Generalized Neuwirth Groups and Seifert Fibered Manifolds*

Andrzej Szczepański
Institute of Mathematics, University of Gdańsk ul. Wita Stwosza 57, 80-952, Gdańsk, Poland
E-mail: matas@paula.univ.gda.pl
\section*{Andrei Vesnin}
Sobolev Institute of Mathematics
pr. Koptyuga 4, Novosibirsk 630090, Russia
E-mail: vesnin@math.nsc.ru

Received 7 March 1999
Revised 8 July 1999
Communicated by A.C. Kim

Abstract

The topological properties of the generalized Neuwirth groups, ${ }_{n}^{k}$ are discussed. For example, we demonstrate that the group,${ }_{n}^{k}$ is the fundamental group of the Seifert fibered space Σ_{n}^{k}. Moreover, we discuss some other invariants and algebraic properties of the above groups.

2000 Mathematics Subject Classification: 20F34, 57M05, 57M60
Keywords: Seifert manifolds, flat manifolds, spine complex

1 Introduction

Let \mathbb{F}_{n} be the free group on free generators $x_{1}, x_{2}, \ldots, x_{n}$. Let $\theta: \mathbb{F}_{n} \rightarrow \mathbb{F}_{n}$ be the automorphism such that $\theta\left(x_{i}\right)=x_{i+1}$ for $i=1,2, \ldots, n-1$ and $\theta\left(x_{n}\right)=x_{1}$. For any word $w \in \mathbb{F}_{n}$, we define a group $G_{n}(w)=\mathbb{F}_{n} / R$, where R is the normal closure in \mathbb{F}_{n} of the set $\left\{w, \theta(w), \ldots, \theta^{n-1}(w)\right\}$ (cf. [10]). A group G is said to have a cyclic presentation if $G=G_{n}(w)$ for some n and $w \in \mathbb{F}_{n}$. Among the well-studied examples of cyclically presented groups are the Fibonacci groups $F(r, n)=G_{n}\left(x_{1} x_{2} \cdots x_{r} x_{r+1}^{-1}\right)$, where $n \geq 3$ and $r \geq 2$ (cf. [10]).

[^0]Our aim is to study a class of cyclically presented groups which are the fundamental groups of 3 -manifolds. We note that it is impossible to find an algorithm for determinig whether an arbitrary finite presentation presents a fundamental group of a 3-manifold (cf. [19]).

In [14], Neuwrith considers the groups , ${ }_{n}=F(n-1, n)(n \geq 3)$ as fundamental groups $\pi_{1}\left(\bar{M}_{n}\right)$ of closed orientable 3-manifolds. It was proven in [4] that the Neuwirth manifold \bar{M}_{n} is PL-homeomorphic to the Seifert fibered space

$$
\Sigma_{n}=(0 o o \mid-1 ; \underbrace{(2,1),(2,1), \ldots,(2,1)}_{n \text { times }})
$$

In this paper, we introduce a family of cyclically presented groups, ${ }_{n}^{k}=$ $G_{n}\left(x_{1} x_{2} \cdots x_{n-1} x_{n}^{-k}\right)$ with $n \geq 3$ and $k \geq 1$. We call these groups generalized Neuwirth groups. We show that,${ }_{n}^{k}$ is the fundamental group of the closed orientable 3-manifold M_{n}^{k}. Moreover, we prove that M_{n}^{k} is homeomorphic to the Seifert fibred space

$$
\Sigma_{n}^{k}=(0 \circ 0 \mid-1 ; \underbrace{(k+1,1),(k+1,1), \ldots,(k+1,1)}_{n \text { times }})
$$

in respect to notations from [12]. As a corollary, we show that the groups, ${ }_{n}^{k}$ are automatic for $(n, k) \neq(4,1)$ and give a formula for the Casson-WalkerLescop invariant of the manifolds Σ_{n}^{k}.

2 An Example

Let, ${ }_{3}^{2}$ be a generalized Neuwirth group

$$
,{ }_{3}^{2}=\left\langle x_{1}, x_{2}, x_{3} \mid x_{1} x_{2}=x_{3}^{2}, x_{2} x_{3}=x_{1}^{2}, x_{3} x_{1}=x_{2}^{2}\right\rangle
$$

Proposition 2.1. The group,$\frac{2}{3}$ is the fundamental group of a compact orientable flat 3-manifold.
Proof. Let P_{3}^{2} be the unit cube in the Euclidean 3 -space \mathbb{E}^{3} with notations of vertices according to Fig. 1.

Fig. 1. The cube P_{3}^{2}.

Consider the orientation-preserving Euclidean isometries which identify pairs of faces of the polyhedron P_{3}^{2} as follows:

$$
\begin{aligned}
& a: A_{1} A B B_{1} \rightarrow B_{1} C_{1} C B, \\
& b: A_{1} B_{1} C_{1} D_{1} \rightarrow D_{1} D C C_{1}, \\
& c: A_{1} D_{1} D A \rightarrow A B C D .
\end{aligned}
$$

Edges of P_{3}^{2} are divided in three classes of equivalent:

$$
\begin{array}{llll}
x_{1}: A_{1} A & \xrightarrow{a} B_{1} C_{1} & \xrightarrow{b} D C & \xrightarrow{c^{-1}} A D \\
x_{2}: A_{1} B_{1} & \xrightarrow{b} D_{1} D & \xrightarrow{c} B C & \xrightarrow{a^{-1}} A_{1} A \\
B_{1} B & \xrightarrow{a^{-1}} A_{1} B_{1}, \\
x_{3}: A_{1} D_{1} \xrightarrow{c} A B & \xrightarrow{a} C_{1} C & \xrightarrow{b^{-1}} D_{1} C_{1} \xrightarrow{b^{-1}} A_{1} D_{1} .
\end{array}
$$

Therefore, by the Poincare Theorem [20], the group generated by a, b, c has the polyhedron P_{3}^{2} as its fundamental domain, and has the presentation $\left\langle a, b, c \mid a b=c^{2}, b c=a^{2}, c a=b^{2}\right\rangle$, which is isomorphic to,${ }_{3}^{2}$. Since all dihedral angles of P_{3}^{2} are equal to $\pi / 2$ and all cycles of edges are of length 4 , we conclude that the quotient space $\mathbb{E}^{3} /,{ }_{3}^{2}$ is a flat 3 -manifold.

Let us denote $M_{3}^{2}=\mathbb{E}^{3} /, \frac{2}{3}$. We recall [22] that there are only six compact orientable flat 3 -manifolds. Computing the first homology group $H_{1}\left(M_{3}^{2}\right)=\mathbb{Z}_{3} \times \mathbb{Z}$, we see that M_{3}^{2} is the flat manifold \mathcal{G}_{3} in notations from [22]. According to [15, p.138], $M_{3}^{2}=(0 \circ 0 \mid-1 ;(3,1),(3,1),(3,1))$ and it can be obtained as the T^{2}-bundle over S^{1} with matrix $\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right)$ of the characteristic map of order 3.

Proposition 2.2. Let $\operatorname{Out}\left(,{ }_{3}^{2}\right)$ be the outer automorphism group of,${ }_{3}^{2}$. Then $\operatorname{Out}\left(,{ }_{3}^{2}\right)$ is a dihedral group of order 12 .

Proof. (See [9] for an alternative description.) Since , ${ }_{3}^{2}$ is the fundamental group of the flat 3 -manifold \mathcal{G}_{3}, we have the short exact sequence

$$
0 \rightarrow \mathbb{Z}^{3} \rightarrow,{ }_{3}^{2} \rightarrow \mathbb{Z}_{3} \rightarrow 0
$$

From the definition (cf. [22]), the action of \mathbb{Z}_{3} on \mathbb{Z}^{3} is given by a matrix

$$
\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Let N denote the normalizer in $G L(3, \mathbb{Z})$ of the above matrix. Then N acts in a natural way on $H^{2}\left(\mathbb{Z}_{3}, \mathbb{Z}^{3}\right)$. Let $\alpha \in H^{2}\left(\mathbb{Z}_{3}, \mathbb{Z}^{3}\right)$ denote the cohomology class giving rise to the above extension, and N_{α} its stabilizer in N. Then \mathbb{Z}_{3} is a normal subgroup of N_{α}. By Theorem V.1.1 of [5, p. 172], we have the short exact sequence

$$
0 \rightarrow H^{1}\left(\mathbb{Z}_{3}, \mathbb{Z}^{3}\right) \rightarrow \operatorname{Out}\left(,{ }_{3}^{2}\right) \rightarrow N_{\alpha} / \mathbb{Z}_{3} \rightarrow 0
$$

It is not difficult to see that $H^{1}\left(\mathbb{Z}_{3}, \mathbb{Z}^{3}\right) \simeq \mathbb{Z}_{3}$ and $N_{\alpha} / \mathbb{Z}_{3} \simeq \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ (cf. [2]). In order to obtain our result, it is enough to remark that the group $\operatorname{Out}\left(,{ }_{3}^{2}\right)$ is not abelian.

Indeed, let us consider two isometries of the cube P_{3}^{2}, i.e., the rotation ρ of order 3 about the line passing through vertices A_{1} and C, and the rotation σ of order 2 about the line passing through midpoints of edges $A B$ and $C_{1} D_{1}$. These symmetries induce automorphisms of the group , ${ }_{3}^{2}$ such that $\rho: a \mapsto b, b \mapsto c, c \mapsto a$, and $\sigma: a \mapsto c^{-1}, b \mapsto b^{-1}, c \mapsto a^{-1}$. It is easy to check that the automorphisms ρ and σ do not commute and are not inner.

Note that, under the action of the group , ${ }_{3}^{2}$, we obtain the tesselation of \mathbb{E}^{3} by the right-angled unit cube P_{3}^{2}. Applying the results of Grayson [7] on the growth function of the tesselation of the Euclidean space by a right-angled cube, we have the following:

Proposition 2.3. The growth function for the group,${ }_{3}^{2}$ in respect to the set of generators $S=\left\{x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, x_{3}^{ \pm 1}\right\}$ is

$$
f_{S}(t)=\left(\frac{1+t}{1-t}\right)^{3}=1+6 t+18 t^{2}+38 t^{3}+66 t^{4}+102 t^{5}+\cdots
$$

3 The Properties of the Groups Γ_{n}^{k}

It was shown in [14] that, ${ }_{n}^{1}=,{ }_{n}$ is the fundamental group of a 3-manifold. In this section, we will demonstrate that the same is true for the groups, ${ }_{n}^{k}$ with $k \geq 2$.

Let us recall that a squashable complex C on the 2 -sphere $S^{2}=\partial B^{3}$ is a combinatorial complex together with a grouping of its 2-cells in oppositely oriented identifiable pairs (cf. [18]).

The identification squashes the ball-sphere pair $\left(B^{3}, S^{2}\right)$ into a combinatorial complex pair $(M, K)=\left(B^{3} / \sim, S^{2} / \sim\right)$. The resulting quotient map $q=q(C):\left(B^{3}, S^{2}\right) \rightarrow(M, K)$ is called a squashing map associated with C. The quotient complex M is, in general, an orientable closed connected pseudo-manifold in the sense of [17]. It was shown in [17] that M is a closed orientable 3 -manifold if and only if the Euler characteristic of M vanishes. Furthermore, the embedded 2-complex is a spine of M, i.e., M minus the open 3-cell $q\left(\stackrel{\circ}{B}^{3}\right)$ collapses onto K. If K has a single 0 -cell, then K is the canonical 2-complex associated with a finite presentation

$$
\left\langle x_{1}, x_{2}, \ldots, x_{n} \mid r_{1}, r_{2}, \ldots, r_{n}\right\rangle
$$

of the fundamental group $\pi_{1}(K) \cong \pi_{1}(M)$. The 1 -skeleton $K^{(1)}$ of K is a bouquet of n oriented circles, also denoted by $x_{1}, x_{2}, \ldots, x_{n}$. The 2-cells c_{j} of K correspond bijectively to the relators r_{j} which determine loops in K as the corresponding attaching maps $h_{j}: \partial B^{2} \rightarrow K^{(1)}$.

Consider the complex P_{n}^{k} with $n(n+k-1)$ edges and $2 n$ faces, each of which is an $(n+k-1)$-gon. The combinatorial structure of P_{n}^{k} is clear from Fig. 2, where the complex P_{5}^{3} for the group,${ }_{5}^{3}$ is pictured. Let A_{i} and A_{i}^{\prime}, $i=1, \ldots, n$, be faces with edges numerated by

$$
\{i, i+1, \ldots, i+n-2, \underbrace{i+n-1, \ldots, i+n-1}_{k \text { times }}\}
$$

such that the corresponding relation r_{i} is $x_{i} x_{i+1} \cdots x_{i+n-2}=x_{i+n-1}^{k}$ with subscripts reduced modulo n. As we see, the enumerations of edges of faces of A_{i} and A_{i}^{\prime} induce opposite orientations of faces.

Denote by M_{n}^{k} the complex obtained under the squashing map associated with P_{n}^{k}. As we see, the pseudo-manifold M_{n}^{k} has one 0 -cell, n 1-cells, n 2-cells and one 3-cell. Hence, its Euler characteristic vanishes and M_{n}^{k} is a manifold.

Fig. 2. The polyhedron P_{5}^{3}.
Thus, we obtain the following result.
Theorem 3.1. For $n \geq 3$ and $k \geq 1$, the group, ${ }_{n}^{k}$ is the fundamental group of the orientable closed 3-manifold M_{n}^{k}.

We recall that a Seifert fibered 3-manifold is completely determined by a system of invariants (cf. [4, p. 180] and [12, Chpt. 4])

$$
\left(\epsilon g \epsilon^{\prime} \mid b ;\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right), \ldots,\left(\alpha_{r}, \beta_{r}\right)\right)
$$

Here, (i) g is the genus of the closed connected surface (called the orbitmanifold) obtained from the Seifert manifold by identifying each fiber to a point, (ii) $\epsilon=\epsilon^{\prime}=0$ if the Seifert manifold and its orbit-manifold are orientable, (iii) $b=-\left(e_{0}+\sum_{i=1}^{r} \beta_{i} / \alpha_{i}\right) \in \mathbb{Z}$, where e_{0} is the rational Euler number of the Seifert fibration, (iv) the (α_{j}, β_{j})'s are pairs of coprime
integers with $0<\beta_{j}<\alpha_{j}$ such that $\beta_{j} / \alpha_{j} \in(\mathbb{Q} / \mathbb{Z})^{*}(\mathbb{Q}$ is the field of rational numbers and $(\mathbb{Q} / \mathbb{Z})^{*}$ is the group \mathbb{Q} / \mathbb{Z} minus zero) characterize the holonomy of the exceptional fibers.

The fundamental group of a Seifert fiber space with the above invariants is well known (cf. [12] and [15, p.91]). A standard presentation for its oriented case is

$$
\begin{array}{r}
\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g}, q_{1}, \ldots, q_{r}, h\right| q_{1} q_{2} \cdots q_{r}\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]=h^{b} \\
\left.\left[a_{i}, h\right]=\left[b_{i}, h\right]=1,\left[q_{i}, h\right]=1, q_{i}^{\alpha_{i}} h^{\beta_{i}}=1 \forall i\right\rangle
\end{array}
$$

Let us denote by Σ_{n}^{k} the Seifert 3-manifold with invariants

$$
(0 \circ 0 \mid-1 ; \underbrace{(k+1,1),(k+1,1), \ldots,(k+1,1)}_{n \text { times }}) .
$$

From above, we have

$$
\begin{array}{r}
\pi_{1}\left(\Sigma_{n}^{k}\right)=\left\langle q_{1}, q_{2}, \ldots, q_{n}, h\right| q_{1} q_{2} \cdots q_{n}=h^{-1} \\
\left.\left[q_{i}, h\right]=1, q_{i}^{k+1} h=1 \forall i\right\rangle \tag{1}
\end{array}
$$

Since,${ }_{n}^{k}=G_{n}\left(x_{1} x_{2} \cdots x_{n-1} x_{n}^{-k}\right)$, we see

$$
\begin{array}{r}
,{ }_{n}^{k}=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right| x_{1} x_{2} \cdots x_{n-1}=x_{n}^{k} \\
\left.x_{2} x_{3} \cdots x_{n}=x_{1}^{k}, \ldots, x_{n} x_{1} \cdots x_{n-2}=x_{n-1}^{k}\right\rangle \tag{2}
\end{array}
$$

Lemma 3.2. The group, ${ }_{n}^{k}$ is isomorphic to the group $\pi_{1}\left(\Sigma_{n}^{k}\right)$.
Proof. To obtain the presentation (2) from (1), we identify $x_{i}=q_{i}$ for $i=1, \ldots, n$. From $q_{i}^{k+1}=h^{-1}$, we have $h=x_{1}^{-(k+1)}=\cdots=x_{n}^{-(k+1)}$. By the relation $q_{1} \cdots q_{n}=h^{-1}$, we obtain $x_{1} \cdots x_{n}=x_{n}^{k+1}$, so $x_{1} \cdots x_{n-1}=x_{n}^{k}$. Thus, $x_{2} \cdots x_{n}=x_{1}^{-1} x_{n}^{k+1}=x_{1}^{k}$. By the same way, we obtain all relations in (2).

Conversely, to obtain the presentation (1) from (2), we identify $q_{i}=x_{i}$ for $i=1, \ldots, n$ and $h=x_{n}^{-(k+1)}$. Therefore, $q_{1} \cdots q_{n}=h^{-1}$. By the relations $x_{2} \cdots x_{n-1}=x_{1}^{-1} x_{n}^{k}$ and $x_{2} \cdots x_{n-1}=x_{1}^{k} x_{n}^{-1}$, we have $x_{1}^{k+1}=$ $x_{n}^{k+1}=h^{-1}$. Analogously, we obtain $h=x_{1}^{-(k+1)}=\cdots=x_{n}^{-(k+1)}$. Therefore, $\left[q_{i}, h\right]=1$ and $q_{i}^{k+1} h=1$.

By the standard calculations, one can find the first integral homology group of $M_{n}^{k}\left(\right.$ here, $\left.\mathbb{Z}_{0}=\mathbb{Z}\right)$.
Lemma 3.3. The group $H_{1}\left(M_{n}^{k}, \mathbb{Z}\right)$ is generated by $n-1$ elements and is isomorphic to

$$
\underbrace{\mathbb{Z}_{k+1} \oplus \mathbb{Z}_{k+1} \oplus \cdots \oplus \mathbb{Z}_{k+1}}_{n-2 \text { times }} \oplus \mathbb{Z}_{(k+1)|n-k-1|} .
$$

The next theorem generalizes Theorem 4 of [4].
Theorem 3.4. The manifold M_{n}^{k} with $n \geq 3$ and $k \geq 1$ is homeomorphic to the Seifert fibered 3-manifold Σ_{n}^{k}.

Proof. We recall that if the fundamental groups of two large Seifert manifolds are isomorphic, then the manifolds are homeomorphic [15, p. 97]. From the definition of the Seifert manifold Σ_{n}^{k}, it is large (see [15, p. 91]) for $n \geq 3$ and $k \geq 2$ with one exceptional case $(n, k)=(3,1)$ for which the proof is given in [4]. By Lemma 3.2, the groups $\pi_{1}\left(\Sigma_{n}^{k}\right)$ and $\pi_{1}\left(M_{n}^{k}\right) \cong,{ }_{n}^{k}$ are isomorphic. To prove the theorem, we will demonstrate that the manifold M_{n}^{k} is a large Seifert manifold. By Lemma 3.3, for its Heegaard genus, we have $h\left(M_{n}^{k}\right) \geq n-1$. Furthermore, the Heegaard genus of Σ_{n}^{k} is exactly $n-1$ (see [1]). According to [15, p. 92], the group , ${ }_{n}^{k}$ is a non-trivial free product with amalgamation and the subgroup generated by the element $h=x_{1}^{-(k+1)}=\cdots=x_{n}^{-(k+1)}$ is the unique maximal cyclic normal subgroup of ${ }_{n}^{k}$. Further, $\langle h\rangle$ is infinite and is contained in the center of,${ }_{n}^{k}$, hence, ${ }_{n}^{k}$ has a non-trivial center.

Since M_{n}^{k} is prime and different from $S^{1} \times S^{2}$ (use $h\left(M_{n}^{k}\right)>3$), the manifold M_{n}^{k} is irreducible (i.e., any embedded 2-sphere in M_{n}^{k} bounds a 3 -cell). By Theorem 6.2 of [3, p.77], it follows that M_{n}^{k} is homeomorphic to a Seifert fibered manifold with orientable orbit-manifold. Since M_{n}^{k} is irreducible and, ${ }_{n}^{k}$ is infinite, the manifold M_{n}^{k} is aspherical, i.e., $\pi_{j}\left(M_{n}^{k}\right)=$ 0 for $j \geq 2$ (see Lemma 1.1.5 of [21]). Thus, M_{n}^{k} is a $K\left(,{ }_{n}^{k}, 1\right)$-space with infinite torsion-free fundamental group. Hence, M_{n}^{k} is large [15, p. 91]. Therefore, the large Seifert manifolds Σ_{n}^{k} and M_{n}^{k} are homeomorphic.

Corollary 3.5. The groups, ${ }_{n}^{k}$ are automatic for all $(n, k) \neq(4,1)$.
Proof. Recall that the geometry on a Seifert fibred manifold is completely determined by the Euler characteristic of the base orbifold and the Euler number of the fibration [16]. Calculating these values for manifolds Σ_{n}^{k}, one can see that Σ_{3}^{1} is a spherical manifold, Σ_{3}^{2} is a Euclidean manifold, Σ_{4}^{1} is a nilpotent manifold, and for $k>2$, the manifolds Σ_{k+1}^{k} are $\left(\mathbb{H}^{2} \times \mathbb{R}\right)$ manifolds, and all others are $\widetilde{{S L_{2}}_{2}}$-manifolds.

Hence, it is enough to apply Theorem 12.2 .5 in [6, p. 296].
At the end of this section, due to results of Lescop [11], we calculate the Casson-Walker-Lescop λ-invariant of the above considered manifolds.

Corollary 3.6. Denote by λ_{n}^{k} the Casson-Walker-Lescop invariant of the manifold M_{n}^{k}. Then

$$
\lambda_{n}^{p-1}= \begin{cases}\frac{p^{n-2}}{24}\left(n^{2} p^{2}-n\left(3 p^{3}+p^{2}+2 p-1\right)+2 p^{2}\left(p^{2}+2\right)\right) & \text { if } p<n \\ \frac{n^{n-1}}{24}\left(n^{2}-2 n-1\right) & \text { if } p=n \\ -\frac{p^{n-2}}{24}\left(n^{2} p^{2}-n\left(3 p^{3}-5 p^{2}+2 p-1\right)+2 p^{2}\left(p^{2}-3 p+2\right)\right) & \text { if } p>n\end{cases}
$$

Proof. By [11, p. 97], the invariant λ of a Seifert fibered space

$$
\left(0 \circ 0 \mid b ;\left(\alpha_{i}, \beta_{i}\right), i=1, \ldots, n\right)
$$

is given by the following formula:

$$
\lambda=\left(\frac{s(e)}{24}\left(2-n+\sum_{i=1}^{n} \frac{1}{\alpha_{i}^{2}}\right)+\frac{|e| e}{24}-\frac{e}{8}-\frac{|e|}{2} \sum_{i=1}^{n} s\left(\beta_{i}, \alpha_{i}\right)\right) \prod_{i=1}^{n} \alpha_{i}
$$

where we use the Euler number of the fibration $e=b+\sum_{i=1}^{n} \beta_{i} / \alpha_{i}$ and the Dedekind sum

$$
s(q, p)=\sum_{i=1}^{|p|}\left(\left(\frac{i}{p}\right)\right)\left(\left(\frac{q i}{p}\right)\right) \quad \text { with } \quad((x))= \begin{cases}0 & \text { if } x \in \mathbb{Z} \\ x-[x]-\frac{1}{2} & \text { otherwise }\end{cases}
$$

where $[x]$ denotes the integer part of x and

$$
s(e)= \begin{cases}\operatorname{sign}(e) & \text { if } e \neq 0 \\ -1 & \text { if } e=0\end{cases}
$$

For $M_{n}^{k}=\Sigma_{n}^{k}$, we have $b=-1, \alpha_{i}=k+1, \beta_{i}=1, e=-1+\frac{n}{k+1}$, and

$$
s(1, k+1)=\sum_{i=1}^{k}\left(\frac{i}{k+1}-\frac{1}{2}\right)^{2}=\frac{k(k-1)}{12(k+1)} .
$$

Let us introduce a notation $p=k+1$. If $p=n$, then $e=0$ and

$$
\lambda_{n}^{n-1}=-\frac{1}{24}\left(2-n+\frac{1}{n}\right) n^{n}
$$

If $e \neq 0$ (i.e., $p \neq n$), then
$\lambda_{n}^{p-1}=\left(\frac{\epsilon}{24}\left(2-n+\frac{n}{p^{2}}\right)+\frac{\epsilon(n-p)^{2}}{24}-\frac{n-p}{8}-\frac{\epsilon(n-p)(p-1)(p-2)}{24 p}\right) p^{n}$,
where $\epsilon=\operatorname{sign}(e)$. The result follows.
Corollary 3.7. If \bar{M}_{n} with $n \geq 3$ is a Neuwirth manifold, then

$$
\lambda\left(\bar{M}_{n}\right)=\frac{n^{n-3}}{12}\left(4 n^{2}-31 n+48\right) .
$$

As it was remarked above, the manifold M_{4}^{1} is the unique nil-manifold in the family introduced by Neuwirth [14], and we have $\lambda_{4}^{1}=-2$. For the spherical manifold M_{3}^{1}, we have $\lambda_{3}^{1}=-3 / 4$. The manifold M_{3}^{2} is flat and $\lambda_{3}^{2}=3 / 4$. Since the manifolds M_{n}^{k} are two-fold branched coverings of the 3 -dimensional sphere branched over Montesinos links, the invariants
λ_{n}^{k} for rational homology spheres M_{n}^{k} can also be calculated from Jones' polynomials and the signatures of Montesinos links (see [13]).

References

[1] M. Boileau, H. Zieschang, Heegaard genus of closed orientable Seifert 3manifolds, Invent. Math. 76 (1984) 455-468.
[2] H. Brown, R. Bülow, J. Neubüser, H. Wondratschek, H. Zassenhaus, Crystallographic Groups of Four-dimensional Space, Wiley, New York, 1978.
[3] G. Burde, H. Zieschang, Knots, Walter de Gruyter, Berlin-New York, 1985.
[4] A. Cavicchioli, Neuwirth manifolds and colourings of graphs, Aequationes Math. 44 (1992) 168-187.
[5] L.S. Charlap, Bieberbach Groups and Flat Manifolds, Springer-Verlag, New York-Berlin, 1986.
[6] D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson, W. Thurston, Word Processing in Groups, Jones and Bartlett, Boston, 1992.
[7] M.A. Grayson, Geometry and growth in three dimensions, Ph.D. Thesis, Princeton University, 1983.
[8] J. Hempel, 3-Manifolds, Annals of Mathematics Studies, Vol. 86, Princeton University Press, Princeton, 1976.
[9] J. Hillman, Flat 4-manifolds groups, New Zeland J. Math. 24 (1995) 23-40.
[10] D. Johnson, Topics in the Theory of Group Presentations, London Mathematical Society, Lecture Note Series, Vol. 42, Cambridge University Press, 1980.
[11] C. Lescop, Global Surgery Formula for the Casson-Walker Invariant, Annals of Mathematics Studies, Vol. 140, Princeton University Press, Princeton, 1996.
[12] J.M. Montesinos, Classical Tessellations and Three Manifolds, Universitext, Springer-Verlag, 1987.
[13] D. Mullins, The generalized Casson invariants for 2-fold branched coverings of S^{3} and the Jones polynomial, Topology 32 (1993) 419-438.
[14] L. Neuwirth, An algorithm for the construction of 3-manifolds from 2-complexes, Proc. Camb. Phil. Soc. 64 (1968) 603-613.
[15] P. Orlik, Seifert Manifolds, Lecture Notes in Mathematics, Vol. 291, SpringerVerlag, 1972.
[16] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983) 401-487.
[17] H. Seifert, W. Threllfall, Lehrbuch der Topologie, Teubner, Leipzig, 1929.
[18] A.J. Sieradski, Combinatorial squashings, 3-manifolds, and the third homotopy of groups, Invent. Math. 84 (1986) 121-139.
[19] J. Stallings, On the recursiveness of sets of presentations of 3-manifold groups, Fund. Math. 51 (1962/63) 191-194.
[20] E.B. Vinberg, O.V. Shvartsman, Discrete groups of motions of spaces of constant curvature, in: Encycl. Math. Sc., Geometry II, Springer-Verlag, Berlin-Heidelberg-NewYork, 1993, pp.139-248.
[21] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. Math. 87 (1968) 56-88.
[22] J.A. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York, 1972.

[^0]: *This work was supported by Polish grant (BW-5100-5-0259-9) and the Russian Foundation for Basic Research (grant number 98-01-00699).

