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The combinatorial Hantzsche-Wendt group Gn = 〈x1, ..., xn | x−1
i x2

jxix2
j , ∀i �= j〉

was defined by W. Craig and P.A. Linnell in [4]. For n = 2 it is a fundamental 
group of 3-dimensional oriented flat manifold with non cyclic holonomy group. 
We calculate the Hilbert-Poincaré series of Gn, n ≥ 1 with Q and F2 coefficients. 
Moreover, we prove that the cohomological dimension of Gn is equal to n +1. Some 
other properties of this group are also considered.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Let Γ3 be the fundamental group of the oriented flat 3-manifold with non-cyclic holonomy, which was 
the first time defined by W. Hantzsche & H. Wendt and W. Nowacki in 1934, see [6], [13]. From [19, ch. 
9], Γ3 is a torsion free crystallographic group of a rank 3. Where, by crystallographic group of dimension 
n we understand a discrete and cocompact subgroup of the group E(n) = O(n) � Rn of isometries of the 
Euclidean space Rn. From the Bieberbach theorems [19] any crystallographic group Γ of rank n defines a 
short exact sequence

1 → Zn → Γ → H → 1, (1)

where Zn is the free abelian subgroup of all translations of Γ and H is a finite group, called the holonomy 
group of Γ. In the case of Γ3 the group H = Z2 ⊕ Z2. As a subgroup of E(3)
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Γ3 = gen{A = (

⎡
⎢⎣ 1 0 0

0 −1 0
0 0 −1

⎤
⎥⎦ , (1/2, 1/2, 0)), B = (

⎡
⎢⎣−1 0 0

0 1 0
0 0 −1

⎤
⎥⎦ , (0, 1/2, 1/2))}.

The Hantzsche-Wendt groups/manifolds are also defined in higher odd dimensions, as fundamental groups 
of oriented flat manifolds of dimensions, n ≥ 3 with holonomy group (Z2)n−1. We shall denote them by Γn, 
see [19, ch. 9]. From the Bieberbach theorems there exist, for given n, a finite number L(n) of Hantzsche-
Wendt groups (HW groups), up to isomorphism. However, the number L(n) growths exponentially, see [12, 
Theorem 2.8]. Let us define an example of the HW group Γn of dimension ≥ 3 which is a generalization of 
Γ3.

Example 1. Let n be an odd number. Then

Γn = gen{γi = (

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 ... 0 0 0 ... 0 0
0 −1 ... 0 0 0 ... 0 0
...

0 0 ... −1 0 0 ... 0 0
0 0 ... 0 1 0 ... 0 0
0 0 ... 0 0 −1 ... 0 0
...

0 0 ... 0 0 0 ... −1 0
0 0 ... 0 0 0 ... 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (0, ..., 0, 1/2, 1/2, 0, ..., 0))},

where 1 is at the i-th place and the first 1/2 is at the i-th place, 1 ≤ i ≤ n − 1.

In 1982, see [19], the second author proved that for odd n ≥ 3, the manifolds Rn/Γn are rational homology 
spheres. Moreover, for n ≥ 5 the commutator subgroup of the group Γn is equal to the translation subgroup 
[19, Theorem 9.3] and [17, Theorem 3.1]. Moreover, for m ≥ 7 there exist many isospectral HW-manifolds 
non pairwise homeomorphic, [12, Corollary 3.6]. HW groups have an interesting connection with Fibonacci 
groups (see below) and the theory of quadratic forms over the field F2, [19, Theorem 9.5]. HW-manifolds 
have no Spin or SpinC-structures, [11] and [19, p. 109]. Finally HW manifolds are cohomological rigid that 
means two HW manifolds are homeomorphic if and only if their cohomology rings over F2 are isomorphic, 
[15].

G is called a unique product group if given two nonempty finite subset X, Y of G, then exists at least one 
element g ∈ G which has a unique representation g = xy with x ∈ X and y ∈ Y . A unique product group is 
torsion free, though the converse is not true in general. The original motivation for studying unique product 
groups was the Kaplansky zero divisor conjecture, namely that if k is a field and G is a torsion free group, 
then kG is a domain. It was proved in 1988 [16] that the group G2 is a nonunique product group. To prove 
it the author uses the combinatorial presentation ([14, Lemma 13.3.1, pp. 606–607])

Γ3 = 〈x, y | x−1y2xy2, y−1x2yx2〉. (2)

However the counterexample to the Kaplansky unit conjecture was given in 2021 by G. Gardam [5]. Again 
the counterexample was found in the group ring F2[Γ3]. The Kaplansky unit conjecture states that every 
unit in K[G] is of the form kg for k∈K \ {0} and g ∈ G.
In [4] the following generalization of Γ3 is proposed.

Definition 1. By a combinatorial Hantzsche-Wendt group we shall understand a finitely presented group

Gn = 〈x1, ..., xn|x−1
i x2

jxix
2
j ∀ i 
= j〉.



J. Popko, A. Szczepański / Topology and its Applications 310 (2022) 108037 3
It is easy to see that, G0 = 1 and G1 = Z. Moreover G2 is the Hantzsche-Wendt group of dimension 3.
Let

Zn � An � 〈x2
1, x

2
2, ..., x

2
n〉, (3)

be a free abelian subgroup of Gn. In [4, Lemma 3.1] is proved that Zn�Gn. Later we shall denote An by Zn. 
Moreover, Wn = Gn/Zn = 〈x1, ..., xn | x2

1, x
2
2, ..., x

2
n〉 � ∗n Z2. Finally in [4, Theorem 3.3] it is proved that 

Gn is torsion free for all n ≥ 1. This is also the corollary from Theorem 2. For any 1 ≤ m ≤ n, Gm embeds 
in Gn and for n ≥ 2, Gn is a nonunique product group [4, Corollary 3.5]. Another interesting result of [4, 
Theorem 3.6] is the following. There is for n ≥ 3 and odd a surjective homomorphism Φn : Gn−1 → Γn. It 
is easy to see that Φn(Zn−1) is a free abelian subgroup of the translation subgroup of Γn of a rank n − 1. 
Since Γn/Φn(Zn−1) is an infinite group and Ker(Φn) ∩ Zn−1 = 1 then Ker(Φn) is an infinitely generated 
free group. (See [4, Theorem 3.6] and [7, p. 87].)

At that point we would like to mention the following related result, see [10]. Recall that the Fibonacci 
group F (r, n) is defined by the presentation

F (r, n) = 〈a0, ..., an−1|aiai+1 · · · ai+r−1 = ai+r, 0 ≤ i ≤ n−1〉,

where the indices are understood modulo n. There exists a connection of these groups with our family Gn. We 
know that F (2, 6) is isomorphic to Γ3, and there is, for any n ≥ 3 an epimorphism Ψn : F (n − 1, 2n) → Γn.

In the first part of a paper we shall show two models of BGn (or K(Gn, 1)). They are a topological realization 
of two algebraic representations of Gn. The first model is an appropriate gluing of n copies of generalized 
fat Klein bottles. It corresponds to an isomorphism of Gn with ∗nZnKn where Kn is a generalized Klein 
bottle crystallographic group amalgamated over the translation lattices. The second model is some Borel 
construction. It corresponds to the representation of Gn as an extension:

1 → Zn → Gn → Wn → 1. (4)

From the first model we obtain that the cohomological dimension of Gn is equal to n + 1 for n > 1.
In the second part we calculate the Hilbert-Poincaré series of Gn, n ≥ 1 with Q and F2 coefficients and 

explain the algebra structure of the cohomology. Here our main tools will be the Lyndon-Hochschild-Serre 
(LHS) spectral sequence of the group extension (4). The case with F2 coefficients uses a multiplicative 
structure of LHS. In the F2 case it is enough to use E�,�

3 groups, but for rational coefficients we only need 
the E�,�

2 -terms. (See formulas (12) and (16).)
In the last part we calculate some other invariants and properties of Gn. For example their abelianization 

and the Euler characteristic.

Acknowledgments
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2. Two models of BGn

2.1. Gluing fat Klein bottles

We start with an example.
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Example 2. Let K− be the fundamental group of the Klein bottle and Z2 its maximal abelian subgroup of 
index two. It is well known (see [9, Chapter 8.2, p. 153]) that Γ3 � K− ∗Z2 K−.

A generalization of the above example gives us the following characterization of the combinatorial 
Hantzsche-Wendt group. Let G(i)

n denote the subgroup of Gn generated by {xi} and the abelian subgroup 
(3) Zn. We shall call it a generalized Klein bottle.

Proposition 1. The natural group homomorphism

∗ZnG(i)
n → Gn (5)

is an isomorphism.

Proof. This follows from the definition and the structure of the free product with amalgamation. �
G

(i)
n is a torsion free crystallographic group of dimension n and acts freely on Rn (in a way analogous to 

K−) so has a classifying space which is an n dimensional closed flat manifold Ki (the generalized Klein 
bottle). A topological interpretation of the isomorphism (5) gives us a n + 1 dimensional classifying space 
BGn as (homotopically) gluing together n generalized Klein bottles K(1), K(2), ..., K(n) along a common n
dimensional torus Rn/Zn. This space has dimension n + 1 since we must convert maps Rn/Zn → K(i) to 
inclusions. More precisely it may be done as follows. Let us define an action of Gn on Rn by

xi(v)i = vi + 1/2 and xi(v)j = −vj , j 
= i,

where v = (v1, v2, ..., vn) and an action on a segment I = [−1, 1] by xi(t) = −t, t ∈ I.

Definition 2. By a fat Klein bottle we shall understand the space B(i)
n := (Rn × I)/G(i)

n .

Let Sn := Rn/Zn. Let us define maps α(i) : Sn → B
(i)
n by the formula α(i)(v) = [(v, 1)].

Definition 3. By the space Bn we shall understand a colim of a diagram formed from maps α(i), i.e.

Bn := colimiα
(i).

Theorem 1. The above space Bn is a classifying space for Gn.

Proof. From the definition the action of the subgroup G(i)
n on Rn is free and the orbit space K(i)

n was called 
a generalized Klein bottle. Moreover, the fat Klein bottle is (n + 1) dimensional compact manifold with 
boundary and the projection on the first factor gives a bundle B(i)

n → K
(i)
n with fiber I, hence in particular 

it is a homotopy equivalence. Finally, the map α(i) is an embedding on the boundary of B(i)
n . However, more 

geometrically we may write Bn :=
⋃

i B
(i)
n treating the maps α(i) as identifications (so Sn ⊂ B

(i)
n ). In other 

words Bn is obtained from n copies of a fat Klein bottle by an appropriate identification of the boundaries 
of different copies. To finish our proof we observe that π1(Bn) � Gn after van Kampen theorem. The space 
Bn is aspherical after JHC Whitehead’s theorem in [20, Theorem 5]. �
Corollary 1. For n > 1 the cohomological dimension of Gn is equal to n + 1.

Proof. For brevity we write B = Bn and S = Sn. From the properties of B we have, that cdGn ≤ n + 1. 
Let H denote cohomology with F2 coefficients. We have an exact sequence
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Hn(S) → Hn+1(B,S) → Hn+1(B).

Since dimHn(S) = 1 and dimHn+1(B, S) = n, then dimHn+1(B) ≥ n − 1. Hence cdGn ≥ n + 1 for 
n > 1. �
Remark 1. The space Bn is for n = 1 a Möbius band, for n = 2 a closed manifold (a classical 3-dimensional 
Hantzsche-Wendt manifold). However for n > 2 it is nonmanifold, since there is singularity along Sn.

2.2. Borel construction (homotopy quotient)

Let G be a discrete group and let pG : EG → BG be the universal G bundle. The assignment G �→ pG
may be done functorial in the group G and respecting products. If X is some G-space then the space

XG := (EG×X)/G

is called the Borel construction on X, [1, p. 10]. Here G acts on EG ×X diagonally. Let fX : XG → BG

be the quotient map. It is a fibration with fiber X. It is easy to see that, if X is aspherical then XG is also 
aspherical.

Definition 4 (morphisms between maps). If f : X1 → X2 and g : Y1 → Y2 then a morphism from f to g is a 
pair (m1, m2) where mi : Xi → Yi and gm1 = m2f .

The operation of taking pullback along ψ is denoted by ψ�. We shall write f � m�
2(g) if (m1, m2) : f → g

and m1 is an isomorphism on fibers.
Let ξ, η ∈ W2 be generators of order 2 and D := Z2 ⊕ Z2. The abelianization of W2 defines

1 → Z � (〈ξη)2〉 → W2
α→ D → 1. (6)

Let Σ be the unit circle on the complex plane. Define an action of D on Σ by formulas

ξ(z) = z̄ and η(z) = −z̄.

Denote a resulting D-space by U . In the above language we have a map fU : UD → BD and we can observe 
that π1(fU ) � α.

We define (for i = 1, 2, ..., n) homomorphisms φi : Gn → W2

φi(xi) = ξη and φi(xj) = ξ for j 
= i. (7)

Then φ := (φ1, ..., φn) gives a homomorphism from Gn → (W2)n. Let qn : Gn → Wn be the canonical 
surjection. The homomorphism φ factorizes and we obtain a map (φ, ψ) : qn → αn and φ is an isomorphism 
on fibers. We have:

Lemma 1. qn � ψ�αn.

Proof. With support of (6) we have the following commutative diagram
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1 Zn Gn Wn 1

1 Zn (W2)n (Z2 ⊕ Z2)n 1

�

i

φ

qn

ψ

i1 αn

,

Diagram 1

where i, i1 are inclusions. �
Define a Wn action on the space Σn

xi(z)i = −zi and xi(z)j = z̄j for j 
= i, (8)

where z = (z1, z2, ..., zn).
Denote the resulting Wn-space by Tn.

Proposition 2.

π1(fTn
) � qn

in particular π1((Tn)Wn
) � Gn.

Proof. The action on Tn is obtained by composing the product Dn action with the homomorphism ψ (i.e. 
w(x) = ψ(w)(z) for w ∈ Wn). Hence, from naturality we have a map of fibrations

(ψ̂1, ψ̂2) = ψ̂ : fTn
→ fUn .

Applying π1 we get

π1(ψ̂) : π1(fTn
) → π1(fUn).

The map ψ̂ gives an isomorphism (identity) on fibers so the map π1(ψ̂) also gives an isomorphism on fibers
by an application of the long exact sequence for fibrations. We have (for codomain components) (ψ̂)2 = Bψ

so π(ψ̂)2 = π(Bψ) = ψ. Hence

π1(fTn
) � ψ�π1(fUn).

But

ψ�π1(fUn) � ψ�π1(fU ))n � ψ�αn � qn. �
Theorem 2.

(Tn)Wn
= K(Gn, 1).

Proof. The space (Tn)Wn
is aspherical because Tn is. And it has the appropriate fundamental group by 

Proposition 2. �
Let B =

∨n RP (∞). The space B = K(Wn, 1), cf. [20]. Let E → B be the universal covering. Then
1
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Corollary 2. We have the fibration

Tn → (Tn)Wn
→ E/Wn, (9)

where a Wn action on E is by deck transformation. �
Remark 2. The Wn action on Tn is highly noneffective. The kernel of it is the commutator subgroup of Wn, 
which by the Kurosh subgroup theorem, is a free group of rank 1 + (n − 2)2n−1.

See [3, Exercise 3, p. 212] and the proof of Proposition 6.

3. Cohomologies of Gn

In this part we shall calculate a cohomology of the group Gn with Q coefficients (Theorem 3) and 
F2 coefficients (Theorem 4). We shall apply the Leray-Serre spectral sequence of the fibration (9) and 
equivalently Lyndon-Hochschild-Serre spectral sequence for the short exact sequence of groups (4)

1 → Zn → Gn
ν→ Wn → 1.

3.1. Hilbert-Poincaré series

Definition 5. ([7, p. 230]) Let M be a topological space. For a fixed coefficient field k, define the Poincaré 
series of M the formal power series

P (x, k) = Σiaix
i

where ai is the dimension of Hi(M, k) as a vector space over k, assuming this dimension is finite for all i.

Theorem 3. The rational Hilbert-Poincaré series of the space

K(Gn, 1) = Tn ×Wn
E

is equal to

Pn(x,Q) = ((1 + x)(1 + (1 − (−1)n))
2 xn + x(n− 2

2 (1 + x)n−1 − n

2 (1 − x)n−1)). (10)

In particular, P0(x, Q) = 1, P1(x, Q) = x + 1, P2(x, Q) = x3 + 1).

Proof. We start with Lemma.

Lemma 2. For p > 1, Hp(Wn, Q) = 0.

Proof. We have a short exact sequence of groups related to the abelianization

1 → Fk → Wn → (Z2)n → 1, (11)

where Fk is a non abelian free group of a rank k = 1 + (n − 2)2n−1. Hence for q > 1, Hq(Fk, M) = 0 for any 
Fk-module M . Similar for any p ≥ 1, Hp((Z2)n, N) = 0 for any (Z2)n-rational vector space N . Applying a 
Leray-Serre spectral sequence to (11) we have for i ≥ 2, Hi(Wn, S) = 0. Where S is a Wn-rational vector 
space. �
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Corollary 3. For p > 1, q ≥ 0, Ep,q
2 = Hp(Wn, Hq(Zn, Q)) = 0 and the differentials di = 0 for i ≥ 2. 

Moreover, E0,q
2 and E1,q

2 , q ≥ 0 are two non trivial columns of the spectral sequence.

The Hilbert-Poincaré polynomial (10) is the sum f0 + f1, where

fp = xpΣidim(Ep,i
2 )xi. (12)

Let us start to calculate dimensions of Ep,q
2 = Hp(Wn, Hq(Zn, Q)) for p = 0, 1 and q ≥ 0. We shall use 

a Wn action on Hq(Zn, Q) = Λq(Qn), which follows from an action Wn on Tn, see (8).

We introduce sequences ε ∈ {−1, 1}n. Denote by (−1)ε = −ε = (−ε1, −ε2, ..., −εn). Moreover, for A ⊂
{1, 2, ..., n} the sequence eA has −1 exactly on the positions from A. Finally let 1 = (1, 1, ..., 1) := e∅ and 
|ε| := Σi

1−εi
2 (the number of −1 in the sequence).

By Qε we shall understand the rational numbers Q with the structure of a Wn-module such that the 
k-th generator of Wn acts as multiplication by εk, 1 ≤ k ≤ n. In this language H1(Zn, Q) � ΣiQ−e{i} as 
Wn-module. Moreover, H∗(Zn, Q) � Λ∗(Qn) is a sum of some Qε. Let

hi(ε) = dimHi(Wn,Qε).

From the definition

h0(ε) =
{

1 if ε = 1
0 if ε 
= 1

and h1(ε) =
{

0 if ε = 1
|ε| − 1 if ε 
= 1

.

Using (12) and the above formulas gives us

fi = xi
∑

A⊂{1,2,...,n}
x|A|hi((−1)|A|eA), i = 1, 2.

Hence for n ≥ 0:

f0 = 1 + 1 − (−1)n

2 xn

f1 = xn+1(n− 1)1 + (−1)n

2 +

+x Σ0<k<nx
k

(
n

k

)
((k − 1)1 + (−1)k

2 + (n− k − 1)1 − (−1)k

2 ).

Lemma 3. Formula (10) from Theorem 3 is equal to f0 + f1.

Proof. We shall use two formulas:

Σ0<k<n

(
n

k

)
xk = (1 + x)n − 1 − xn = g(x)

and

Σ0<k<nk

(
n

k

)
xk = nx(1 + x)n−1 − nxn = f(x).

On the beginning we shall prove that
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S = Σ0<k<nx
k

(
n

k

)
((k − 1)1 + (−1)k

2 + (n− k − 1)1 − (−1)k

2 )

=1

Σ0<k<nx
k

(
n

k

)
(k(−1)k + n− 2

2 − n

2 (−1)k) =

Σ0<k<nx
k(−1)k

(
n

k

)
+ n− 2

2 Σ0<k<nx
k

(
n

k

)
− n

2 Σ0<k<n(−1)kxk

(
n

k

)
=

f(−x) + n− 2
2 − n

2 g(−x) =

n− 2
2 (1 + x)n − n

2 (1 + x)(1 − x)n−1 + (1 − n
1 + (−1)n

2 )xn + 1.

Since

f1 = xn+1(n− 1)1 + (−1)n

2 + xS

then

f1 = x + 1 − (−1)n

2 xn+1 + (1 + x)x(n− 2
2 (1 + x)n−1 − n

2 (1 − x)n−1)

and

f0 + f1 =

(1 + x)(1 + 1 − (−1)n

2 xn + x(n− 2
2 (1 + x)n−1 − n

2 (1 − x)n−1)). �
As a complement to the above results we present an observation about the algebra structure of H∗(Gn, Q).

Corollary 4. If x, y ∈ H∗(Gn, Q) are such that deg(x) > 0 and deg(y) > 0 then xy = 0.

Proof. For n = 1 it is obvious. Let us assume n ≥ 2. From the proof of Theorem 3 H1(Gn, Q) = 0 and 
Hs(Gn, Q) = 0 for s > n + 1. So, if deg(x) ≥ n or deg(y) ≥ n then xy = 0. Hence we can assume that 
deg(x) < n and deg(y) < n. From the proof of Theorem 3 we know that the appropriate Serre spectral 
sequence converging to H∗(Gn, Q) has the property:

(
) Ep,q
∞ 
= 0 =⇒ (p, q) ∈ {(0, 0), (0, n)} ∪ {(1, i) : i ≤ n}.

Let (Fi) denote the filtration of H∗(Gn, Q) associated with the spectral sequence. From (
) and deg(x) < n

and deg(y) < n it follows that x, y ∈ F1. Consequently xy ∈ F2. But again from (
) F2 = 0. �
A calculation of the cohomology with F2 coefficients needs different tools. We shall also apply the Lyndon-

Hochschild-Serre spectral sequence for the short exact sequence of groups (4)

1 → Zn → Gn
ν→ Wn → 1.

In this case we have E∗,∗
3 
= 0 and we shall use multiplicative structures.

1 k(−1)k + n−2
2 − n

2 (−1)k = (k − 1) 1+(−1)k
2 + (n − k − 1) 1−(−1)k

2 .
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Theorem 4.

Pn(x,F2) = (1 + x)(1 + (n− 1)x(1 + x)n−1). (13)

In particular, P0(x, F2) = 1, P1(x, F2) = x + 1, P2(x, F2) = 1 + 2x + 2x2 + x3).

Proof. There are canonical isomorphisms over F2

Ep,q
2 = Hp(Wn, H

q(Zn,F2))
∼← Hp(Wn,F2) ⊗Hq(Zn,F2),

H∗(Zn
2 ,F2) = F2[z1, z2, ..., zn],

where zi ∈ H1(Zn
2 , F2) = Hom(Zn

2 , F2) is the projection on the i-coordinate, i = 1, 2, ..., n and

H∗(Wn,F2) = H∗(Zn
2 ,F2)/{zizj |i 
= j}. (14)

Let g1, ..., gn ∈ H1(Zn, F2) be a dual basis to x2
1, ..., x

2
n. We shall denote by Λ(g1, ..., gn) the exterior algebra 

over F2 generated by g1, ..., gn (H∗(Zn, F2)).2 To begin we shall prove:

Proposition 3. Let (Er, dr) be the above spectral sequence and on E3 we use the total grading. E0,0
3 =

〈1〉, E0,q
3 = 0, q > 0 and Ep,q

3 = 0 for p > 2. Moreover d2 
= 0 and di = 0 for i ≥ 3.

Proof. To prove that E0,q
3 = 0, q > 0 it is enough to show that the kernel of d0,q

2 is trivial. By contradiction 
assume that ∃ 0 
= ω ∈ E0,q

2 , q > 0 and d0,q
2 (ω) = 0. Then ∃ i, s.t. ω = giα + β and α, β do not depend 

on gi. If d0,q
2 (ω) = 0 then from the properties of the transgression 0 = d0,q

2 (ω) = ziα + γ, where γ is a 
linear combination of elements from the set {z2

s : s 
= i} with coefficients in Λ(g1, ..., gn). Hence α = 0 a 
contradiction.
From Lemmas 5 and 6 cycles of the differential d2 are linear combinations of elements zki ω (for some i, k) and 
ω ∈ Λ(g1, g2, ..., gn) does not include gi. Hence for k ≥ 3 zki ω = dk,s2 (zk−2

i giω) and for p ≥ 3, Ep,q
3 = 0. �

Lemma 4. In the spectral sequence of the extension (6)

0 → Z → W2 → Z2 ⊕ Z2 → 0,

d̄2(g) = z1z2, where g is a generator of H1(Z, F2).

Proof. From the above z1z2 ∈ H∗(W2, F2) is equal to zero. Applying the five-term exact sequence (see [8, 
pp. 16, 57]) we get the exact sequence

H1(Z,F2)
d̄2→ H2(Z2 ⊕ Z2,F2)

f∗

→ H2(W2,F2)

and Imd̄2 = Kerf∗. Hence d̄2(g) = z1z2. �
Lemma 5. Let g1, ..., gn ∈ H1(Zn, F2) be a dual basis to x2

1, ..., x
2
n. For the spectral sequence of the exact 

sequence of groups

0 → Zn → Gn → Wn → 0,

using naturality and properties of homomorphisms (7) φi : Gn → W2 we obtain d2(gi) = z2
i .

2 Λ∗(g1, ..., gn) � H∗(Zn, F2).
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Proof. We have a commutative diagram

1 Zn Gn Wn 1

1 Z W2 Z2 ⊕ Z2 1

αi

i

φi

qn

γi

i1 α

.

Diagram 2

Here, αi and γi are defined by φi. From naturality d2 ◦ α∗
i = γ∗

i ◦ d̄2, (see Diagram 3) where α∗
i , γ

∗
i are the 

induced maps on cohomology.

Ē0,1
2 � H1(Z,F2) Ē2,0

2 � H2(Z2 ⊕ Z2,F2)

E0,1
2 � H1(Zn,F2) E2,0

2 � H2(Wn,F2)

α∗
i

d̄2

γ∗
i

d2

Diagram 3

We have

gi = α∗
i (g).

Hence

d2(gi) = d2(α∗
i (g)) = γ∗

i (d̄2(g))
Lemma 4= γ∗

i (z1z2) = γ∗
i (z1)γ∗

i (z2).

Moreover, let γi : Wn/[Wn, Wn] → Z2 ⊕ Z2 be induced by γi, then γi(λ1, λ2, · · · , λn) = (Σsλs, λi). Hence,

γ∗
i (z1) = Σszs and γ∗

i (z2) = zi.

Finally, since in H∗(Wn) zizj = 0 for i 
= j, we get

d2(gi) = (Σszs)zi = z2
i . �

The next observation is the following.

Lemma 6. Let k > 0, then, d2(zki ω) = 0 if and only if ω does not depend on gi.

Proof. Let us write ω = giα + β where α, β ∈ Λ do not depend on gi. In fact, by definition d2(giα + β) =
z2
i α + γ, where γ is a linear combination of elements from the set {z2

s : s 
= i} with coefficients from Λ. 
Hence, because for i 
= s, zizs = 0 (14)

d2(zki (giα + β)) = zki d2(giα + β) = zki (z2
i α + γ) = zk+2

i α. (15)

Assume d2(zki ω) = 0. We can write ω = giα + β, where α and β are independent from gi. From (15)
0 = d2(zki ω) = zki α. Hence α = 0 and ω = β and so ω does not include gi. Finally, if ω does not include gi
substituting α = 0 and ω = β to the formula (15) we get d2(zki ω) = 0. �
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Corollary 5. Let k > 0 and υ = Σsz
k
sωs ∈ Ek,s

2 , where ∀ s ωs ∈ Λs then

d2(υ) = 0 ⇐⇒ ∀s ωs does not include gs.

Proof. (⇐) Follows from the above Lemma 6. (⇒) For any i if d2(υ) = 0 then also d2(ziυ) = 0. But 
ziυ = zk+1

i ωi. Again, from Lemma 6 it follows that ωi does not include gi. �
Remark 3. Let Zi,j

2 = kerdi,j2 and Bi,j
2 = Imdi,j2 . Let M be an F2-vector space and a trivial G-module, then

dimHi(G,M) = dimHi(G,F2) dimM.

Moreover dimHi(Zn, F2) =
(
n
i

)
, dimHi(Wn, F2) = n (for i > 0), dimEp,q

2 = n
(
n
q

)
(for p > 0).

Summing up the generating function for H∗(Gn, F2) is a sum of three components: f0 + f1 + f2 where

fp = Σidim(Ep,i
3 )xp+i. (16)

Lemma 7. From the properties of the differentials d2 we have:

I. f0 = 1;
II. f1 = nx(1 + x)n−1;

III. f2 = nx2(1 + x)n−1 − x((1 + x)n − 1).

Proof. By an application of the proof of Proposition 3 f0 = 1.
From the above d2(zki ω) = 0 if and only if ω does not include gi. Hence dimZk,s

2 = n
(
n−1
s

)
and f1 =

nx(1 + x)n−1, cf. Corollary 5.
For p = 2 we have E2,i

3 = Kerd2,i
2 /Imd0,i+1

2 . Moreover, for i > 0, d0,i
2 is a monomorphism. This follows 

from the proof of Proposition 3. Hence, dim Imd0,i
2 = dimE0,i

2 =
(
n
i

)
. Summing up f2 = nx2(1 + x)n−1 −

x((1 + x)n − 1) and the Lemma is proved. �
Example 3. We have dimZk,s

2 = n
(
n−1
s

)
. In fact, a basis of Zk,s

2 is the set {zki ω}, where 1 ≤ i ≤ n and ω is 
a Grassmann monomial of degree s on elements {g1, ..., gn} \ {gi}.
For n = 4 the basis of Z2,2

2 has 12 elements:

z2
1g2g3, z

2
1g2g4, z

2
1g3g4, z

2
2g1g3, z

2
2g1g4, z

2
2g3g4, z

2
3g1g2, z

1
3g2g4, z

2
3g2g4, z

2
4g1g2, z

2
4g1g3, z

2
4g2g3

the basis of E0,3
2 has the following 4 elements:

y1 = g1g2g3, y2 = g1g2g4, y3 = g1g3g4, y4 = g2g3g4.

Since d0,3
2 is a monomorphism the basis of B2,2

2 has four elements:

d0,3
2 (y1) = z2

1g2g3 + z2
2g1g3 + z2

3g1g2,

d0,3
2 (y2) = z2

1g2g4 + z2
2g1g4 + z2

4g1g2,

d0,3
2 (y3) = z2

1g3g4 + z2
3g1g4 + z2

4g1g3,

d0,3
2 (y4) = z2

2g3g4 + z2
3g2g4 + z2

4g2g3.

Hence dimE2,2
3 = 12 − 4 = 8.
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Finally

f0 + f1 + f2 = 1 + nxb + nx2b− xb(1 + x) + x =

= x + 1 + nxb(1 + x) − xb(1 + x) = (x + 1)(1 + nxb− xb) =

= (1 + x)(1 + (n− 1)x(1 + x)n−1).

Here b = (1 + x)n−1.

Finally, we would like to present some grading of H∗(Gn, F2). We start with a definition.

Definition 6. Define the bigraded algebra E(n) over F2 by (a direct sum of vector space):

E(n) = E0 + E1 + E2

where Ei are given by:

• E0 = 〈1〉
• E1 is spanned (i.e. is a free vector space) by symbols: zigA where 1 ≤ i ≤ n and A ⊂ {1, 2, ..., n}, i /∈ A

• E2 = E ′
2/R where E ′

2 is spanned by symbols z2
i gA with restrictions as above and R = span{rA : A ⊂

{1, 2, ..., n}, A 
= ∅} where rA = Σi∈Az
2
i gA\{i}

Bidegrees are given by:

bideg(1) = (0, 0), bideg(zigA) = (1, |A|), bideg(z2
i gA) = (2, |A|)

Multiplication is given by:

• 1 acts in obvious way;
• (zigA)(zigB) = zigA∪B if A ∩B = ∅;
• all other products are zero.

The above definition summarizes explicitly the description of the bigraded algebra structure of E3, namely

Proposition 4. If (Er, dr) is the spectral sequence of the short exact sequence (4) then

E3 � E(n)

as bigraded algebras.

Example 4 (Bigraded algebra H∗(G2, F2)). There are elements: a, b, A, B, w ∈ H∗(G2, F2) such that:

• a, b ∈ H1(G2, F2), A, B ∈ H2(G2, F2), w ∈ H3(G2, F2);
• aA = bB = w and all other products of elements from {a, b, A, B, w} are zero;
• {a, b, A, B, w} is a basis of H∗(G2, F2).

Using Definition 6 we have:

E0 = 〈1〉,
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E1 = 〈z1g∅, z2g∅, z1g{2}, z2g{1}〉,
E ′
2 = 〈z2

1g∅, z
2
2g∅, z

2
1g{2}, z

2
2g{1}〉,

R = 〈z2
1g∅, z

2
2g∅, z

2
1g{2} + z2

2g{1}〉.

So

(1, z1g∅, z2g∅, z1g{2}, z2g{1}, [z2
1g{2}])

is a basis of E(2), where [ξ] denotes the class of ξ.

If (1, a, b, A, B, w) are elements of H∗(G2, F2) which correspond (in this order) to elements of the above 
basis then they satisfy the conditions stated above.

Example 5. Let X = P2
∨
P2

∨
S3 where S3 is the 3-dimensional sphere and P2 is the 2-dimensional real 

projective space. Let Y = BG2. Then the Poincaré polynomials of X and Y over F2 and over Q are the 
same but H∗(X, F2) and H∗(Y, F2) are not isomorphic as algebras.

4. Additional observation

Proposition 5.

1. For n > 1, (Gn)ab � Zn
4 ;

2. For n > 1 the center of Gn is trivial;
3. The Euler characteristic and the first Betti number of Gn are equal to zero.

Proof. 1. Follows from a direct calculation.
2. From (4) and the fact that the center of Wn is trivial we have an inclusion Z(Gn) ⊂ Zn. Let v ∈ Z(Gn). 
From the above v = Πi(x2

i )αi for some αi ∈ Z. Using relations in Gn, we have

x1vx
−1
1 = (x2

1)α1Πi≥2(x2
i )−αi .

Since v = x1vx
−1
1 , then αi = 0 for i ≥ 2. Similar x2vx

−1
2 = v, which gives us α1 = 0.

3. From the properties of the Euler characteristic of a fibration (9) (see [18, p. 481]) χ(K(Gn, 1)) =
χ(Tn)χ(E/Wn) = 0 · χ(E/Wn) = 0. The conclusion about the Betti number follows directly from The-
orem 1. �
Proposition 6. Let n ≥ 2. The short exact sequence of groups (4) defines a representation

h : Wn → GL(n,Z),∀x ∈ Wn h(x)(ei) = x̄eix̄
−1,

where ei ∈ Zn is the standard basis i = 1, 2, ..., n and ν(x̄) = x. However, K = Kerh 
= 0, because 
[Wn, Wn] ⊂ Kerh. In particular, K is a finitely generated free group of rank 1 + (n − 2)22[n/2]−1.

Proof. From definition of h we have an extension K → Wn → Zs
2, where s = 2[n2 ] and [x] is the largest 

integer not exceeding x. Again by the definition of h the commutator subgroup W ′
n of Wn has index 1 for n

even and index 2 for n odd in the group K. Hence s = 2[n2 ]. Computing (fractional) Euler characteristics we 
get (see [2, Corollary 5.6, p. 245]) from the Euler characteristic formula e(K) = e(Wn)/e(Zs

2) = e(Wn)2s =
(1 − n

2 )2s. Which gives the announced rank.
Analogously e(W ′

n) = (1 − n )2n and e(K/W ′
n) = 2s−n. �
2
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Remark 4. Let n be an even number then

Pn(x,Q) = Pn(x,F2) mod 2.
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