
Irreducible holomorphic symplectic manifolds

A. Szczepański
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K3 surface

Definition
A K3 surface X is a compact complex surface with trivial
canonical bundle and H1(X,OX) = 0.

Properties: 1. K3 surface is actually Kähler (Y. T. Siu 1983);

2. X is simply-connected;
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3. Since canonical bundle is trivial then X has non-degenerate
holomorphic symplectic structure;

4. Any two complex analytic K3 surfaces are diffeomorphic as
smooth 4-manifolds (K. Kodaira 1963).
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A. Beauville (1983) - F. Bogomolov (1974)

Theorem 2.1
Let X be a compact Kähler manifold with c1 = 0 (equivalently X
is a Ricci-flat) Then, there exists a finite covering π : X̂ → X that
splits as a product of complex tori, irreducible Calabi-Yau
manifolds and irreducible symplectic manifolds.
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Remark 2.2
1. (G. De Rham 1952) If a Riemannian manifold (X, g) is
complete, simply connected and if its holonomy representation
is reducible, then (X, g) is a Riemannian product.

3. (J. Cheeger, D. Gromoll 1971) X- compact connected with
non-negative Ricci curvature. Then the universal covering
space X̃ splits isometrically as X̃ = E × N, where E is a
Euclidean space and N is closed and simply connected with
Ricci ­ 0.
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The Calabi conjecture 1957

Theorem 2.3
(S. T. Yau - 1977) Let M be a compact Kähler manifold with
vanishing first Chern class c1. Then there exists a Ricci-flat
Kähler metric on M. Every such metric is uniquely determined
by the cohomology class of its Kähler form.
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On the definition of irreducible (holomorphic)
symplectic manifolds

Definition
A complex manifold X is called irreducible (holomorphic)
symplectic manifold (IHS) if and only if is a smooth compact
Kählerian simply connected manifold with H0(X,Ω2

X) ' Cσ, for
an everywhere nondegenerate 2-form σ.

Remark 2.4
1. From the definition X has even dimension 2n and its
canonical bundle ωX is trivial. Moreover h2,0(X) = h0,2(X) = 1
and h1,0(X) = h0,1(X) = 0.

2. IHS = Irreducible compact hyper-Kähler manifolds
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Main Result

Example
In complex dimension 2, the only examples are K3 surfaces.
(X,g) is irreducible if its holonomy representation is irreducible
(X 6= X1 × X2.)

Theorem 2.5
(M. Schwald, 2022) Let X be a compact Kähler manifold such
that H0(X,Ω2

X) ∼= C is generated by a holomorphic symplectic
form. Then h1(X,OX) = 0 if and only if X is simply connected
and therefore an irreducible symplectic manifold.
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An application of the decomposition theorem

Proposition 2.6
(M. Schwald 2018) Let (X, ω) be a smooth symplectic manifold
with h1(X,OX) = 0 and h0(X,Ω[2]X ) = 1. Then X is either simply
connected or a smooth quotient of a complex torus T by a finite
group G of a biholomorphic automorphisms.

Remark 2.7
The above Proposition is connected with the Proposition A.1 of
the article of D. Huybrechts and M. Nieper-Wisskirchen from
2011.
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Complex torus quotient

By (complex) torus quotients we shall understand quotients
X := T/G where T is a complex torus and G a finite group
acting by biholomorphisms on T.
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Definition
Let ρ be a complex representation of the finite group G and χρ
its charakter. When ρ is irreducible, it can be of real, complex,
or quaternionc type, depending on its Frobenius-Schur
indicator l(ρ) := 1

|G|Σg∈Gχρ(g2) being 1, 0 or -1 respectively.

Lemma 3.1
Let X = T/G be an n-dimensional torus quotient with induced
analytic representation L. Then H0(X,Ω[1]X ) is isomorphic to the
space of v ∈ Cn fixed under L(g) for all g ∈ G. Thus
h0(X,Ω[1]X ) = (χL|χIG) = 1

|G|Σg∈GtrL(g) counts the multiplicity of
the trivial representation IG as a component in L.
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Lemma 4.1
(Main Lemma) Let X = T/G be an n-dimensional torus quotient
with induced analytic representation L. Then H0(X,Ω[2]X ) is
spanned by a symplectic form on X if and only if L is either an
irreducible representation of quaternionic type or the direct sum
of two complex conjugate irreducible representation of real or
complex type. In every case it follows that h1(X,OX) = 0 except
when X is a 2-torus.
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Proof:

An irreducible representation L preserves a non-trivial
alternating billinear form if and only if L is of quaternionic type;
in this case this form is non-degenerate and unique up to
scalar.
We suppose now that L is reducible representation L = L1 ⊕ L2,
where the Li : G→ GLC(Vi) are sub-representations of positive
degrees and Cn = V1 ⊕ V2 is a decomposition invariant under
L(g) for all g ∈ G.
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Then the decomposition
∧2 Cn ∼= (

∧2 V1)⊕ (V1 ⊗ V2)⊕ (
∧2 V2)

is invariant under ∧2L(g) for all g ∈ G. When there is a
G-invariant 2-form ω on X, its three components are also
G-invariant. Hence H0(X,Ω2

X) = Cω implies that only one
component is non-zero. As ω is symplectic it is non-degenerate,
such that ω has to lie in the mixed part V1 ⊗ V2. By the same
argument applied to sub-representations, L1,L2 are seen to be
irreducible. Clearly neither L1 nor L2 can be of quaternionic
type, as then we had h0(X,Ω2

X) ­ 2.
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We have

1 = h0(X,Ω[2]X ) = (χ∧2L|χIG)

=
1

2|G|
Σg∈G(χL1(g) + χL2(g))2 − (χL1(g2) + χL2(g2))

=
1
2

(χL1 |χ̄L1) + (χL1 |χ̄L2) +
1
2

(χL2 |χ̄L2)−
1
2
ι(L1)− 1

2
ι(L2))

=

{
(χL1 |χ̄L2) if L1 and L2 are both real or both complex
0 else

and conclude L1 = L̄2.
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By Lemma 3.1 we get h0(X,Ω[1]X ) = (χL|χIG). This is zero unless
L is reducible and L1,L2 are both trivial, which is precisely the
case when T and X are both 2-tori.
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Definition
A complex torus quotient X = T/G is smooth if and only if every
g ∈ G acts fixed point free on T.

We call X a smooth (complex) torus quotient.

The real holonomy representation equals the restriction of
scalars of the analytic representation L of G on Cn.
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Every complex representation ρ : G→ GL(n,C) defines by
restriction to R a real representation ρR : G→ GL(2n,R)

ρR =

[
Rρ −Imρ
Imρ Rρ

]
.

We get C⊗ ρR ' ρ⊕ ρ̄, hence two irreducible complex
representations are R-equivalent if and only if they are
C-equivalent up to a possible complex conjugation.
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Definition
When K is a field, we call a representation ρ of G over K
homogeneous if ρ is the direct sum of equivalent irreducible
subrepresentation. When ρ is a complex representation, then
its restriction of scalars ρR is over R homogeneous if and only if
all irreducible complex subrepresentations of L are equivalent
up to a possible complex conjugation.

Lemma 5.1
Let ρ be a rational representation of a finite group and K ⊃ Q a
field. When K⊗ ρ is homogeneous then ρ is homogeneous as
well.
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Theorem 5.2
Let X = T/G be a smooth torus quotient with induced analytic
representation L. If the restriction of scalars LR is
homogeneous then L is trivial and X is a complex torus.

Proof.
Follows from a paper of Hiss-Szczepański (1991) and Lutowski
(2021).

Corollary 5.3
Every smooth symplectic torus quotient with h0(X,Ω2

X) = 1 is a
complex 2-torus.
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Proof.
Let X = T/G be a symplectic torus quotient and
L : G→ GL(n,C) its analytic representation. From Lemma 4.1 L
is either irreducible or the direct sum of two complex conjugate
irreducible representations Li : G→ GLC(Vi), i = 1, 2. In the
second case, their restrictions of scalars (Li)R are equivalent as
real representations, so LR ∼= (L1)⊕

2

R . In particular LR is
homogeneous in both cases. By Theorem 5.2 it follows that X
can only be smooth if it is a complex torus. For n := dimX this
implies 1 = h0(X,Ω[2]X ) = n(n−1)

2 and thus n = 2.
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We are ready to prove the Theorem 2.5.
Let X be a compact Kähler manifold such that H0(X,Ω2

X) ∼= C is
generated by a holomorphic symplectic form. Then h1(X,OX) = 0 if
and only if X is simply connected and therefore an irreducible
symplectic manifold.

Proof.
If h1(X,OX) = 0 then X is by Proposition 2.6 simply connected
or a smooth torus quotient. In the latter case it would be a
2-torus by Corollary 5.3, for which h1(X,OX) = 2 6= 0. For the
other direction, if X is simply connected, then
H1(X,C) = π1(X)ab is trivial and hence h1(X,OX) = 0 by Hodge
theory.
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Let X = T/G be a smooth torus quotient and L its induced
analytic representation. For each g ∈ G to act fixed point free on
T it is necessary that L(g) has 1 as eigenvalue. Furthermore,
finite groups G for which a smooth torus quotient X = T/G with
h1(X,OX) = 0 exists are primitive, (H. Hiller-C.H. Sah-1986) It
follows from Lemma 4.1 that G needed to be primitive if there
was a non-trivial smooth torus quotient X = T/G that is
symplectic with h0(X,Ω2

X) = 1.
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Theorem 6.1
There are examples of irreducible representations L of each
real, complex, and quaternionic type of primitive finite groups G
such that all representing matrices have 1 as an eigenvalue.
They give rise to examples of singular symplectic torus
quotients X = T/G with h1(X,OX) = 0 and h0(X,Ω[2]X ) = 1, but by
Corollary 5.3 no set of translations t(g) for g ∈ G can be chosen
to make the induced action of G on T free (again H. Hiller-C.H.
Sah - 1986).
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However, smooth symplectic quotient with h1(X,OX) = 0 exist
indeed. The smallest example comes from the direct sum of
three non-equivalent irreducible representations of quaternionic
type, hence h0(X,Ω[2]X ) = 3 in that case.
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Thank You.
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