Generalized Neuwirth Groups and Seifert Fibered Manifolds^{*}

Andrzej Szczepański

Institute of Mathematics, University of Gdańsk ul. Wita Stwosza 57, 80-952, Gdańsk, Poland E-mail: matas@paula.univ.gda.pl

Andrei Vesnin

Sobolev Institute of Mathematics pr. Koptyuga 4, Novosibirsk 630090, Russia E-mail: vesnin@math.nsc.ru

> Received 7 March 1999 Revised 8 July 1999

Communicated by A.C. Kim

Abstract. The topological properties of the generalized Neuwirth groups, ${}_{n}^{k}$ are discussed. For example, we demonstrate that the group, ${}_{n}^{k}$ is the fundamental group of the Seifert fibered space Σ_{n}^{k} . Moreover, we discuss some other invariants and algebraic properties of the above groups.

2000 Mathematics Subject Classification: 20F34, 57M05, 57M60

Keywords: Seifert manifolds, flat manifolds, spine complex

1 Introduction

Let \mathbb{F}_n be the free group on free generators x_1, x_2, \ldots, x_n . Let $\theta : \mathbb{F}_n \to \mathbb{F}_n$ be the automorphism such that $\theta(x_i) = x_{i+1}$ for $i = 1, 2, \ldots, n-1$ and $\theta(x_n) = x_1$. For any word $w \in \mathbb{F}_n$, we define a group $G_n(w) = \mathbb{F}_n/R$, where R is the normal closure in \mathbb{F}_n of the set $\{w, \theta(w), \ldots, \theta^{n-1}(w)\}$ (cf. [10]). A group G is said to have a *cyclic presentation* if $G = G_n(w)$ for some n and $w \in \mathbb{F}_n$. Among the well-studied examples of cyclically presented groups are the *Fibonacci groups* $F(r, n) = G_n(x_1x_2\cdots x_rx_{r+1}^{-1})$, where $n \geq 3$ and $r \geq 2$ (cf. [10]).

^{*}This work was supported by Polish grant (BW-5100-5-0259-9) and the Russian Foundation for Basic Research (grant number 98-01-00699).

Our aim is to study a class of cyclically presented groups which are the fundamental groups of 3-manifolds. We note that it is impossible to find an algorithm for determinig whether an arbitrary finite presentation presents a fundamental group of a 3-manifold (cf. [19]).

In [14], Neuwrith considers the groups , $_n = F(n-1,n)$ $(n \ge 3)$ as fundamental groups $\pi_1(\overline{M}_n)$ of closed orientable 3-manifolds. It was proven in [4] that the *Neuwirth manifold* \overline{M}_n is PL-homeomorphic to the Seifert fibered space

$$\Sigma_n = (0 \ o \ 0 \ | \ -1; \underbrace{(2,1), \ (2,1), \ \dots, (2,1)}_{n \ \text{times}}).$$

In this paper, we introduce a family of cyclically presented groups, $_{n}^{k} = G_{n}(x_{1}x_{2}\cdots x_{n-1}x_{n}^{-k})$ with $n \geq 3$ and $k \geq 1$. We call these groups generalized Neuwirth groups. We show that, $_{n}^{k}$ is the fundamental group of the closed orientable 3-manifold M_{n}^{k} . Moreover, we prove that M_{n}^{k} is homeomorphic to the Seifert fibred space

$$\Sigma_n^k = (0 \ o \ 0 \ | \ -1; \ \underbrace{(k+1,1), \ (k+1,1), \ \dots, (k+1,1)}_{n \ \text{times}})$$

in respect to notations from [12]. As a corollary, we show that the groups, ${}_{n}^{k}$ are automatic for $(n, k) \neq (4, 1)$ and give a formula for the Casson–Walker–Lescop invariant of the manifolds Σ_{n}^{k} .

2 An Example

Let , $\frac{2}{3}$ be a generalized Neuwirth group

$$, \frac{2}{3} = \langle x_1, x_2, x_3 \mid x_1 x_2 = x_3^2, x_2 x_3 = x_1^2, x_3 x_1 = x_2^2 \rangle.$$

Proposition 2.1. The group $, \frac{2}{3}$ is the fundamental group of a compact orientable flat 3-manifold.

Proof. Let P_3^2 be the unit cube in the Euclidean 3-space \mathbb{E}^3 with notations of vertices according to Fig. 1.

Fig. 1. The cube P_3^2 .

Consider the orientation-preserving Euclidean isometries which identify pairs of faces of the polyhedron P_3^2 as follows:

$$\begin{array}{ll} a: A_1ABB_1 & \rightarrow B_1C_1CB, \\ b: A_1B_1C_1D_1 & \rightarrow D_1DCC_1, \\ c: A_1D_1DA & \rightarrow ABCD. \end{array}$$

Edges of P_3^2 are divided in three classes of equivalent:

$$\begin{array}{cccc} x_1:A_1A & \stackrel{a}{\longrightarrow} B_1C_1 & \stackrel{b}{\longrightarrow} DC & \stackrel{c^{-1}}{\longrightarrow} AD & \stackrel{c^{-1}}{\longrightarrow} A_1A, \\ x_2:A_1B_1 & \stackrel{b}{\longrightarrow} D_1D & \stackrel{c}{\longrightarrow} BC & \stackrel{a^{-1}}{\longrightarrow} B_1B & \stackrel{a^{-1}}{\longrightarrow} A_1B_1, \\ x_3:A_1D_1 & \stackrel{c}{\longrightarrow} AB & \stackrel{a}{\longrightarrow} C_1C & \stackrel{b^{-1}}{\longrightarrow} D_1C_1 & \stackrel{b^{-1}}{\longrightarrow} A_1D_1. \end{array}$$

Therefore, by the Poincare Theorem [20], the group generated by a, b, c has the polyhedron P_3^2 as its fundamental domain, and has the presentation $\langle a, b, c | ab = c^2, bc = a^2, ca = b^2 \rangle$, which is isomorphic to , $\frac{2}{3}$. Since all dihedral angles of P_3^2 are equal to $\pi/2$ and all cycles of edges are of length 4, we conclude that the quotient space $\mathbb{E}^3/$, $\frac{2}{3}$ is a flat 3-manifold. \Box

Let us denote $M_3^2 = \mathbb{E}^3 / \frac{2}{3}$. We recall [22] that there are only six compact orientable flat 3-manifolds. Computing the first homology group $H_1(M_3^2) = \mathbb{Z}_3 \times \mathbb{Z}$, we see that M_3^2 is the flat manifold \mathcal{G}_3 in notations from [22]. According to [15, p. 138], $M_3^2 = (0 \ o \ 0 \ | -1; (3,1), (3,1), (3,1))$ and it can be obtained as the T^2 -bundle over S^1 with matrix $\begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$ of the characteristic map of order 3.

Proposition 2.2. Let $Out(, \frac{2}{3})$ be the outer automorphism group of $, \frac{2}{3}$. Then $Out(, \frac{2}{3})$ is a dihedral group of order 12.

Proof. (See [9] for an alternative description.) Since , $\frac{2}{3}$ is the fundamental group of the flat 3-manifold \mathcal{G}_3 , we have the short exact sequence

$$0 \to \mathbb{Z}^3 \to , \frac{2}{3} \to \mathbb{Z}_3 \to 0.$$

From the definition (cf. [22]), the action of \mathbb{Z}_3 on \mathbb{Z}^3 is given by a matrix

$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Let N denote the normalizer in $GL(3, \mathbb{Z})$ of the above matrix. Then N acts in a natural way on $H^2(\mathbb{Z}_3, \mathbb{Z}^3)$. Let $\alpha \in H^2(\mathbb{Z}_3, \mathbb{Z}^3)$ denote the cohomology class giving rise to the above extension, and N_{α} its stabilizer in N. Then \mathbb{Z}_3 is a normal subgroup of N_{α} . By Theorem V.1.1 of [5, p.172], we have the short exact sequence

$$0 \to H^1(\mathbb{Z}_3, \mathbb{Z}^3) \to \operatorname{Out}(, \frac{2}{3}) \to N_\alpha/\mathbb{Z}_3 \to 0.$$

It is not difficult to see that $H^1(\mathbb{Z}_3, \mathbb{Z}^3) \simeq \mathbb{Z}_3$ and $N_\alpha/\mathbb{Z}_3 \simeq \mathbb{Z}_2 \oplus \mathbb{Z}_2$ (cf. [2]). In order to obtain our result, it is enough to remark that the group $\text{Out}(, \frac{2}{3})$ is not abelian.

Indeed, let us consider two isometries of the cube P_3^2 , i.e., the rotation ρ of order 3 about the line passing through vertices A_1 and C, and the rotation σ of order 2 about the line passing through midpoints of edges AB and C_1D_1 . These symmetries induce automorphisms of the group, $\frac{2}{3}$ such that $\rho: a \mapsto b, b \mapsto c, c \mapsto a$, and $\sigma: a \mapsto c^{-1}, b \mapsto b^{-1}, c \mapsto a^{-1}$. It is easy to check that the automorphisms ρ and σ do not commute and are not inner.

Note that, under the action of the group , $\frac{2}{3}$, we obtain the tesselation of \mathbb{E}^3 by the right-angled unit cube P_3^2 . Applying the results of Grayson [7] on the growth function of the tesselation of the Euclidean space by a right-angled cube, we have the following:

Proposition 2.3. The growth function for the group , $\frac{2}{3}$ in respect to the set of generators $S = \{x_1^{\pm 1}, x_2^{\pm 1}, x_3^{\pm 1}\}$ is

$$f_S(t) = \left(\frac{1+t}{1-t}\right)^3 = 1 + 6t + 18t^2 + 38t^3 + 66t^4 + 102t^5 + \cdots$$

3 The Properties of the Groups Γ_n^k

It was shown in [14] that , $\frac{1}{n} = , n$ is the fundamental group of a 3-manifold. In this section, we will demonstrate that the same is true for the groups , $\frac{k}{n}$ with $k \ge 2$.

Let us recall that a squashable complex C on the 2-sphere $S^2 = \partial B^3$ is a combinatorial complex together with a grouping of its 2-cells in oppositely oriented identifiable pairs (cf. [18]).

The identification squashes the ball-sphere pair (B^3, S^2) into a combinatorial complex pair $(M, K) = (B^3/\sim, S^2/\sim)$. The resulting quotient map $q = q(C) : (B^3, S^2) \to (M, K)$ is called a squashing map associated with C. The quotient complex M is, in general, an orientable closed connected pseudo-manifold in the sense of [17]. It was shown in [17] that M is a closed orientable 3-manifold if and only if the Euler characteristic of M vanishes. Furthermore, the embedded 2-complex is a spine of M, i.e., M minus the open 3-cell $q(B^3)$ collapses onto K. If K has a single 0-cell, then K is the canonical 2-complex associated with a finite presentation

$$\langle x_1, x_2, \ldots, x_n \mid r_1, r_2, \ldots, r_n \rangle$$

of the fundamental group $\pi_1(K) \cong \pi_1(M)$. The 1-skeleton $K^{(1)}$ of K is a bouquet of n oriented circles, also denoted by x_1, x_2, \ldots, x_n . The 2-cells c_j of K correspond bijectively to the relators r_j which determine loops in K as the corresponding attaching maps $h_j: \partial B^2 \to K^{(1)}$.

Consider the complex P_n^k with n(n+k-1) edges and 2n faces, each of which is an (n+k-1)-gon. The combinatorial structure of P_n^k is clear from Fig. 2, where the complex P_5^3 for the group , $\frac{3}{5}$ is pictured. Let A_i and A'_i , $i = 1, \ldots, n$, be faces with edges numerated by

$$\{i, i+1, \ldots, i+n-2, \underbrace{i+n-1, \ldots, i+n-1}_{k \text{ times}}\}$$

such that the corresponding relation r_i is $x_i x_{i+1} \cdots x_{i+n-2} = x_{i+n-1}^k$ with subscripts reduced modulo n. As we see, the enumerations of edges of faces of A_i and A'_i induce opposite orientations of faces.

Denote by M_n^k the complex obtained under the squashing map associated with P_n^k . As we see, the pseudo-manifold M_n^k has one 0-cell, n 1-cells, n 2-cells and one 3-cell. Hence, its Euler characteristic vanishes and M_n^k is a manifold.

Fig. 2. The polyhedron P_5^3 .

Thus, we obtain the following result.

Theorem 3.1. For $n \geq 3$ and $k \geq 1$, the group , $_{n}^{k}$ is the fundamental group of the orientable closed 3-manifold M_{n}^{k} .

We recall that a Seifert fibered 3-manifold is completely determined by a system of invariants (cf. [4, p. 180] and [12, Chpt. 4])

$$(\epsilon \ g \ \epsilon' \mid b; \ (\alpha_1, \beta_1), (\alpha_2, \beta_2), \dots, (\alpha_r, \beta_r)).$$

Here, (i) g is the genus of the closed connected surface (called the orbitmanifold) obtained from the Seifert manifold by identifying each fiber to a point, (ii) $\epsilon = \epsilon' = 0$ if the Seifert manifold and its orbit-manifold are orientable, (iii) $b = -(e_0 + \sum_{i=1}^r \beta_i / \alpha_i) \in \mathbb{Z}$, where e_0 is the rational Euler number of the Seifert fibration, (iv) the (α_j, β_j) 's are pairs of coprime integers with $0 < \beta_j < \alpha_j$ such that $\beta_j/\alpha_j \in (\mathbb{Q}/\mathbb{Z})^*$ (\mathbb{Q} is the field of rational numbers and $(\mathbb{Q}/\mathbb{Z})^*$ is the group \mathbb{Q}/\mathbb{Z} minus zero) characterize the holonomy of the exceptional fibers.

The fundamental group of a Seifert fiber space with the above invariants is well known (cf. [12] and [15, p. 91]). A standard presentation for its oriented case is

$$\langle a_1, b_1, \dots, a_g, b_g, q_1, \dots, q_r, h \mid q_1 q_2 \cdots q_r [a_1, b_1] \cdots [a_g, b_g] = h^b, [a_i, h] = [b_i, h] = 1, \ [q_i, h] = 1, \ q_i^{\alpha_i} h^{\beta_i} = 1 \ \forall i \rangle.$$

Let us denote by Σ_n^k the Seifert 3-manifold with invariants

$$(0 \ o \ 0 \ | \ -1; \underbrace{(k+1,1), \ (k+1,1), \ \dots, (k+1,1)}_{n \text{ times}}).$$

From above, we have

$$\pi_1(\Sigma_n^k) = \langle q_1, q_2, \dots, q_n, h \mid q_1 q_2 \cdots q_n = h^{-1} [q_i, h] = 1, q_i^{k+1} h = 1 \forall i \rangle.$$
(1)

Since , ${}^{k}_{n} = G_{n}(x_{1}x_{2}\cdots x_{n-1}x_{n}^{-k}),$ we see

$$, {}^{k}_{n} = \langle x_{1}, x_{2}, \dots, x_{n} \mid x_{1}x_{2}\cdots x_{n-1} = x_{n}^{k}, x_{2}x_{3}\cdots x_{n} = x_{1}^{k}, \dots, x_{n}x_{1}\cdots x_{n-2} = x_{n-1}^{k} \rangle.$$
(2)

Lemma 3.2. The group , $\frac{k}{n}$ is isomorphic to the group $\pi_1(\Sigma_n^k)$.

Proof. To obtain the presentation (2) from (1), we identify $x_i = q_i$ for i = 1, ..., n. From $q_i^{k+1} = h^{-1}$, we have $h = x_1^{-(k+1)} = \cdots = x_n^{-(k+1)}$. By the relation $q_1 \cdots q_n = h^{-1}$, we obtain $x_1 \cdots x_n = x_n^{k+1}$, so $x_1 \cdots x_{n-1} = x_n^k$. Thus, $x_2 \cdots x_n = x_1^{-1} x_n^{k+1} = x_1^k$. By the same way, we obtain all relations in (2).

Conversely, to obtain the presentation (1) from (2), we identify $q_i = x_i$ for i = 1, ..., n and $h = x_n^{-(k+1)}$. Therefore, $q_1 \cdots q_n = h^{-1}$. By the relations $x_2 \cdots x_{n-1} = x_1^{-1} x_n^k$ and $x_2 \cdots x_{n-1} = x_1^k x_n^{-1}$, we have $x_1^{k+1} = x_n^{k+1} = h^{-1}$. Analogously, we obtain $h = x_1^{-(k+1)} = \cdots = x_n^{-(k+1)}$. Therefore, $[q_i, h] = 1$ and $q_i^{k+1} h = 1$.

By the standard calculations, one can find the first integral homology group of M_n^k (here, $\mathbb{Z}_0 = \mathbb{Z}$).

Lemma 3.3. The group $H_1(M_n^k, \mathbb{Z})$ is generated by n-1 elements and is isomorphic to

$$\underbrace{\mathbb{Z}_{k+1} \oplus \mathbb{Z}_{k+1} \oplus \cdots \oplus \mathbb{Z}_{k+1}}_{n-2 \text{ times}} \oplus \mathbb{Z}_{(k+1)|n-k-1|}$$

The next theorem generalizes Theorem 4 of [4].

Theorem 3.4. The manifold M_n^k with $n \ge 3$ and $k \ge 1$ is homeomorphic to the Seifert fibered 3-manifold Σ_n^k .

Proof. We recall that if the fundamental groups of two large Seifert manifolds are isomorphic, then the manifolds are homeomorphic [15, p. 97]. From the definition of the Seifert manifold Σ_n^k , it is large (see [15, p. 91]) for $n \ge 3$ and $k \ge 2$ with one exceptional case (n,k) = (3,1) for which the proof is given in [4]. By Lemma 3.2, the groups $\pi_1(\Sigma_n^k)$ and $\pi_1(M_n^k) \cong , {}_n^k$ are isomorphic. To prove the theorem, we will demonstrate that the manifold M_n^k is a large Seifert manifold. By Lemma 3.3, for its Heegaard genus, we have $h(M_n^k) \ge n-1$. Furthermore, the Heegaard genus of Σ_n^k is exactly n-1 (see [1]). According to [15, p. 92], the group $, {}_n^k$ is a non-trivial free product with amalgamation and the subgroup generated by the element $h = x_1^{-(k+1)} = \cdots = x_n^{-(k+1)}$ is the unique maximal cyclic normal subgroup of $, {}_n^k$. Further, $\langle h \rangle$ is infinite and is contained in the center of $, {}_n^k$, hence $, {}_n^k$ has a non-trivial center.

Since M_n^k is prime and different from $S^1 \times S^2$ (use $h(M_n^k) > 3$), the manifold M_n^k is irreducible (i.e., any embedded 2-sphere in M_n^k bounds a 3-cell). By Theorem 6.2 of [3, p. 77], it follows that M_n^k is homeomorphic to a Seifert fibered manifold with orientable orbit-manifold. Since M_n^k is irreducible and , $_n^k$ is infinite, the manifold M_n^k is aspherical, i.e., $\pi_j(M_n^k) = 0$ for $j \geq 2$ (see Lemma 1.1.5 of [21]). Thus, M_n^k is a $K(, _n^k, 1)$ -space with infinite torsion-free fundamental group. Hence, M_n^k is large [15, p. 91]. Therefore, the large Seifert manifolds Σ_n^k and M_n^k are homeomorphic. \Box

Corollary 3.5. The groups, k_n are automatic for all $(n,k) \neq (4,1)$.

Proof. Recall that the geometry on a Seifert fibred manifold is completely determined by the Euler characteristic of the base orbifold and the Euler number of the fibration [16]. Calculating these values for manifolds Σ_n^k , one can see that Σ_3^1 is a spherical manifold, Σ_3^2 is a Euclidean manifold, Σ_4^1 is a nilpotent manifold, and for k > 2, the manifolds Σ_{k+1}^k are $(\mathbb{H}^2 \times \mathbb{R})$ -manifolds, and all others are \widetilde{SL}_2 -manifolds.

Hence, it is enough to apply Theorem 12.2.5 in [6, p. 296].

At the end of this section, due to results of Lescop [11], we calculate the Casson–Walker–Lescop λ -invariant of the above considered manifolds.

Corollary 3.6. Denote by λ_n^k the Casson-Walker-Lescop invariant of the manifold M_n^k . Then

$$\left(\frac{p^{n-2}}{24} \left(n^2 p^2 - n(3p^3 + p^2 + 2p - 1) + 2p^2(p^2 + 2) \right) \qquad \qquad \text{if } p < n,$$

$$\lambda_n^{p-1} = \begin{cases} \frac{n^{n-1}}{24} (n^2 - 2n - 1) & \text{if } p = n, \end{cases}$$

$$\left(-\frac{p^{n-2}}{24}\left(n^2p^2-n(3p^3-5p^2+2p-1)+2p^2(p^2-3p+2)\right) \quad if \ p>n^{n-2}\right)$$

Proof. By [11, p. 97], the invariant λ of a Seifert fibered space

 $(0 \ o \ 0 \mid b; \ (\alpha_i, \beta_i), \ i = 1, \dots, n)$

is given by the following formula:

$$\lambda = \left(\frac{s(e)}{24}\left(2 - n + \sum_{i=1}^{n} \frac{1}{\alpha_i^2}\right) + \frac{|e|e}{24} - \frac{e}{8} - \frac{|e|}{2}\sum_{i=1}^{n} s(\beta_i, \alpha_i)\right) \prod_{i=1}^{n} \alpha_i,$$

where we use the Euler number of the fibration $e=b+\sum_{i=1}^n\beta_i/\alpha_i$ and the Dedekind sum

$$s(q,p) = \sum_{i=1}^{|p|} \left(\left(rac{i}{p}
ight)
ight) \left(\left(rac{qi}{p}
ight)
ight) \quad ext{with} \quad ((x)) = egin{cases} 0 & ext{if } x \in \mathbb{Z}, \ x - [x] - rac{1}{2} & ext{otherwise}, \end{cases}$$

where [x] denotes the integer part of x and

$$s(e) = egin{cases} \mathrm{sign}(e) & \mathrm{if} \ e
eq 0, \ -1 & \mathrm{if} \ e = 0. \end{cases}$$

For $M_n^k = \Sigma_n^k$, we have b = -1, $\alpha_i = k + 1$, $\beta_i = 1$, $e = -1 + \frac{n}{k+1}$, and

$$s(1, k+1) = \sum_{i=1}^{k} \left(\frac{i}{k+1} - \frac{1}{2}\right)^2 = \frac{k(k-1)}{12(k+1)}$$

Let us introduce a notation p = k + 1. If p = n, then e = 0 and

$$\lambda_n^{n-1} = -\frac{1}{24} \left(2 - n + \frac{1}{n}\right) n^n.$$

If $e \neq 0$ (i.e., $p \neq n$), then

$$\lambda_n^{p-1} = \left(\frac{\epsilon}{24} \left(2 - n + \frac{n}{p^2}\right) + \frac{\epsilon(n-p)^2}{24} - \frac{n-p}{8} - \frac{\epsilon(n-p)(p-1)(p-2)}{24p}\right) p^n,$$

where $\epsilon = \operatorname{sign}(e)$. The result follows.

Corollary 3.7. If \overline{M}_n with $n \geq 3$ is a Neuwirth manifold, then

$$\lambda(\overline{M}_n) = \frac{n^{n-3}}{12} (4n^2 - 31n + 48).$$

As it was remarked above, the manifold M_4^1 is the unique nil-manifold in the family introduced by Neuwirth [14], and we have $\lambda_4^1 = -2$. For the spherical manifold M_3^1 , we have $\lambda_3^1 = -3/4$. The manifold M_3^2 is flat and $\lambda_3^2 = 3/4$. Since the manifolds M_n^k are two-fold branched coverings of the 3-dimensional sphere branched over Montesinos links, the invariants

 λ_n^k for rational homology spheres M_n^k can also be calculated from Jones' polynomials and the signatures of Montesinos links (see [13]).

References

- M. Boileau, H. Zieschang, Heegaard genus of closed orientable Seifert 3manifolds, *Invent. Math.* 76 (1984) 455-468.
- [2] H. Brown, R. Bülow, J. Neubüser, H. Wondratschek, H. Zassenhaus, Crystallographic Groups of Four-dimensional Space, Wiley, New York, 1978.
- [3] G. Burde, H. Zieschang, Knots, Walter de Gruyter, Berlin-New York, 1985.
- [4] A. Cavicchioli, Neuwirth manifolds and colourings of graphs, Aequationes Math. 44 (1992) 168-187.
- [5] L.S. Charlap, Bieberbach Groups and Flat Manifolds, Springer-Verlag, New York-Berlin, 1986.
- [6] D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson, W. Thurston, Word Processing in Groups, Jones and Bartlett, Boston, 1992.
- [7] M.A. Grayson, Geometry and growth in three dimensions, Ph.D. Thesis, Princeton University, 1983.
- [8] J. Hempel, 3-Manifolds, Annals of Mathematics Studies, Vol. 86, Princeton University Press, Princeton, 1976.
- [9] J. Hillman, Flat 4-manifolds groups, New Zeland J. Math. 24 (1995) 23-40.
- [10] D. Johnson, Topics in the Theory of Group Presentations, London Mathematical Society, Lecture Note Series, Vol. 42, Cambridge University Press, 1980.
- [11] C. Lescop, Global Surgery Formula for the Casson-Walker Invariant, Annals of Mathematics Studies, Vol. 140, Princeton University Press, Princeton, 1996.
- [12] J.M. Montesinos, Classical Tessellations and Three Manifolds, Universitext, Springer-Verlag, 1987.
- [13] D. Mullins, The generalized Casson invariants for 2-fold branched coverings of S^3 and the Jones polynomial, *Topology* **32** (1993) 419–438.
- [14] L. Neuwirth, An algorithm for the construction of 3-manifolds from 2-complexes, Proc. Camb. Phil. Soc. 64 (1968) 603-613.
- [15] P. Orlik, Seifert Manifolds, Lecture Notes in Mathematics, Vol. 291, Springer-Verlag, 1972.
- [16] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983) 401-487.
- [17] H. Seifert, W. Threllfall, Lehrbuch der Topologie, Teubner, Leipzig, 1929.
- [18] A.J. Sieradski, Combinatorial squashings, 3-manifolds, and the third homotopy of groups, *Invent. Math.* 84 (1986) 121-139.
- [19] J. Stallings, On the recursiveness of sets of presentations of 3-manifold groups, Fund. Math. 51 (1962/63) 191–194.
- [20] E.B. Vinberg, O.V. Shvartsman, Discrete groups of motions of spaces of constant curvature, in: *Encycl. Math. Sc.*, *Geometry II*, Springer-Verlag, Berlin-Heidelberg-NewYork, 1993, pp. 139-248.
- [21] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. Math. 87 (1968) 56-88.
- [22] J.A. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York, 1972.