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Abstract

We prove that all but 3 of the 27 closed, orientable, flat, four
dimensional manifolds have a spin structure.
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By flat manifold we understand a compact Riemannian manifold with sec-
tional curvature equal to zero. Any such manifold M is an orbit space R

n/Γ,
where Γ = π1(M) is a Bieberbach group, i.e. a discrete, cocompact and
torsion - free subgroup of the isometry group E(n) = O(n) n R

n of the n-
dimensional euclidean space R

n. Moreover, by Bieberbach theorems (cf. [2])
the translations subgroup Γ ∩ R

n of Γ is a free abelian group of rank n of
finite index. The finite group Γ/(Γ ∩ R

n) is also the holonomy group of the
manifold M . Let us recall that an oriented manifold M (a group Γ) has a
spin structure if and only if there exists a homomorphism ε : Γ → Spin(n)
such that λnε = h. Here λn is the covering map from the group Spin(n) to
the group SO(n) and h is the projection of Γ onto SO(n) sometimes called a
holonomy homomorphism. By ti, i = 1, 2, ..., n we shall denote the standard
basis of R

n.

In [12, Problem 15] is formulated the problem of classifying the finite groups
that are the holonomy groups of flat oriented manifolds which admit a spin
structure.

∗The second author was supported by Polish grant KBN - 0524/H03/2006/31
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Let G be a finite group. From the already known results (cf. [3], [6] and [7])
the following cases, related to the above problem can be distinguished.

1. Any oriented flat manifold M with holonomy group G has a spin structure
(if G is a finite group of odd order (cf. [3, Proposition 1]), G = Z2 (cf. [6,
Theorem 3.1,(3)], [7, Proposition 4.2]), or if G is a cyclic group of order
2n, n ≥ 3 (cf. [6, Theorem 3.1, (3)]).

2. There are flat manifolds M = R
n/Γ and M ′ = R

n/Γ′ with holonomy group
G and the same holonomy homomorphism such that M has a spin structure
but M ′ has none (it happens for groups of order four (cf. [6, Example 3.3],
[7, Table 1, page 327] and Lemma 1)).

3. There exists a finite group G and a group representation h : G → GL(n, Z)
such that any Bieberbach group with the above holonomy group and holon-
omy homomorphism has no a spin structure (it happens for G = Z4 (cf. [6,
Theorem 3.1, (4)])).

Here Zn denotes the cyclic group of order n and Dn denotes the dihedral
group of order n.

It is well known (cf. [8, § 12]) that any oriented three manifold has a spin
structure. In this paper we shall consider existence of spin structures on four
dimensional flat oriented manifolds. We shall prove.

Theorem All but 3 of the 27 four dimensional oriented flat manifolds have

a spin structure. The holonomy groups of the manifolds which do not admit

a spin structure are equal to Z2 ⊕ Z2 and D8.

Our methods are elementary and direct. Let Γ be a four dimensional ori-
ented Bieberbach groups with maximal abelian subgroup Z

4. We define a
homomorphism ε : Z

4 → Z2, which satisfies the conditions:

ε(ti) =

{

1 if for any γ ∈ Γ such that (γ)2 = ti (±(λ−1

4
(h(γ)))2 = 1

−1 if for any γ ∈ Γ such that (γ)2 = ti (±(λ−1

4
(h(γ)))2 = -1.

If ε exists, we have to extend it to a group homomorphism ε : Γ → Spin(4),
such that λ4ε = h. We want to mention that an application of Proposition 2.1
of [6] about the existence of a spin structure on M = R

n/Γ being independent
of the representation of Γ as a subgroup of E(4) is crucial for our argument.

The above theorem was announced in 2000 by J. Ratcliffe and S. Tschantz,
[10]. Some cases were considered in [11, Theorem 6]. One of our motivations
was to give an explicit, written proof for all cases.
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We would like to thank R.Lutowski for help in finding the isomorphism be-
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second author thanks Gerhard Hiss for discussions on the subject of this pa-
per and is grateful to the Lehrstuhl D of RWTH Aachen for its hospitality
during the work on this paper.

We would like to mention that most of the results were checked on GAP, [5].

1 Proof of the main result

From the Bieberbach theorem (cf.[2]) there are 27 four dimensional flat ori-
entable manifolds (Bieberbach groups), up to affine equivalence (up to iso-
morphism) see [9].

It is not difficult to prove that the following Bieberbach groups of rank
four have a spin structure: Z

4 the fundamental group of the torus, whose
holonomy group is trivial, the two groups with holonomy group Z2, [7, Propo-
sition 4.2], the two groups with holonomy group Z3, the group with holonomy
group isomorphic to Z6 and the three groups with holonomy group D6 [3,
Proposition 1]. Moreover, there are two Bieberbach groups with holonomy
group Z4. In this case existence of the spin structure follows from [6, Theorem
3.1 (4) and Theorem 3.2].

Hence we still have to consider 16 Bieberbach groups of rank four: 9 with
holonomy group Z2⊕Z2, 2 with holonomy group A4, 4 with holonomy group
D8 and 1 with holonomy group D12.

Lemma 1 All but 2 of the 9 closed, oriented, flat four-manifolds with holon-

omy group Z2 ⊕ Z2 have a spin structure. In five cases the number of spin

structures is equal to 8, in one case 4 and in one case 16.

Proof: We shall use notations from CARAT [9]. The first group Γ1 from
the family 22.1.1 is the product of a 3-dimensional group H and the integers.
The group H is the fundamental group of the three dimensional Hantzsche-
Wendt manifold, [12, Section 3] and admits four spin structures. Hence Γ1

has eight spin structures. The second group from the same family is

Γ2 = gen{γA = ([−1, 1,−1, 1], (0, 0, 0, 1/2)), γB =
([1,−1,−1, 1], (1/2, 0, 0, 0)), t̄1, t̄2, t̄3, t̄4} ⊂ E(4).

The bracket [x1, x2, x3, x4] denotes a matrix [aij], with aij = 0, for i 6= j
and aii = xi; i, j = 1, 2, 3, 4. Moreover t̄i = (I, ti), for i = 1, 2, 3, 4. Let
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±sM ∈ Spin(4) be mapped by λ4 to a diagonal matrix M ∈ SO(4)∩GL(4, Z).
By Lemma 2.3 of [6], we have that (sM)2 = −1, for M 6= ±I. We have
(γA)2 = t̄4, (γAγB)2 = t̄4, (γB)2 = t̄1. Hence, we can define a family of sixteen
maps ε : Γ2 → Spin(4) such that, ε((γA)) = ±e1e3, ε((γB)) = ±e2e3, ε(t̄2) =
±1, ε(t̄3) = ±1, ε(t̄1) = ε(t̄4) = −1. We can prove, by immediate calculations,
that each of them is a homomorphism, which establishes a spin structure,
where eiej ∈ Spin(4) are the standard generators for, i, j = 1, ..., 4, (cf. [4]).

The similar methods we apply to the group

Γ3 = gen{γC = ([−1, 1,−1, 1], (0, 1/2, 0, 1/2)), γD =
([1,−1,−1, 1], (1/2, 0, 0, 0)), t̄1, t̄2, t̄3, t̄4}

and the group

Γ4 = gen{γE = ([−1, 1,−1, 1], (0, 1/2, 1/2, 1/2)), γF =
([1,−1,−1, 1], (1/2, 0, 0, 0)), t̄1, t̄2, t̄3, t̄4}

from the family denoted 22.1.1. In the first case we have eight homomor-
phisms ε : Γ3 → Spin(4) such that, ε(γC) = ±e1e3, ε(γD) = ±e2e3, ε(t̄3) =
±1, ε(t̄1) = ε(t̄4) = −1, ε(t̄2) = 1 and λ4ε = h. In the second case we
have the following eight spin structures: ε(γE) = ±e1e3, ε(γF ) = ±e2e3 and
ε(t̄1) = −1, ε(t̄2) = ε(t̄3) = −ε(t̄4) = ±1.

We still have to consider five groups. All of them do not have diagonal
linear parts. We shall apply [6, Proposition 2.1]. Let us start from the group
(22.1.12)

Γ5 = gen{γ1, γ2, t̄1, t̄2, t̄3, t̄4}

where

γ1 =

















1 0 2 0
−1 0 −1 −1

0 0 −1 0
−1 −1 −1 0









, (−1/2, 1/2, 0, 0)









and

γ2 =

















−1 0 0 −2
1 0 1 1
1 1 0 1
0 0 0 1









, (−1/2, 0, 0, 1/2)









.
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We shall conjugate the group Γ5 inside the group GL(4, R) n R
4 by an

element (A5, 0), where

A5 =









1 −1 1 1
1 1 −1 1
1 1 1 1
1 1 1 −1









.

The Bieberbach group

Γ′

5
= (A5, 0)Γ5(A

−1

5
, 0) = gen{A5γ1A

−1

5
= γ

′

1
, A5γ2A

−1

5
= γ

′

2
, f1 =

(I, A5t1), f2 = (I, A5t2), f3 = (I, A5t3), f4 = (I, A5t4)}

is a subgroup of E(4) and has diagonal linear matrices. To finish the proof
in that case it is enough to define ε : Γ′

5
→ Spin(4) by formulas ε(γ

′

1
) =

±e2e3, ε(γ
′

2
) = ±e1e2, ε(f2) = ε(f3) = ε(f4) = −ε(f1) = ±1. Hence we have

eight different spin structures on Γ5.
The next group (22.1.2)

Γ6 = gen{γ1, γ2, t̄1, t̄2, t̄3, t̄4}

where

γ1 =

















−1 0 0 0
0 1 0 0
0 0 0 −1
0 0 −1 0









, (1/2, 1/2, 0, 0)









and

γ2 =

















−1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









, (0, 1/2, 0, 0)









.

As above, after conjugation by an element (A6, 0) where

A6 =









1 0 0 0
0 1 0 0
0 0 −1 1
0 0 1 1









,

we get the Bieberbach group

Γ′

6
= (A6, 0)Γ6(A

−1

6
, 0) = gen{A6γ1A

−1

6
= γ′

1
, A6γ2A

−1

6
= γ′

2
, g1 =

(I, A6t1), g2 = (I, A6t2), g3 = (I, A6t3), g4 = (I, A6t4)}
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with diagonal rotation matrices. We put ε(γ ′

1
) = ±e1e4, ε(γ

′

2
) = ±e1e3 and

ε(g1) = ε(g2) = −1, ε(g3) = ε(g4) = ±1. It gives eight different spin struc-
tures.

Next we shall prove that the group (22.1.4 or 05/01/04/006 in [1])

Γ7 = gen{γ1, γ2, t̄1, t̄2, t̄3, t̄4},

where

γ1 =

















1 0 0 0
0 −1 0 0
0 0 0 −1
0 0 −1 0









, (1/2, 1/2, 0, 0)









and

γ2 =

















−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1









, (0, 0,−1/2, 1/2)









has no spin structure.

After conjugation by an element (A6, 0) we get the Bieberbach group

Γ′

7
= (A6, 0)Γ7(A

−1

6
, 0) = gen{A6γ1A

−1

6
= γ′

1
, A6γ2A

−1

6
= γ′

2
, g1, g2, g3, g4}

where, γ′

1
= ([1,−1, 1 − 1], (1/2, 1/2, 0, 0)), γ ′

2
= ([−1,−1, 1, 1], (0, 0, 1, 0))

and γ′

1
γ′

2
= ([−1, 1, 1,−1], (1/2, 1/2, 1, 0)).

Assume that there exists a homomorphism ε : Γ′

7
→ Spin(4) of groups,

such that λ4ε = h. We have ε(g1) = −1, ε(g4 − g3) = −1, ε(g2 + g4 −
g3) = −1. Hence ε(γ ′

1
g4γ

′

1
) = ε(g1 − g3) = ε((γ′

1
)2)ε(g3) = −ε((γ′

1
)2)ε(g4) =

−ε(γ′

1
)ε(g4)ε(γ

′

1
) = −ε(γ′

1
g4γ

′

1
) and the spin stucture does not exist.

Let us consider a group (22.1.5)

Γ8 = gen{γ1, γ2, t̄1, t̄2, t̄3, t̄4}

where

γ1 =

















−1 0 0 0
0 1 1 0
0 0 −1 0
0 0 −1 1









, (1/2,−1/2, 0, 0)









and

γ2 =

















−1 0 0 0
0 0 0 −1
0 0 1 0
0 −1 0 0









, (0, 0, 1/2, 0)









.

6



After conjugation by an element (A8, 0) where

A8 =









1 0 0 0
0 1 1 −1
0 0 1 0
0 1 0 1









,

we get the Bieberbach group

Γ′

8
= (A8, 0)Γ8(A

−1

8
, 0) = gen{A8γ1A

−1

8
= γ′

1
, A8γ2A

−1

8
= γ′

2
, h1 =

(I, A8t1), h2 = (I, A8t2), h3 = (I, A8t3), h4 = (I, A8t4)}
where

γ′

1
= ([−1, 1,−1, 1], (1/2,−1/2, 0,−1/2)),

γ′

2
= ([−1, 1, 1,−1], (0, 1/2, 1/2, 0))

and γ′

1
γ′

2
= ([1, 1,−1,−1], (1/2, 0,−1/2,−1/2)).

We define ε(γ
′

1
) = ±e1e3, ε(γ

′

2
) = ±e1e4 and ε(h1) = ε(h2) = ε(h3) =

ε(h4) = −1. By immediate calculations we check that ε defines four spin
structures on group Γ8.

The second group, which has no spin structure, is the group (22.1.8 or
05/01/06/006 in [1])

Γ9 = gen{γ1, γ2, t̄1, t̄2, t̄3, t̄4}
where

γ1 =

















−1 0 0 0
0 1 0 0
0 −1 0 −1
0 −1 −1 0









, (1/2,−1/2, 1/2, 0)









and

γ2 =

















−1 0 0 0
0 0 1 −1
0 1 0 1
0 0 0 1









, (0,−1/2, 0, 1/2)









.

After conjugation by an element (A9, 0) where

A9 =









1 0 0 0
0 1 1 −1
0 1 1 1
0 1 −1 1









,

we get the Bieberbach group
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Γ′

9
= (A9, 0)Γ9(A

−1

9
, 0) = gen{A9γ1A

−1

9
= γ′

1
, A9γ2A

−1

9
} = γ′

2
, k1 =

(I, A9t1), k2 = (I, A9t2), k3 = (I, A9t3), k4 = (I, A9t4)}

where

γ′

1
= ([−1, 1,−1, 1], (1/2, 0, 0,−1)), γ ′

2
= ([−1, 1, 1,−1], (0,−1, 0, 0))

and γ′

1
γ′

2
= ([1, 1,−1,−1], (1/2,−1, 0,−1)).

From definition ε(k3−k2) = −1, ε(k4−k2) = −1 and ε(k1−k2 +k4) = −1.
Hence ε(k1) = 1, ε(k2) = 1, ε(k3) = −1 and ε(k4) = −1 or ε(k1) = 1, ε(k2) =
−1, ε(k3) = 1 and ε(k4) = 1. In any case we have ε(γ ′

2
k2γ

′

2
) = ε(k3+k4−k2) =

−ε(γ′

2
)ε(k2)ε(γ

′

2
) and it proves our statement.

For the second proof of the last part of Lemma we shall use [4, Proposition
on page 40], which says that the spin structures are classified by the first
cohomology group with coeficients in Z2. With support of GAP [5] we can
prove that | H1(Γi, Z2) |= 8 for i = 1, 3, 4, 5, 6. Moreover | H1(Γ2, Z2) |= 16
and | H1(Γ8, Z2) |= 4.

�

Next we have.

Lemma 2 All but 1 of the 4 closed, oriented, flat four-manifolds with the

holonomy group D8 have a spin stucture. In two cases the number of spin

structures is equal to 4 and in one case 8.

Proof: We shall use the list of groups, from [9]. Let us introduce the matrices

D1 =









1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1









and D2 =









0 −1 0 0
−1 0 0 0
0 0 1 0
0 0 0 −1









.

Then the three Bieberbach groups from the family (29.1.1) of [9] have the
following sets of generators in the group E(4),

∆1 = gen{α1 = (D1, (0, 0, 1/2, 1/4)), β2 = (D2, (0, 0, 1/2, 0)), t̄1, t̄2, t̄3, t̄4},
∆2 = gen{α2 = (D1, (1/2, 0, 0, 1/4)), β2, t̄1, t̄2, t̄3, t̄4},

∆3 = gen{α3 = (D1, (1/2, 0, 1/2, 1/4)), β2, t̄1, t̄2, t̄3, t̄4}.
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We define spin structures

ε(αi) = ±e2e4, (i = 1, 2, 3),

ε(β2) = ± 1√
2
(e1 + e2)e4.

Moreover, for the group ∆1 :

ε(t̄1) = ε(t̄2) = ±1

ε(t̄3) = ε(t̄4) = −1,

for the group ∆2 :

ε(t̄1) = ε(t̄2) = ε(t̄3) = ε(t̄4) = −1

and for the group ∆3 :

ε(t̄1) = ε(t̄2) = 1, ε(t̄3) = ε(t̄4) = −1.

The last Bieberbach group ((29.1.2) in [9] or 13/04/04/011 in [1]) of rank 4,
with holonomy group D8, has the set of generators.

∆4 = gen{(F1, (0,−1/2, 0, 1/2)), (F2, (1/4, 0, 1/2, 0)), t̄1, t̄2, t̄3, t̄4},

where F1 =









−1 0 0 0
0 0 1 −1
0 1 0 1
0 0 0 1









, F2 =









−1 0 0 0
0 0 0 −1
0 0 1 0
0 −1 0 0









,

Let us conjugate the group ∆4 by the element (A, 0) ∈ GL(4, R)nR
4, where

A =









0 1 1 1
0 1 −1 1
0 1 1 −1
1 0 0 0









.

We get AF1A
−1 = D1 and AF2A

−1 = D2. Hence

∆′

4
= {γ1 = (D1, (0, 0,−1, 0)), γ2 = (D2, (1/2,−1/2, 1/2, 1/4)), l1 =

(I, At1) = (I, (0, 0, 0, 1)), l2 = (I, At2) = (I, (1, 1, 1, 0)), l3 = (I, At3) =
(I, (1,−1, 1, 0)), l4 = (I, At4) = (I, (1, 1,−1, 0))}.
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We claim that this group has no spin structure. By contradiction, assume
that ε : ∆′

4
→ Spin(4) defines a spin structure. Similar to the previous cases,

we have:

ε(γ1) = ±e2e4, ε(γ2) = ± 1√
2
(e1 + e2)e4.

Hence
ε(l3) = ε(γ2

2
) = −1,

ε(l3 + l4) = ε((γ1γ
2

2
)2) = −1 ⇒ ε(l4) = 1.

Moreover,
ε(l3 − l2) = ε((γ2γ1γ2)

2) = −1 ⇒ ε(l2) = 1.

Finally
1 = ε(l4)ε(l2) = ε(l4 − l2) = ε(γ2

1
) = −1.

What is impossible.

�

For the Bieberbach group with holonomy group group D12 it is enough to
observe that it has a subgroup isomorphic to the group Γ2 from the Lemma 1.
Hence it has a spin structure by Proposition 1 of [3]. Let us finally consider
the 2 Bieberbach groups with holonomy group A4. In [1] they are denoted
by 24/01/02/004 and 24/01/04/004. Since the Sylow 2-subgroup of A4 is
equal to Z2 ⊕ Z2, then it is enough to prove that the subgroups Γ̄, Γ̄′ of the
above groups, with Z2 ⊕ Z2 holonomy, have a spin structure. In the first
case it is obvious because Γ̄ = Γ1. For the second group Γ̄′ we can prove
that it is isomorphic to Γ5. (We thank R.Lutowski for help.) However, using
calculations analogous to those in Lemma 1, we shall give a direct definition
of the spin structures. In fact, from [1]

Γ̄′ = gen{γ1, γ2, t̄1, t̄2, t̄3, t̄4},

where

γ1 =

















1 0 0 0
0 0 1 −1
0 1 0 −1
0 0 0 −1









, (1/2, 1/2, 0, 1/2)









and
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γ2 =

















1 −1 −1 1
0 0 −1 1
0 0 −1 0
0 1 −1 0









, (1/2, 0, 1/2, 1/2)









.

Then we can conjugate the group Γ̄′ inside the group GL(4, R) n R
4 by

the element (X, 0), where

X =









2 −1 −1 1
0 1 −1 −1
0 1 −1 1
0 1 1 −1









.

The group

Γ̄′′ = (X, 0)Γ̄′(X−1, 0) = gen{Xγ1X
−1 = γ

′

1
, Xγ2X

−1 = γ
′

2
, f1 =

(I, Xt1), f2 = (I, Xt2), f3 = (I, Xt3), f4 = (I, Xt4)}

is a subgroup of E(4) and has diagonal linear matrices. Finally we shall
define homomorphisms

ε : Γ̄′′ → Spin(4),

by the formulas ε(γ
′

1
) = ±e2e3, ε(γ

′

2
) = ±e2e4 and ε(f1) = −1, ε(f2) = ε(f3) =

−ε(f4) = ±1. Hence we have eight different spin structures on Γ̄′.

This finishes the proof of the main theorem.

�
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