\tilde{g} \in \Gamma$ such that $p(\tilde{g})=g$. In this article we describe relations between R_{∞} property on the flat manifold M^{n} (Bieberbach group Γ) and a structure of its holonomy representation. The connections between geometric properties of M^{n} and algebraic properties of ρ was already considered in different cases. For example, $\operatorname{Out}(\Gamma)$ is finite if and only if a holonomy representation is \mathbb{Q}-mutiplicity free and any \mathbb{Q}-irreducible components of a holonomy representaion is \mathbb{R}-irreducible, see [8]. A similar equivalence says that an Anosov diffeomorphism $f: M^{n} \rightarrow M^{n}$ exists if and only if any \mathbb{Q}-irreducible component of a holonomy representation that occurs with multiplicity one is reducible over \mathbb{R}, see [5]. We want to define conditions of this kind for the holonomy representation of a flat manifold with R_{∞} property. We already know that, in this way, the complete characteristic is not possible. There are examples [3, Th.5.9] of flat manifolds M_{1}, M_{2} with the same holonomy representation such that M_{1} has R_{∞} property and M_{2} has not. In [3, Corollary 4.4] it is proved that if there exists na Anosov diffeomorphism $f: M^{n} \rightarrow M^{n}$ then $R(f)$ is finite and M^{n} does not have the R_{∞} property. Moreover there exists M, such that its holonomy representation has \mathbb{Q}-irreducible component which is irreducible over \mathbb{R} and occurs with multiplicity one, andt M does not have the R_{∞} property, [3, Example 4.6]. Nevertheless in [3, Th. 4.7] is proved:

Theorem 1.1 ([3, Th. 4.7]). Let M be a flat manifold with a holonomy representation $\rho: G \rightarrow \mathrm{GL}(n, \mathbb{Z})$ and let $\rho^{\prime}: G \rightarrow \mathrm{GL}\left(n^{\prime}, \mathbb{Z}\right)$ be a \mathbb{Q}-irreducible \mathbb{Q}-subrepresentation of ρ such that $\rho^{\prime}(G)$ is not \mathbb{Q}-conjugated to $\tilde{\rho}(G)$ for any other \mathbb{Q}-subrepresentation $\tilde{\rho}$ of ρ. Suppose moreover that for every $D^{\prime} \in N_{\mathrm{GL}\left(n^{\prime}, \mathbb{Z}\right)}\left(\rho^{\prime}(G)\right)$, there exists $A \in G$ such that $\rho^{\prime}(A) D^{\prime}$ has eigenvalue 1. Then M has the R_{∞} property.

Remark 1.2. If we assume that

$$
\begin{equation*}
N_{\mathrm{GL}\left(n^{\prime}, \mathbb{Q}\right)}\left(\rho^{\prime}(G)\right) / C_{\mathrm{GL}\left(n^{\prime}, \mathbb{Q}\right)}\left(\rho^{\prime}(G)\right) \cong \operatorname{Aut}(G) \tag{1.3}
\end{equation*}
$$

then the above requirement that $\rho^{\prime}(G)$ is not \mathbb{Q}-conjugated to $\tilde{\rho}(G)$ is equivalent to the condition that $\rho^{\prime} \subset \rho$ has multiplicity one. For example, if we take the diagonal representation $\rho:\left(\mathbb{Z}_{2}\right)^{2 n} \rightarrow \mathrm{SL}(2 n+1, \mathbb{Z})$ of the elementary abelian 2-group, then the above equation 1.3) is not satisfied for any \mathbb{Q}-irreducible subrepresentation of ρ.

We shall prove:
Theorem 1.3. Let M be a flat manifold with a holonomy representation $\rho: G \rightarrow \mathrm{GL}(n, \mathbb{Z})$ and let G be a solvable group and $\rho^{\prime}: G \rightarrow \mathrm{GL}\left(n^{\prime}, \mathbb{Z}\right)$ be $a \mathbb{Q}$-irreducible \mathbb{Q}-subrepresentation of ρ of odd dimension. If $\rho^{\prime}(G)$ is not \mathbb{Q}-conjugated to $\tilde{\rho}(G)$, for any other \mathbb{Q}-subrepresentation $\tilde{\rho}$ of ρ then M has the R_{∞} property.

If we restrict our consideration to the class of finite groups which satisfy the condition (1.3) we have.

Theorem 1.4. Let M be a flat manifold with a holonomy representation $\rho: G \rightarrow \mathrm{GL}(n, \mathbb{Z})$ and let G be a solvable group and $\rho^{\prime}: G \rightarrow \mathrm{GL}\left(n^{\prime}, \mathbb{Z}\right)$ be a \mathbb{Q}-irreducible \mathbb{Q}-subrepresentation of ρ of mulitiplicity one and odd dimension which satisfies a condition (1.3), then M has the R_{∞} property.

The above result is a corollary from [7, Th. 5.4.4], the Theorem 1.1 and the following theorem:

Theorem A Let G be a finite group with a non-trivial normal abelian subgroup A and let $\rho: G \rightarrow \operatorname{GL}(n, \mathbb{Z})$ be a faithful \mathbb{R}-irreducible representation. Suppose n is odd. Then for every $D \in N_{\mathrm{GL}(n, \mathbb{Z})}(\rho(G))$, there exists $g \in G$ such that $\rho(g) D$ has eigenvalue 1 .

Remark 1.5. A conjecture 4.8 in [3] says that the above Theorem A is true for any finite group. We do not know whether it holds in general.

We prove Theorem A in the next section.
Aknowledgement. We would like to thanks G. Hiss for helpful conversation and particulary for putting our attention on the Clifford's theorem.

2 Proof of Theorem A

Theorem 2.1. Let G be a finite group and n be an odd integer. Let $\rho: G \rightarrow$ $\mathrm{GL}(n, \mathbb{Z})$ be a faithful representation of G, which is irreducible over \mathbb{R}. Then ρ is irreducible over \mathbb{C}.

Proof. Assume, that ρ is reducible over \mathbb{C} and let τ be any \mathbb{C}-irreducible subrepresentation of ρ. By [6, Theorem 2], the representation ρ is uniquely determined by τ and, if χ is the character of τ, then the character of ρ is given by

$$
\chi+\bar{\chi}
$$

Hence ρ is of even degree. This proves the theorem.
For the rest of this section we assume, that $\rho: G \rightarrow \mathrm{GL}(n, \mathbb{Z})$ is an absolutely irreducible representation of G, where n is an odd integer.

Proposition 2.2. If A is normal abelian subgroup of G, then A is elementary abelian 2-group.

Proof. Let τ be a \mathbb{R}-irreducible subrepresentation of $\rho_{\mid A}$. By Clifford's theorem ([2, Theorem 49.2]) all \mathbb{R}-subrepresentations of $\rho_{\mid A}$ are conjugates of R-irreducible subrepresentation τ, i.e. there exists $g_{1}=1, g_{2}, \ldots, g_{l} \in G$ such that

$$
\begin{equation*}
\rho_{\mid A}=\tau^{\left(g_{1}\right)} \oplus \ldots \oplus \tau^{\left(g_{l}\right)} \tag{2.1}
\end{equation*}
$$

where

$$
\forall_{1 \leq i \leq l} \forall_{g \in G} \tau^{\left(g_{i}\right)}(g)=\tau\left(g_{i}^{-1} g g_{i}\right)
$$

Let $a \in A$ be an element of order greater than 2 . Since ρ is faithful, there exists $1 \leq i \leq l$, such that $\tau^{\left(g_{i}\right)}(a)$ is a real matrix of order at least 2 . Hence $\operatorname{deg}\left(\tau^{\left(g_{i}\right)}\right)=\operatorname{deg}(\tau)=2$ and $n=\operatorname{deg}(\rho)=\operatorname{deg}\left(\rho_{\mid A}\right)=l \operatorname{deg}(\tau)=2 l$ is an even integer. This contradiction finishes the proof.

Since A is an elementary abelian 2 -group, the decomposition (2.1) may be realized over the rationals. By [2, Theorem 49.7] we may assume, that

$$
\begin{equation*}
\rho_{\mid A}=e \tau^{\left(g_{1}\right)} \oplus \ldots \oplus e \tau^{\left(g_{k}\right)} \tag{2.2}
\end{equation*}
$$

i.e. one-dimensional representations $\tau^{\left(g_{1}\right)}, \ldots, \tau^{\left(g_{k}\right)}$ occur with the same multiplicity $e=n / k$. Let $\rho_{i}:=e \tau^{\left(g_{i}\right)}$, for $i=1, \ldots, k$. By the suitable choice of basis of \mathbb{Q}^{n} we may assume, that for every $a \in A, \rho(a)$ is a diagonal matrix, such that

$$
\begin{equation*}
\forall_{1 \leq i \leq k} \operatorname{Img}\left(\rho_{k}\right)=\langle-\mathrm{I}\rangle, \tag{2.3}
\end{equation*}
$$

where I is the identity matrix of degree e.
Since $A \triangleleft G$ and ρ is faithful, we have

$$
\rho(A) \triangleleft \rho(G) \subset N_{\mathrm{GL}(n, \mathbb{Q})}(\rho(A))=\left\{m \in \mathrm{GL}(n, \mathbb{Q}) \mid m^{-1} \rho(A) m=\rho(A)\right\} .
$$

In the next two subsections we will focus on the above normalizer.

2.1 Centralizer

In the beginning we describe the centralizer

$$
C_{\mathrm{GL}(n, \mathbb{Q})}(\rho(A))=\left\{m \in \operatorname{GL}(n, \mathbb{Q}) \mid \forall_{a \in A} m \rho(a)=\rho(a) m\right\} .
$$

Let $m=\left(m_{i j}\right) \in \operatorname{GL}(n, \mathbb{Q})$ be a block matrix, such that $m \rho_{\mid A}=\rho_{\mid A} m$.
We get

$$
\left(\begin{array}{ccc}
m_{11} & \ldots & m_{1 k} \\
\vdots & \ddots & \vdots \\
m_{k 1} & \ldots & m_{k k}
\end{array}\right)\left(\begin{array}{ccc}
\rho_{1} & & 0 \\
& \ddots & \\
0 & & \rho_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\rho_{1} & & 0 \\
& \ddots & \\
0 & & \rho_{k}
\end{array}\right)\left(\begin{array}{ccc}
m_{11} & \ldots & m_{1 k} \\
\vdots & \ddots & \vdots \\
m_{k 1} & \ldots & m_{k k}
\end{array}\right)
$$

and thus

$$
\forall_{1 \leq i, j \leq k} m_{i j} \rho_{j}=\rho_{i} m_{i j}
$$

Since for $i \neq j, \rho_{i}$ and ρ_{j} have no common subrepresentation, by Schur's Lemma (see [2, (27.3)]) $m_{i j}=0$ for $i \neq j$ and $m_{i i} \in \operatorname{GL}(n / k, \mathbb{Q})$, for $i=1, \ldots, k$. We just have proved

Lemma 2.3. Let $\rho: G \rightarrow \operatorname{GL}(n, \mathbb{Q})$ be a faithful, absolutely irreducible representation of finite group G of odd degree n. Let A be normal abelian subgroup of G, such that conditions (2.2) and (2.3) hold. Then

$$
C_{\mathrm{GL}(n, \mathbb{Q})}(\rho(A))=\left\{\operatorname{diag}\left(c_{1}, \ldots, c_{k}\right) \mid c_{i} \in \mathrm{GL}(n / k, \mathbb{Q}), i=1, \ldots, k\right\},
$$

where k is equal to the number of pairwise nonisomorphic irreducible subrepresentations of $\rho_{\mid A}$.

2.2 Normalizer

Since the group A is finite, $\operatorname{Aut}(A)$ is a finite group. Moreover, we have a monomorphism

$$
N_{\mathrm{GL}(n, \mathbb{Q})}(\rho(A)) / C_{\mathrm{GL}(n, \mathbb{Q})}(\rho(A)) \hookrightarrow \operatorname{Aut}(A) .
$$

Hence any coset $m C_{\mathrm{GL}(n, \mathbb{Q})}(\rho(A)), m \in N_{\mathrm{GL}(n, \mathbb{Q})}(\rho(A))$ corresponds to some automorphism of A.

Let $\varphi \in \operatorname{Aut}(A)$ and $m=\left(m_{i j}\right) \in \mathrm{GL}(n, \mathbb{Q})$ be a block matrix, which represents this automorphism, with blocks of degree n / k, i.e.

$$
\forall_{c \in C_{\mathrm{GL}(n, Q)}(\rho(A))} \forall_{a \in A}(m c) \rho(a)(m c)^{-1}=m \rho(a) m^{-1}=\rho(\varphi(a)) .
$$

We have

$$
\left(\begin{array}{ccc}
m_{11} & \ldots & m_{1 k} \\
\vdots & \ddots & \vdots \\
m_{k 1} & \ldots & m_{k k}
\end{array}\right)\left(\begin{array}{ccc}
\rho_{1} & & 0 \\
& \ddots & \\
0 & & \rho_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\rho_{1} \varphi & & 0 \\
& \ddots & \\
0 & & \rho_{k} \varphi
\end{array}\right)\left(\begin{array}{ccc}
m_{11} & \ldots & m_{1 k} \\
\vdots & \ddots & \vdots \\
m_{k 1} & \ldots & m_{k k}
\end{array}\right) .
$$

Note, that

$$
\begin{equation*}
\forall_{1 \leq i \leq k} \operatorname{Img}\left(\rho_{i}\right)=\operatorname{Img}\left(\rho_{i} \varphi\right)=\langle-\mathrm{I}\rangle \tag{2.4}
\end{equation*}
$$

Since, for $i \neq j, \rho_{i}$ and ρ_{j} does not have common subrepresentations, the same applies to $\rho_{i} \varphi$ and $\rho_{j} \varphi$. Hence, using Shur's lemma again for every $1 \leq i \leq k$ there exists exactly one $1 \leq j \leq k$, such that

$$
m_{j i} \rho_{i}=\rho_{j} \varphi m_{j i}
$$

and $m_{j i} \neq 0$. Moreover, $\operatorname{det}(m) \neq 0$ and also $\operatorname{det}\left(m_{i j}\right) \neq 0$. By (2.4) $\rho_{i}=\rho_{j} \varphi$ and there exists a permutation $\sigma \in S_{k}$, s.t.

$$
\begin{equation*}
m \operatorname{diag}\left(\rho_{1}, \ldots, \rho_{k}\right) m^{-1}=\operatorname{diag}\left(\rho_{\sigma(1)}, \ldots, \rho_{\sigma(k)}\right) \tag{2.5}
\end{equation*}
$$

Let $\tau \in S_{k}$ be any permutation and let $P_{\tau} \in \mathrm{GL}(n, \mathbb{Q})$ be a block matrix, with blocks of degree n / k, such that

$$
\left(P_{\tau}\right)_{i, j}= \begin{cases}\mathrm{I} & \text { if } \tau(i)=j \tag{2.6}\\ 0 & \text { otherwise }\end{cases}
$$

where $1 \leq i, j \leq k$. By (2.5) we may take

$$
m=P_{\sigma}
$$

as a representative of a coset in $N_{\mathrm{GL}(n, \mathbb{Q})}\left(\rho(A) / C_{\mathrm{GL}(n, \mathbb{Q})}(\rho(A))\right.$, which realizes the automorphism φ.

Let

$$
S:=\left\{\tau \in S_{k} \mid P_{\tau} \in N_{\mathrm{GL}(n, \mathbb{Q})}(\rho(A))\right\} .
$$

Then S is a subgroup of S_{k} and

$$
P:=\left\{P_{\tau} \mid \tau \in S\right\}
$$

is a subgroup of the normalizer. By the above and the Lemma 2.3, we get
Proposition 2.4. The normalizer $N_{\mathrm{GL}(n, \mathbb{Q})}(\rho(A))$ is a semidirect product of $C_{\mathrm{GL}(n, \mathbb{Q})}(\rho(A))$ and P. Moreover
$N_{\mathrm{GL}(n, \mathbb{Q})}(\rho(A))=C_{\mathrm{GL}(n, \mathbb{Q})}(\rho(A)) \cdot P \cong C_{\mathrm{GL}(n, \mathbb{Q})}(\rho(A)) \rtimes S \cong \mathrm{GL}(n / k, \mathbb{Q})\langle S$, where $\mathrm{GL}(n / k, \mathbb{Q})$ l S denotes the wreath product of $\mathrm{GL}(n / k, \mathbb{Q})$ and S.

2.3 Properties of a group G

Let

$$
C:=\rho^{-1}\left(\rho(G) \cap C_{\mathrm{GL}(n, \mathbb{Q})}(\rho(A))\right)
$$

and

$$
Q:=\rho^{-1}(\rho(G) \cap P) .
$$

Then

$$
\begin{equation*}
G=C \cdot Q \cong C \rtimes Q \tag{2.7}
\end{equation*}
$$

is a semidirect product of C and Q. Without lose of generality, we can assume, that $Q \subset S_{k}$.

The representations $\rho_{i}, i=1, \ldots, k$ are defined on the group A. Lemma 2.3 gives us a possibility to extend domain of these representations to C. Let V_{i} be subspaces of \mathbb{Q}^{n} corresponding to representations $\rho_{i}, i=1, \ldots, k$. In fact, since $\rho_{\mid C}$ is in block diagonal form, we have

$$
\forall_{1 \leq i \leq k} V_{i}=\underbrace{\Theta \oplus \ldots \oplus \Theta}_{i-1} \oplus \mathbb{Q}^{n / k} \oplus \Theta \oplus \ldots \oplus \Theta \subset \mathbb{Q}^{n}
$$

where Θ is considered as a zero-dimensional subspace (zero vector) of $\mathbb{Q}^{n / k}$. Moreover, every element of the group $\rho(Q)=P$ permutes elements of the set

$$
\left\{V_{1}, \ldots, V_{k}\right\}
$$

We want to prove that this action is transitive.

Lemma 2.5. $Q \subset S_{k}$ is a transitive permutation group.
Proof. If we assume that Q is not transitive, then

$$
\exists_{1 \leq j \leq k} \forall_{i \neq j} \forall_{\tau \in Q} \tau(i) \neq j .
$$

Let

$$
\hat{V}_{j}=\bigoplus_{\substack{i=1 \\ i \neq j}}^{k} V_{i}
$$

and $c \tau$, where $c \in C, \tau \in Q$, be any element of G. Then

$$
\rho(c \tau)\left(\hat{V}_{j}\right)=\rho(c) \rho(\tau)\left(\hat{V}_{j}\right)=\rho(c)\left(\bigoplus_{\substack{i=1 \\ i \neq j}}^{k} V_{\tau(i)}\right)=\rho(c)\left(\hat{V}_{j}\right)=\hat{V}_{j} .
$$

Thus $\hat{V}_{j} \subsetneq \mathbb{Q}^{n}$ is an invariant subspace of ρ and hence ρ is reducible (over \mathbb{Q}). This contradiction proves the lemma.

The following lemma helps us to understand the structure of the group G.

Lemma 2.6. Representations $\rho_{1}, \ldots, \rho_{k}: C \rightarrow \operatorname{GL}(n, \mathbb{Q})$ are absolutely irreducible.

Proof. Let $\phi: C \rightarrow \mathrm{GL}(d, \mathbb{C})$ be a \mathbb{C}-irreducible subrepresentation of $\rho_{\mid C}$. By Clifford's theorem, for the group $C \triangleleft G$ the representation $\rho_{\mid C}$ is a sum of conjugates of ϕ, i.e.

$$
\rho_{\mid C}=\bigoplus_{s=1}^{m} \phi^{\left(g_{s}\right)}
$$

where $g_{s} \in G, s=1, \ldots, m$ and $g_{1}=1$. For every $1 \leq s \leq m, \phi^{\left(g_{s}\right)}$ is a complex subrepresentation of some $\rho_{i}, i=1, \ldots, k$. Counting dimensions, we can see, that for every $1 \leq i \leq k$

$$
\rho_{i}=\bigoplus_{j=1}^{m / k} \rho_{i, j}
$$

where

$$
\forall_{1 \leq j \leq m / k} \rho_{i, j} \in\left\{\phi^{\left(g_{s}\right)} \mid 1 \leq s \leq m\right\}
$$

Let $V_{i, j} \subset V_{i}$ be an invariant space under the action of $\rho_{i, j}$, for $1 \leq i \leq$ $k, 1 \leq j \leq m / k$. Taking a suitable basis for $V_{i}, 1 \leq i \leq k$, we can assume, that the decopmosition

$$
\rho_{i}=\bigoplus_{j=1}^{m / k} \rho_{i, j}
$$

is given in a block diagonal form:

$$
\forall_{1 \leq j \leq m / k} V_{i, j}=\underbrace{\Theta \oplus \ldots \oplus \Theta}_{j-1} \oplus \mathbb{C}^{n / m} \oplus \Theta \oplus \ldots \oplus \Theta \subset V_{i}
$$

where Θ is a zero-dimensional subspace (zero vector) of $\mathbb{C}^{n / m}$. Note that the images of $\rho_{i \mid A}, i=1 \ldots, k$, remain the same in this new basis. Hence the description of the representatives of the normalizer given in the subsection 2.2, remains the same for the group $\operatorname{GL}(n, \mathbb{C})$ and we can assume, that $\rho(Q)=P$.

If the representations $\rho_{i}, i=1, \ldots, k$, are \mathbb{C}-reducible, then $m>k$. Let

$$
W=\bigoplus_{i=1}^{k} V_{i, 1}
$$

and $c \tau, c \in C, \tau \in Q$, be any element of G. We get

$$
\rho(c \tau)(W)=\rho(c) \rho(\tau)(W)=\rho(c)\left(\bigoplus_{i=1}^{k} V_{\tau(i), 1}\right)=\rho(c)(W)=W
$$

Hence $W \subsetneq \mathbb{C}^{n}$ is an invariant subspace of ρ and thus ρ cannot be absolutely irreducible. Contradition.

2.4 Abelian normal subgroups

Without lose of generality, we can assume, that A is maximal abelian subgroup of G, i.e. if $A^{\prime} \triangleleft G$ is abelian and $A \subset A^{\prime}$, then $A=A^{\prime}$. We will show, that A is unique in G and hence - characteristic.

Lemma 2.7. A is unique in C.
Proof. Let $A^{\prime} \triangleleft G$ be an abelian group, such that $A^{\prime} \subset C$. Since all elements of A commute with all elements of C, they commute with all elements of A^{\prime}. Hence $A A^{\prime}$ is normal abelian subgroup of G. Since A is maximal, we have

$$
A A^{\prime}=A \Rightarrow A^{\prime} \subset A
$$

If we can prove, that $A \subset C$, then A is going to be unique in G. Recall, that by 2.7 we have a short exact sequence

$$
1 \longrightarrow C \longrightarrow G \xrightarrow{p} Q \longrightarrow 1
$$

Assuming $A \not \subset C$, we get

$$
1 \neq p(A) \triangleleft Q
$$

We prove that it is impossible.

Lemma 2.8. Let $Q \subset S_{k}$ be a transitive permutation group and $k \in \mathbb{N}$ be an odd natural number. Then Q does not contain nontrivial normal elementary abelian 2-groups.

Proof. Let us denote by $N(\tau), \tau \in S_{k}$, a set

$$
N(\tau):=\{1 \leq i \leq k \mid \tau(i) \neq i\} .
$$

Assume, that $H \triangleleft Q$ is a normal nontrivial elementary abelian 2-group. Let τ be any element of Q. Without lose of generality we may assume $1 \in N(\tau)$. Since Q is transitive, we have

$$
\forall_{1 \leq i \leq k} \exists_{\sigma_{i} \in Q} \sigma_{i}(1)=i
$$

Moreover

$$
\forall_{1 \leq i \leq k} N_{i}:=N\left(\sigma_{i} \tau \sigma_{i}^{-1}\right)=\sigma_{i}(N(\tau))
$$

and hence

$$
\bigcup_{i=1}^{k} N_{i}=\{1, \ldots, k\} .
$$

Let \mathcal{I} be any element of the set

$$
\left\{\mathcal{K} \subset\{1, \ldots, k\}\left|\left|\bigcup_{i \in \mathcal{K}} N_{i}\right| \text { is odd }\right\}\right.
$$

with a minimum number of elements. Since τ and all of its conjugates has order $2, \mathcal{I}$ has at least two elements. Let $s \in \mathcal{I}$. Since H is normal in Q, we have

$$
\forall_{i \in \mathcal{I}} \sigma_{i} \tau \sigma_{i}^{-1} \in H
$$

By the minimality of \mathcal{I}, the set

$$
N^{(s)}:=\bigcup_{i \in \mathcal{I} \backslash\{s\}} N_{i}
$$

contains even number of elements. Moreover, the same applies to the set $N_{s}=N\left(\sigma_{s} \tau \sigma_{s}^{-1}\right)$. Hence, the intersection

$$
N^{(s)} \cap N_{s}
$$

has an odd number of elements. Recall, that $\sigma_{i} \tau \sigma_{i}^{-1}$, for $i \in \mathcal{I}$, as elements of order 2 , are products of disjoint transpositions. By the above, there exist $t \in \mathcal{I} \backslash\{s\}$ and $a, b, c \in\{1, \ldots, k\}$ such that

$$
a \in N_{t} \backslash N_{s}, b \in N_{t} \cap N_{s}, c \in N_{s} \backslash N_{t}
$$

and (a, b) and (b, c) are transpositions in $\sigma_{t} \tau \sigma_{t}^{-1}$ and $\sigma_{s} \tau \sigma_{s}^{-1}$, respectively. But then

$$
\sigma_{t} \tau \sigma_{t}^{-1} \cdot \sigma_{s} \tau \sigma_{s}^{-1}
$$

is an element of order greater than 2 in the elementary abelian 2-group H. Contradiction.

We have just proved.
Proposition 2.9. The maximal, normal elementary abelian subgroup $A \triangleleft G$ is unique maximal in G and hence it is a characteristic subgroup.

Corollary 2.10 .

$$
N_{\mathrm{GL}(n, \mathbb{Q})}(\rho(G)) \subset N_{\mathrm{GL}(n, \mathbb{Q})}(\rho(A))
$$

2.5 The proof

Let us first restate the theorem.
Theorem A Let G be a finite group with a non-trivial normal abelian subgroup A and let $\rho: G \rightarrow \mathrm{GL}(n, \mathbb{Z})$ be a faithful \mathbb{R}-irreducible representation. Suppose n is odd. Then for every $D \in N_{\mathrm{GL}(n, \mathbb{Z})}(\rho(G))$, there exists $g \in G$ such that $\rho(g) D$ has eigenvalue 1 .

Proof. Note first, that eigenvalues of matrices and their products does not depend on their conjugacy class. Hence, we can change the basis of ρ, with conjugating the group $N_{\mathrm{GL}(n, \mathbb{Z})}(\rho(G))$ by appropriate invertible rational matrix simultaneously, and prove the theorem with these new forms of ρ and $N=N_{\mathrm{GL}(n, \mathbb{Z})}(\rho(G))$. Note that, by \mathbb{R}-irreducibility of ρ, N is a finite group (see [8, pages 587-588]).

From above, we can assume, that $\rho(A)$ is a group of diagonal matrices. Using Corrolary 2.10, Proposition 2.4 and a fact, that

$$
N \subset N_{\mathrm{GL}(n, \mathbb{Q})}(\rho(G))
$$

we get

$$
N \subset C_{\mathrm{GL}(n, \mathbb{Q})}(\rho(A)) \cdot P
$$

Recall, that

$$
C_{\mathrm{GL}(n, \mathbb{Q})}(\rho(A))=\bigoplus_{i=1}^{k} \mathrm{GL}(n / k, \mathbb{Q})
$$

and elements of P are "block permutation matrices" (see Lemma 2.3 and (2.6) respectively).

Let $D \in N$, then D has the form

$$
D=P_{\sigma} \operatorname{diag}\left(c_{1}, \ldots, c_{k}\right)
$$

where $\sigma \in S_{k}$ and $c_{i} \in \mathrm{GL}(n / k, \mathbb{Q})$, for $i=1, \ldots, k$. Recall, that $G=C Q$, where $Q \subset S_{k}$ is a transitive permutation group (see Lemma 2.5). Hence there exists $\tau \in Q$, such that

$$
\tau(1)=\sigma^{-1}(1)
$$

We get

$$
P_{\tau} P_{\sigma} \operatorname{diag}\left(c_{1}, \ldots, c_{k}\right)=P_{\sigma \tau} \operatorname{diag}\left(c_{1}, \ldots, c_{k}\right)=\operatorname{diag}\left(c_{1}, X\right)
$$

where X is a matrix of rows of $\operatorname{diag}\left(c_{2}, \ldots, c_{k}\right)$ permuted by $\sigma \tau$. Since $c_{1} \in$ $\mathrm{GL}(n / k, \mathbb{Q})$ has an odd degree, it must have real eigenvalue and since N is of a finite order, this eigenvalue is ± 1. If the eigenvalue is 1 , then we take $g=\tau$ and the theorem is proved. Otherwise, by the Clifford's theorem and the faithfulness of ρ, we can take such $a \in A$, that $\rho_{1}(a)=-\mathrm{I}$. Then $\rho_{1}(a) c_{1}$ has an eigenvalue 1 and hence, taking $g=a \tau$, the element

$$
\begin{aligned}
\rho(g) D & =\rho(a \tau) D=\rho(a) \rho(\tau) D=\rho(a) P_{\tau} P_{\sigma} \operatorname{diag}\left(c_{1}, \ldots, c_{k}\right)= \\
& =\left(\rho_{1} \oplus \ldots \oplus \rho_{k}\right)(a) \cdot \operatorname{diag}\left(c_{1}, X\right)= \\
& =\operatorname{diag}\left(\rho_{1}(a) c_{1},\left(\rho_{2} \oplus \ldots \oplus \rho_{k}\right)(a) X\right)
\end{aligned}
$$

has an eigenvalue equal to 1 also. This finishes the proof.

References

[1] L. S. Charlap, Bieberbach Groups and Flat Manifolds, Universitext, Springer-Verlag, New York, 1986
[2] Ch.W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI Interscience Publishers, a division of John Wiley \& Sons, New York-London 1962
[3] K. Dekimpe, B. De Rock, P. Penninckx, The R_{∞} property for infranilmanifolds, Topol. Methods Nonlinear Anal. 34 (2009), no.2, 353 373
[4] A. Fel'shtyn, New direction in Nielsen-Riedemeister theory, Topology and its Appl. 157 (2010), 1724-1735

Holonomy groups of flat manifolds with R_{∞} property
[5] H. L. Porteous, Anosov diffeomrphisms of flat manifolds, Topology, 11 (1972), 307-315
[6] I. Reiner, The Schur index in the theory of group representations, Michigan Math. J. Volume 8, Issue 1 (1961), 39-47
[7] D. J. S. Robinson, A Course the Theory of Groups, Springer - Verlag, New York 1982
[8] A. Szczepański, Outer automorphism groups of Bieberbach groups, Bull. Belgium Math. Soc. (simon Stevin) 3 (1996), 585-593
[9] J. Wolf, Spaces of constant curvature, MacGraw Hill, New York-London-Sydney, 1967

[^0]: 2010 Mathematics Subject Classification: Primary 20H15, 55M20; Secondary 20C10, 20F34.

 Key words and phrases: Reidemeister number, flat manifolds, integral representations, Bieberbach groups.

