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Abstract: In this paper we study the accuracy and efficiency of digital system interconnects analysis using Model
Order Reduction (MOR) methods. The system is represented by its Partial Elements Equivalent Circuit (PEEC)
and then reduced using ENOR, SMOR or SAPOR algorithm. As a result one obtains a compact input-output
relation. Numerical examples confirm the efficiency and robustness of all model order reduction techniques.

1. Introduction
Digital signal integrity in high speed electronics is a very important issue. Signal propagation in in-
terconnects can be affected either by physical phenomenon in a single transmission line (i.e. inductive
and capacitive effects, skin-effect and current crowding) or by signals in nearby transmission lines (i.e.
capacitive and inductive crosstalk).

Digital signal integrity verification implies the analysis of large interconnects networks which, generally
speaking, can be performed in two different ways [6]. The first one, not necessarily the easiest, is a direct
usage of Maxwell theory and methods of computational electrodynamics. This approach is accurate,
especially at high frequencies, but its disadvantage is the need for huge computational power. The second
method is Partial Elements Equivalent Circuit, which generates smaller models than the electrodynamical,
but one has to be aware of its limitations related to modeling current crowding with skin-effect and the
quasi-static approximation breakdown [5, 6].

Even for the PEEC method the number of equations to be solved in interconnects' analysis can easily
grow to hundreds of thousands. This makes the analysis and design process of practical systems extremely
long. To limit the number of variables one can apply one of the recently developed model order reduction
methods [1, 2, 3]. Often it is hard to pick-up the right method as there is no publications comparing
their effectiveness. In this paper we present results of interconnects analysis by applying model order
reduction techniques. We will show the differences between three the most popular reduction algorithms
for second order systems and present numerical tests showing efficiency of those algorithms.

2. Interconnects modeling in the frequency domain using MOR methods
The most popular approach to describe a digital system's interconnect network is to use the Modified
Nodal Analysis (MNA) method [5]. We can find three square matrices describing the system: Gn, Cn,
Fn containing conductances, capacitances and inductances, respectively. Their size n determines the
number of system's equations and is called model order. It can be proven that system impedance matrix
Z(s) satisfies the following relation:

(Gn + Cns +F ) X(S) = J Z(s) = UX(s) (1)

where X(s) is a n x p system state matrix and p is the number of network's ports. The impedance
matrix Z(s) describes system's input-output behaviour, which can be found by solving the equation (1).
However, if the model order n is large (which is the case in recent digital systems) the direct usage of
equation (1) is very ineffective.

To solve the problem efficiently one can reduce the number of unknowns in (1) using model order
reduction techniques. One way to perform the reduction is to project system (1) on orthonormal basis
Vq, which can be written as:

(Gn + Cns + rn ) X(s) = J Z(s) = UX(s) (2)

where: Gn Vq GnVq Cn= VqCnVq, Fn= VqFnVqqJ =VHJ U VHU. The reduced
order system's impedance matrix Z(s) approximates Z(s) over the certain frequency band whose width
depends on q. Generation of orthonormal basis Vq used in projection can be accomplished using one of
the model order reduction algorithms [1, 2, 3].

* Gdansk University of Technology, Department of Electronics, Telecommunications and Informatics, ul. Narutow-
icza 11/12, 80-952, Gdansk, tel. (+ 48 58) 347 25 49, fax. (+ 48 58) 347 12 28, e-mail:albi@Qvlo.ids.gda.pl, luke@aeti.pg.gda.pl,
m. mrozowski@Oieee.org



2.1 Efficient Nodal Order Reduction (ENOR)
This method, known as ENOR, was a pioneer work in second order systems reduction [1]. It is modified
version of the Arnoldi algorithm (a complete proof can be found in [4]). In order to obtain wideband
approximation of the original system first q original system's (1) state Taylor series expansion terms
called moments have to be matched with moments of projected system (2). It has been proven [1, 4],
that moments are matched if projection matrix Vq is constructed in the following way:

1. Put: X 1 = Y 1 = 0, JO = J, Jk = 0 and calculate first q block moments of system state using
recurrence formula:

(Gn + SoCn + Xk = SoCnXk-1 --FnYk-1 + Jk, Yk = Xk + Yk-1 (3)

where so C is an arbitrarily chosen expansion point where moments are matched.

2. After calculating block moments put: Vq = [X1X2 ... Xq], and in the next step orthonormalize
its columns.

Usually, the orthonormalisation process is carried out during block moments calculation. The (Xk)
sequence is convergent thus orthonormalisation during calculation process prevents moments from be-
coming linearly dependent.

2.2 Susceptance elements Model Order Reduction (SMOR)
This algorithm is a modification of ENOR. According to [2] one can observe that the long sum for
calculating Yk in (3) can cause error accumulation. From equation (3) it can be seen that Yk = E0=Xi.
Thus, to eliminate Yk from (3), one has to make a proper substitution [2] and derive a new formula for
block moments generation. It can be shown [2] that in this case block moments can be generated using
the following formulas:

(Gn + soCn + 1v1) Xo = J (4)

(Gn + s0Cn + 1-F) X1 = (s0Cn 1n) Xo (5)

(Gn + SoCn + 1 1n Xk (SoC -n n Xk-1 - ]UnXk-2 (6)

where equations (4), (5) are used to calculate Xo, X1 respectively and equation (6) is used for Xk with
k > 2. The projection matrix creation process is the same like in the ENOR method with block moments
Xk generated by equations (4)-(6). According to [2] for the improved procedure one can expect worse
moment matching than for the original ENOR method, but there will be no error accumulation during
Vq generation.

2.3 Second-order Arnoldi method for Passive Order Reduction (SAPOR)
SAPOR [3] model order reduction method use the simple transformation to the first-order system and
then use original Arnoldi algorithm [4]. After introduction of auxiliary symbols:

D 2soCn + Gn K = s2Cn + soGn +Ln

A =[ KC K0] (7)

one can compute block moments using the formula presented below:

Xk j Ak-1 [soK J (8)

where Xk are system's block moments while Zk are only auxiliary values. The orthonormalisation process
should be performed with respect to Xk, but the adequate operations on Z should be made.
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3. Numerical experiments
To verify the performance of model order reduction algorithms we and compared reduced-order solutions
with the exact ones for two coupled microstrip lines. For the test structure the strip width is equal
W = 0.2mm, the distance between strips L = 0.2mm, PCB thickness H = 1.5mm and the PCB material
(FR-4) Er = 4.2.

Per-unit-length circuit parameters in this case are: self capacitance Cself = 49.77PF, mutual ca-
pacitance Cmult = 23.3PF, self inductance Lself 812.42nH mutual inductance Lmult = 413.23nH and

'n f ~~~~m m
resistance Rself = 3.572m. Our transmission line model was the cascade of 50 connected sections. Because
the length of our microstrip line is 5cm, a single section physical length is 1mm. The partial elements
parameters coming out from the above are: R = 3.57mQ, L = 812.42pH, C = 49.77fF, Cmut = 23.3fF,
k = 0.51. The driver internal resistance was RL= 25Q and loading was CL= 5pF capacitor.LseAlf

To obtain quasi-static approximation limit we can use »>> 1mm criterion. That gives us fmax
2.5GHz, so we will limit the simulation analysis to f = 2GHz. Transfer functions for signal, far-end
crosstalk and near-end crosstalk for the analyzed microstrip line are shown in Fig. 1.

To examine the methods' accuracy we have calculated the relative error at each frequency. The
expansion point for reduction methods was chosen experimentally. For ENOR and SMOR s0 = 0.5e9
and for SAPOR so le9j. Simulations using ENOR for different reduction orders (qi = 2, q2 = 5,
q3 = 10) give the relative error shown in Fig. 2. We can see that the error is decreasing over the analyzed
frequency band with growing reduction order. The original problem size was n = 302 and because the
number of ports is p = 4, the reduced problem size was p qi = 8, p q2 20 and p q3 40 respectively.

In Fig. 3 we have compared different methods of order reduction for q = 5. All reduction methods
give similar results. Additionally, SMOR method gives exactly the same error as ENOR, which means



Fig. 5: The LC mesh representing power distribution system used in numerical tests (see text for explanation).

that there is no error accumulation and ENOR is perfectly stable in this simulation.
Results shown in Fig. 4 are another example, which was selected in order to emphasize the difference

between presented reduction methods. The analyzed structure is a power distribution system modeled
as a LC mesh (5) [6]. We have performed the analysis of the structure and examined the impedance
seen from one of the nodes. The circuit parameters of the system were: L = 812.42pH, C = 49.77fF,
the load parameters: LL= 10nH, CL= 100,uF, RL= 0.5Q and the source parameters: LS = 10mH,
RL= 50mQ. The number of system unknowns was reduced from n = 10002 to q p = 10 1. As we
can see in Fig.4 there is a small difference between ENOR and SMOR, but in our opinion they are still
negligible.

4. Conclusions
Model order reduction methods are very powerful tools in interconnect analysis thus they can be very
useful in digital system design. Numerical examples show that contrary to the findings reported in [2, 3],
when carefully implemented, all of presented algorithms give very accurate results. Nevertheless, we can
conclude that ENOR method is indeed sufficient to obtain accurate results in the second-order systems
reduction.

References
[1] B. N. Sheehan: ENOR: Model Order Reduction of RLC Circuits Usirng Nodal Equation for Efficient

Factorization., Proc. of IEEE/ACM DATE 2002, pp.628-633, 2002.

[2] H. Zheng, L. Pileggi: Robust and Passive Model Order Reduction for Circuits Containiinrg Susceptance
Elements, Proc. of IEEE/ACM ICCAD 2002, pp. 761-766, 2002.

[3] Y. Su, J. Wang, X. Zeng, Z. Bai, C. Zhou: SAPOR: Second-Order Arnoldi Method for Passive Order
Reduction of RCS Circuits, Computer Aided Design, 2004, ICCAD-2004. IEEE/ACM International
Conference, pp. 74-79, 2004

[4] R. W. Freund: Krylov-subspace methods for reduced-order modelirng irn circuit sirmulation, Journal of
Computational and Applied Mathematics, pp. 395-421, 2000

[5] L. 0. Chua, P. Lin: Computer-Aided Analysis of Electroniic Circuits: Algorithms and Computational
Techiriiques, Eaglewood Clifs, NJ: Prentice Hall, 1975

[6] B. Young: Digital signal irntegrity: modelirng and simulation with irnterconnects and packages, Prentice
Hall 2001


