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Streszczenie

Celem niniejszej pracy jest zbadanie zachowania niezmienników topolo-

gii algebraicznej w zastosowaniu do przestrzeni o skomplikowanej lokalnej

strukturze. Przestrzenie takie nazywamy tu �dzikimi przestrzeniami topolo-

gicznymi� (nie jest to formalnie zde�niowany termin, a stosujemy go gªównie

maj¡c na my±li przestrzenie nie posiadaj¡ce struktury CW-kompleksu).

Kluczowym problemem, który napotykamy, próbuj¡c stosowa¢ metody

topologii algebraicznej do nietriangulowalnych przestrzeni, jest sko«czono±¢

konstrukcji algebraicznych. Na przykªad grupy homologii s¡ opisywane przez

sko«czone kombinacje liniowe sympleksów, natomiast klasyczne metody ob-

liczania grupy podstawowej skupiaj¡ si¦ na reprezentowaniu jej elementów

poprzez sko«czonej dªugo±ci sªowa.

W naszym przypadku powy»sze podej±cie jest nieefektywne, gdy» grupy

podstawowe dzikich przestrzeni s¡ cz¦sto nieprzeliczalnie generowane, co jest

spowodowane faktem, i» tego typu przestrzenie zawieraj¡ cz¦sto dowolnie

maªe nietrywialne p¦tle. Zatem najbardziej naturalnym rozwi¡zaniem tej

trudno±ci wydaje si¦ by¢ opisywanie grup za pomoc¡ przeliczalnych, a nie

sko«czonych, sªów. W ostatnich dwóch dekadach opublikowano kilka prac

wykorzystuj¡cych t¦ ide¦. Przykªadowo, mamy prace, w których autorzy roz-

wa»aj¡ grupy podstawowe: Kolczyka Hawajskiego [9, 13], Przestrzeni Gri�-

thsa [8] albo Trójk¡ta Sierpi«skiego [1, 12, 17].

Kwestia sko«czono±ci jest równie» istotna je±li chodzi o teori¦ homologii.

Dlatego teoria homologii, dopuszczaj¡ca niesko«czone ªa«cuchy sympleksów

jest warta zbadania w kontek±cie dzikich przestrzeni topologicznych. Teo-
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STRESZCZENIE iv

ria homologii Milnora-Thurstona jest takim przykªadem. �a«cuchy s¡ w

tym przypadku miarami okre±lonymi na przestrzeni sympleksów singular-

nych (formaln¡ de�nicj¦ znajdzie czytelnik w Sekcji 1.3).

Widzimy, »e ªa«cuchy singularne, czyli sko«czone kombinacje liniowe

sympleksów singularnych, mog¡ by¢ równie» rozumiane jako ªa«cuchy w sen-

sie teorii Milnora-Thurstona. Wystarczy sko«czone kombinacje sympleksów

identy�kowa¢ z miarami skupion¡ na sko«czonej liczbie punktów (to uto»sa-

mienie prowadzi do de�nicji kanonicznego homomor�zmu pomi¦dzy homolo-

giami singularnymi a homologiami Milnora-Thurstona, patrz Sekcja 1.3).

Jest jeszcze jeden powód by zaj¡¢ si¦ teori¡ Milnora-Thurstona w kontek-

±cie dzikich przestrzeni topologicznych. Mianowicie wiadomo, i» owa teoria

speªnia aksjomaty Eilenberga-Steenroda przynajmniej dla przestrzeni nor-

malnych, a zatem jest to»sama z teori¡ singularn¡ dla przestrzeni o typie

homotopii CW-kompleksu (patrz Sekcja 1.2). Jednak»e jej zachowanie dla

dzikich przestrzeni jest w du»ej mierze niezbadane. Pierwsze rezultaty w tym

kierunku zostaªy otrzymane przez Zastrowa [34, Section 6] [35], natomiast

pierwszy opublikowany rezultat dotyczyª obliczenia grup homologii Milnora-

Thurstona dla Okr¦gu Warszawskiego [27] i zostaª opisany w niniejszej pracy.

Rozdziaª 1 zawiera opis znanych wyników oraz krótk¡ histori¦ i formaln¡

de�nicj¦ teorii homologii Milnora-Thurstona. Rozdziaª 2 jest po±wi¦cony wy-

nikom opublikowanym przez autora w pracy [27] � dotyczy obliczenia grup

homologii Milnora-Thurstona dla Okr¦gu Warszawskiego i wynikaj¡cego st¡d

rozwi¡zaniu problemu postawionego przez Berlang¦ [5]. Rozdziaª 3 zawiera

dalsze wyniki dotycz¡ce zerowej grupy homologii Milnora-Thurstona. Przed-

stawiono w nim dowód, i» zerowa grupa homologii dla kontinuów Peano jest

jednowymiarowa, a kanoniczny homomor�zm jest iniektywny dla przestrzeni

z borelowskimi skªadowymi ªukowymi. Ponadto przedstawiony jest kontr-

przykªad, i» ostatni wynik nie zachodzi dowolnych przestrzeni topologicz-

nych.
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0.1 Podstawowe de�nicje

Poniewa» de�nicja grup homologii Milnora-Thurstona oparta jest o teori¦

miary, przedstawimy tutaj jej podstawowe poj¦cia i koncepcje.

De�nicja 0.1. Rodzin¦ podzbiorów zbioru Ω nazywamy σ-algebr¡ nad zbio-

rem Ω je»eli zwiera ona zbiór pusty i jest zamkni¦ta ze wzgl¦du na dopeªnienia

i przeliczalne sumy.

Zauwa»my, »e przekrój dowolniej liczby σ-algebr jest równie» σ-algebr¡.

St¡d wynika, »e dla ka»dej rodziny S podzbiorów zbioru Ω istnieje najmniej-

sza σ-algebra nad Ω zawieraj¡ca rodzin¦ S. Nazywamy t¦ σ-algebr¦ genero-

wan¡ przez rodzin¦ S i oznaczamy j¡ σ(S).

De�nicja 0.2. Par¦ uporz¡dkowan¡ (Ω,F) gdzie F jest σ-algebr¡ nad Ω

nazywamy przestrzeni¡ mierzaln¡.

De�nicja 0.3. Niech (Ω,F) b¦dzie przestrzeni¡ mierzaln¡. Funkcj¦ µ : F →
R nazywamy sko«czon¡ miar¡ ze znakiem je»eli jest przeliczalnie addytywna

i znika na zbiorze pustym.

W niniejszej pracy rozpatrujemy jedynie sko«czone miary ze znakiem,

dlatego dalej b¦dziemy je nazywa¢ po prostu miarami.

Ka»da przestrze« topologiczna w naturalny sposób jest przestrzeni¡ mie-

rzaln¡. Niech wi¦c (X, τ) b¦dzie przestrzeni¡ topologiczn¡. Wówczas σ-

algebra generowana przez τ jest nazywana σ-algebr¡ zbiorów borelowskich i

oznaczamy j¡ B(X). Miary okre±lone na B(X) nazywamy miarami borelow-

skimi.

De�nicja 0.4. Niech (Ωi,Fi) dla i = 1, 2 b¦d¡ przestrzeniami mierzalnymi.

Funkcja f : Ω1 → Ω2 nazywalna jest funkcj¡ mierzaln¡ je»eli przeciwobraz

ka»dego zbioru z F2 jest zawarty F1.

De�nicja 0.5. Maj¡c dan¡ funkcj¦ mierzaln¡ f : Ω1 → Ω2 i miar¦ µ na Ω1

de�niujemy miar¦ przetransportowan¡ fµ nast¦puj¡cym wzorem

(fµ)(A) = µ(f−1(A)), dla ka»dego mierzalnego zbioru A.



STRESZCZENIE vi

Nietrudno zauwa»y¢, i» dla f : Ω1 → Ω2, g : Ω2 → Ω3 i dla miary µ na

przestrzeni Ω1 mamy nast¦puj¡c¡ to»samo±¢: (g ◦ f)µ = g(fµ).

De�nicja 0.6. Niech µ b¦dzie miar¡ na przestrzeni mierzalnej (Ω,F). Mó-

wimy, »e miara µ jest skoncentrowana na zbiorze D ⊂ Ω, je»eli µ(A) = 0 dla

ka»dego F ∋ A ⊂ Ω \D. Zbiór D nazywamy wówczas no±nikiem miary µ.

Poni»szy fakt b¦dzie pomagaª nam radzi¢ sobie z miarami ze znakiem:

Twierdzenie 0.7. (Hahn [19, Theorem A, p. 121]) Niech µ b¦dzie miar¡

na (Ω,F). Wówczas istniej¡ dwa rozª¡czne zbiory Ω+, Ω− ∈ F takie, »e

Ω = Ω+∪Ω− oraz dla ka»dego F ∈ F mamy µ(F ∩Ω+) ≥ 0, µ(F ∩Ω−) ≤ 0.

Rozkªad przestrzeni Ω na dwa podzbiory Ω+, Ω− nie jest jednoznaczny.

Jednak»e w przypadku dwóch ró»nych rozkªadów Ω+
i , Ω

−
i , i = 1, 2, mo»na

pokaza¢, »e dla dowolnego F ∈ F mamy µ(F∩Ω+
1 ) = µ(F∩Ω+

2 ), µ(F∩Ω−
1 ) =

µ(F ∩ Ω−
2 ) [19, p. 122]. St¡d te» miara ze znakiem mo»e by¢ jednoznacznie

rozªo»ona na nast¦puj¡c¡ ró»nic¦ miar nieujemnych

µ = µ+ − µ−,

gdzie µ+(·) := µ(· ∩ Ω+), µ−(·) := −µ(· ∩ Ω−).

De�nicja 0.8. Niech µ b¦dzie miar¡ na przestrzeni X, wariacj¦ |µ| miary

µ okre±lamy wzorem

|µ| = µ+ + µ−.

Caªkowit¡ wariacj¦ ∥µ∥ de�niujemy jako

∥µ∥ = |µ|(X).

0.2 Teoria homologii Milnora-Thurstona

Teraz pokrótce przedstawimy konstrukcj¦ teorii homologii Milnora-Thur-

stona. B¦dziemy u»ywa¢ liter kaligra�cznych (C, H, itp.) do oznaczenia
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odpowiednich konstrukcji w teorii Milnora-Thurstona, natomiast zwykªe li-

tery (C, H, itp.) oznacza¢ b¦d¡ odpowiednie grupy w teorii singularnej.

Na pocz¡tek skonstruujemy kompleks ªa«cuchowy C∗(X), dla danej prze-

strzeni topologicznej X. Niech C0(∆k, X) oznacza przestrze« sympleksów

singularnych (tj. ci¡gªych funkcji z sympleksu standardowego ∆k w X, gdzie

k jest caªkowit¡ liczb¡ nieujemn¡). B¦dziemy rozpatrywa¢ C0(∆k, X) jako

przestrze« topologiczn¡ wyposa»on¡ w topologi¦ zwarto-otwart¡. Przestrze«

wektorow¡ Ck(X) zawieraj¡c¡ k-wymiarowe ªa«cuchy de�niujemy jako zbiór

sko«czonych miar borelowskich ze znakiem posiadaj¡cych zwarty no±nik.

W nast¦pnym kroku uczynimy z C∗(X) kompleks ªa«cuchowy. Niech δi :

∆k−1 ↪→ ∆k, dla i = 0, 1, ..., k, oznaczaj¡ wªo»enia sympleksu ∆k−1 jako

±ciany sympleksu ∆k. Odwzorowania δi indukuj¡ ci¡gªe odwzorowania ∂i :

C0(∆k, X) → C0(∆k−1, X) na poziomie sympleksów singularnych. S¡ one

de�niowane jako zªo»enia funkcji ∂i : σ 7→ σ ◦ δi. Nietrudno pokaza¢, »e z

de�nicji topologii zwarto-otwartej wynika ich ci¡gªo±¢ [34, Lemma 2.8].

Z kolei ci¡gªe funkcje ∂i indukuj¡ odwzorowania ∂i : Ck(X) → Ck−1(X),

gdzie ∂i dziaªa poprzez transport miary ze wzgl¦du na ci¡gª¡ (a wi¦c mie-

rzaln¡) funkcj¦ ∂i (patrz De�nicja 0.4). Ostatecznie operator brzegu jest

de�niowany typowym wzorem:

∂ :=
k∑

i=0

(−1)i∂i.

W pracy [34, Corollary 2.9] pokazano, »e C∗(X) z tak zde�niowanym opera-

torem brzegu jest istotnie kompleksem ªa«cuchowym.

Grupy homologii Milnora-Thurstona H∗(X) s¡ de�niowane w jako grupy

homologii kompleksu ªa«cuchowego C∗(X). Ponadto widzimy, »e C∗ jest funk-
torem z kategorii przestrzeni topologicznych do kategorii kompleksów ªa«-

cuchowych. Rzeczywi±cie, odwzorowanie ªa«cuchowe f• : C∗(X) → C∗(Y )

indukowane przez ci¡gª¡ funkcj¦ f : X → Y jest de�niowane podobnie jak

operator brzegu. Mo»emy traktowa¢ C0(∆k,−) jako funktor kowariantny, a

wówczas f• odwzorowuje ka»d¡ miar¦ na miar¦ przetransportowan¡ przez f

(szczegóªow¡ analiz¦ przedstawiono w Sekcji 1.3).
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Niech X b¦dzie przestrzeni¡ topologiczn¡, natomiast A jej podprzestrze-

ni¡. Wówczas relatywny kompleks ªa«cuchowy C∗(X,A) jest de�niowany jako

iloraz C∗(X) przez i•(C∗(A)), gdzie i : A ↪→ X jest wªo»eniem. Relatywne

grupy homologii Milnora-Thurstona to grupy homologii komplesku C∗(X,A).

Istnieje kanoniczny homomor�zm ªa«cuchów singularnych w ªa«cuchy

Milnora-Thurstona

Ck(X;R) → Ck(X),∑
i

αiσi 7→
∑
i

αiδσi
,

gdzie δ oznacza miar¦ Kroneckera. Ten homomor�zm jest monomor�zmem

wtedy i tylko wtedy gdy X speªnia aksjomat oddzielania T0. Ponadto, po-

wy»szy homomor�zm jest przemienny z operatorem brzegu, a zatem indukuje

on odwzorowanie na poziomie homologii

Hk(X;R) → Hk(X).

Odwzorowanie to jest izomor�zmem gdy X ma typ homotopijny CW -kom-

pleksu [34, Section 5]. Ponadto okazuje si¦, »e jest to monomor�zm dla

wielu dzikich przestrzeni (np. w przypadku zerowych homologii dla Okr¦gu

Warszawskiego lub w przypadku przykªadowej przestrzeni zde�niowanej w

[34, Section 6]).

0.3 Topologia Berlangi

Berlanga wyposa»yª grupy homologii Milnora-Thurstona w topologi¦, któ-

ra jest zgodna z jej struktur¡ liniow¡ [5]. Co wi¦cej mo»na udowodni¢, »e

jest ona lokalnie wypukªa kiedy przestrze« topologiczna speªnia drugi aksjo-

mat przeliczalno±ci i jest o±rodkowa. A zatem homologie stanowi¡ funktory

z kategorii o±rodkowych przestrzeni topologicznych speªniaj¡cych drugi ak-

sjomat przeliczalno±ci do kategorii lokalnie wypukªych przestrzeni liniowo

topologicznych (niekoniecznie speªniaj¡cych aksjomat Hausdor�a!).
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Owa topologia jest okre±lona w naturalny sposób. Niech X b¦dzie o±rod-

kow¡ przestrzeni¡ topologiczn¡ speªniaj¡c¡ drugi aksjomat przeliczalno±ci.

Maj¡c dan¡ funkcj¦ f : C0(∆k, X) → R mo»emy okre±li¢ nast¦puj¡cy funk-

cjonaª liniowy

Λf (µ) =

∫
C0(∆k,X)

fdµ,

gdzie µ ∈ Ck(X). B¦dziemy pracowa¢ z najsªabsz¡ topologi¡ na Ck(X) tak¡,

»e wszystkie powy»sze funkcjonaªy s¡ ci¡gªe. Berlanga udowodniª, »e opera-

tor brzegowy ∂ jest ci¡gªy [5, Assertion 2.1]. A zatem grupy homologii

Hk(X) = Zk(X)/Bk(X)

mog¡ by¢ wyposa»one w struktur¦ lokalnie wypukªej przestrzeni liniowo to-

pologicznej. Jej topologi¦ b¦dziemy nazywa¢ topologi¡ Berlangi.

R. Berlanga postawiª pytanie czy grupy homologii Milnora-Thurstona

speªniaj¡ aksjomat Hausdor�a. W pracy [5] autor przedstawia dowód, i»

H1(X) jest przestrzeni¡ Hausdor�a, je»eli X jest homotopijnie równowa»na

z CW-kompleksem. Z kolei Zastrow pokazaª przykªad przestrzeni V gdzie

H0(V ) nie jest Hausdor�a [35]. Ta przestrze« V to Okr¡g Warszawski z

usuni¦tym fragmentem linii akumulacji (patrz Theorem 2.5).

Przestrze« V badana przez Zastrowa nie jest zwarta. Fakt ten jest w

istotny sposób wykorzystywany w dowodzie. Zatem nasuwa si¦ pytanie, czy

równie» dla przestrzeni zwartych mo»emy znale¹¢ przykªad gdzie topologia

Berlangi nie jest Hausdor�a. Istotnie, okazuje si¦, »e zwykªy Okr¡g War-

szawski jest takim przykªadem, co zostaªo pokazane w Rozdziale 2.

0.4 Teoria homologii Milnora-Thurstona dla dzi-

kich przestrzeni topologicznych

Mianem dzikie przestrzenie topologiczne okre±lamy przestrzenie o skom-

plikowanej lokalnej strukturze. Nie przywoªujemy »adnej formalnej de�nicji

�dziko±ci�, a podstawow¡ cech¡, która odró»nia przestrzenie dzikie od oswo-

jonych jest ich nietriangulowalno±¢.
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Rysunek 1: Okr¡g Warszawski
Rysunek 2: Przestrze« Zbie»-

nych �uków

Wiadomo, »e kanoniczny homomor�zm pomi¦dzy homologiami singular-

nymi a homologiami Milnora-Thurstona jest izomor�zmem, gdy przestrze«

ma typ homotopijny CW -kompleksu. Dlatego te» badanie homologii Milnora-

Thurstona dla tego typu przestrzeni sprowadza si¦ do badania homologii sin-

gularnych.

Sprawa wygl¡da inaczej w przypadku dzikich przestrzeni. Mo»na poda¢

przykªady przestrzeni (np. Okr¡g Warszawski, patrz dalej), gdzie obie teo-

rie homologii si¦ ró»ni¡. Celem niniejszej pracy jest badanie tych ró»nic i,

bardziej ogólnie, zbadanie wªasno±ci grup homologii Milnora-Thurstona dla

dzikich przestrzeni topologicznych.

Przykªadowymi dzikimi przestrzeniami, na których skupili±my si¦ w tej

pracy, s¡: Okr¡gWarszawskiW , Przestrze« Zbie»nych �uków CA i Podwójny

Okr¡g Warszawski DW .

Okr¡g Warszawski, przedstawiony na Rysunku 1, jest zde�niowany jako

podzbiór R2 skªadaj¡cy si¦ z:

• cz¦±ci Sinusoidy Warszawskiej {(x, y) ∈ R2 | y = sin 1/x}, zawiera-
j¡cej si¦ pomi¦dzy prost¡ x = 0 a najbardziej wysuni¦tym na prawo

minimum,

• linii akumulacji {(0, y) ∈ R2 | −1 ≤ y ≤ 1},
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Rysunek 3: Podwójny Okr¡g Warszawski

• ªuku ª¡cz¡cego punkt (0,−1) z minimum wysuni¦tym najbardziej na

prawo.

Podwójny Okr¡g Warszawski przedstawiono na Rysunku 3, jest on skleje-

niem dwóch kopii Okr¦gu Warszawskiego wzdªu» linii akumulacji. Przestrze«

Zbie»nych �uków przedstawiona na Rysunku 2 jest zbudowana z przeliczalnej

liczby ªuków ª¡cz¡cych dwa dane punkty i zbiegaj¡cych do odcinka euklide-

sowego pomi¦dzy tymi punktami.

Przyst¡pimy teraz do prezentacji wyników pracy

Twierdzenie 0.9. (patrz Theorem 2.3) Niech n > 0, wówczas Hn(W ) = 0.

Szkic dowodu. Z geometrycznego punktu widzenia idea dowodu polega

na podziale sympleksów singularnych w taki sposób, »eby ka»dy przechodziª

przez co najwy»ej jedno maksimum Sinusoidy Warszawskiej. Jest to mo»-

liwe, gdy» no±nik ªa«cuchów Milnora-Thurstona jest zwarty. Taki podziaª

pozwala pokaza¢, »e grupy homologii daj¡ si¦ opisa¢ za pomoc¡ absolutnie

sumowalnych ci¡gów. A st¡d, wykonuj¡c odpowiednie obliczenia, pokazu-

jemy wynik.
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Technicznym narz¦dziem wykorzystywanym w tym dowodzie jest twier-

dzenie Mayera-Vietorisa. Je»eli podzielimy Okr¡g Warszawski na dwie po-

ªówki, górn¡ i doln¡, uzyskamy opisany powy»ej efekt podziaªu sympleksów

singularnych. Nast¦pnie dzi¦ki homotopijnej niezmienniczo±ci grup homolo-

gii, widzimy »e obie poªówki maj¡ te same grupy homologii do ci¡g punktów

z granic¡. Dla tego typu przestrzeni nietrudno policzy¢ grupy homologii

Milnora-Thurstona wprost z de�nicji. Okazuje si¦, »e 0-ªa«cuchy s¡ izomor-

�czne z przestrzeni¡ ci¡gów absolutnie sumowalnych. St¡d wida¢, »e ci¡gi

absolutnie sumowalne opisuj¡ homologie Okr¦gu Warszawskiego W .

Wykorzystuj¡c taki opis grup homologii mo»emy napisa¢ wzór okre±laj¡cy

operator brzegu (patrz równanie (2.4)). St¡d odczytujemy, »e nie istniej¡

nietrywialne 1-cykle, a zatem pierwsza grupa homologii jest trywialna.

�

Twierdzenie 0.10. (patrz Theorem 2.4) Przestrze« liniowa H0(W ) jest

kontinuum-wymiarowa.

Szkic dowodu. Powy»sze twierdzenie dowodzi si¦ wykorzystuj¡c tech-

niki przedstawione w dowodzie Twierdzenia 0.9. Jak byªo wspomniane, grupy

homologii s¡ opisywane przez ci¡gi absolutnie sumowalne. Z tego opisu, mo-

»emy zauwa»y¢, »e niezerowe klasy homologii odpowiadaj¡ ci¡gom zbiegaj¡

do z dostatecznie powoli (s¡ sumowalne, ale ci¡g sum cz¦±ciowych ju» nie

jest). Mo»emy poda¢ wiele takich ci¡gów, pisz¡c odpowiednie kombinacje

liniowe ci¡gów postaci 1/kα. Poniewa» parametr α mo»e by¢ zmieniany w

przedziale (0, 1) w dowolny sposób, mo»emy tak wygenerowa¢ kontinuum

wiele liniowo niezale»nych klas homologii.

�

Analogicznymi metodami wyliczamy grupy homologii pozostaªych roz-

patrywanych przez nas przestrzeni (patrz Theorem 2.7 i Theorem 2.8). W

szczególno±ci grupy homologii Podwójnego Okr¦gu Warszawskiego DW s¡

takie same jak W . Ponadto H1(CA) ∼=
⊕

c R. Natomiast dla homologii
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singularnych mamy H1(CA) ∼=
⊕

ℵ0
R, st¡d goªym okiem wida¢ brak izomor-

�zmu pomi¦dzy teori¡ Milnora-Thurstona a teori¡ singularn¡. Natomiast w

wymiarze zero obie teorie homologii przystaj¡ dla przestrzeni CA. Pokazu-

jemy to podobnie jak w przypadku Okr¦gu Warszawskiego. Z drugiej strony,

dla przestrzeni lokalnie spójnych mamy nast¦puj¡cy wynik:

Twierdzenie 0.11. (patrz Theorem 3.2) Niech X b¦dzie kontinuum Peano,

wówczas H0(X) ∼= R.

Szkic dowodu. Kontinuum Peano jest to zwarta przestrze« metryczna,

która jest lokalnie spójna. W dowodzie wykorzystamy twierdzenie Hahna-

Mazurkiewicza, które powiada i» istnieje ci¡gªa suriekcja f : [0, 1] → X.

Nale»y wykaza¢, »e dowolny 0-ªa«cuch Milnora-Thurstona µ na prze-

strzeni X jest homologiczny z miar¡ skupion¡ w jednym punkcie. Mo»na

pokaza¢, »e istnieje miara µ̃ na [0, 1] taka, »e fµ̃ = µ. Nast¦pnie ka»demu

punktowi t ∈ [0, 1] mo»emy przypisa¢ 1-sympleks, który zaczyna si¦ w f(0)

a ko«czy w f(t). St¡d mamy odwzorowanie [0, 1] → C0(∆1, X). Dalej trans-

portuj¡c miar¦ µ̃ poprzez to odwzorowanie, dostajemy miar¦ ν której brze-

giem jest ró»nica µ i miary skupionej w punkcie f(0).

�

Zauwa»yli±my ju», »e pierwsza grupa homologii Milnora-Thurstona dla

przestrzeni CA nie jest izomor�czna z odpowiedni¡ grup¡ homologii singu-

larnych. Mo»emy zauwa»y¢ jednak, »e kanoniczny homomor�zm jest tutaj

injektywny (jest to naturalne wªo»enie
⊕

ℵ0
R w

⊕
c R). Podobnie sprawa si¦

ma w przypadku Okr¦gu Warszawskiego. Okazuje si¦, »e mamy nast¦puj¡ce

twierdzenie:

Twierdzenie 0.12. (patrz Theorem 3.3) Niech X b¦dzie przestrzeni¡, któ-

rej wszystkie ªukowe skªadowe s¡ borelowskie. Wówczas homomor�zm kano-

niczny H0(X) → H0(X) jest iniekcj¡.

Szkic dowodu. Niech µ ∈ C0(X) b¦dzie miar¡ skupion¡ na sko«czonej

liczbie punktów reprezentuj¡c¡ nietrywialn¡ klas¦ homologii singularnych.
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To znaczy, »e nie istnieje miara ν ∈ C1(X) skupiona na sko«czonej liczbie

punktów speªniaj¡ca

∂ν = µ.

Musimy wykaza¢, »e »adna miara ν ∈ C1(X) nie speªnia powy»szego równa-

nia.

Dowód przeprowadzimy dla przypadku gdy µ jest skupiona na dwóch

punktach. Czyli µ = αδx + βδy, gdzie punkty x, y ∈ X le»¡ w ró»nych

ªukowych skªadowych spójno±ci, a wspóªczynniki α, β ̸= 0.

Zaªó»my, »e istnieje ν taka, »e µ = ∂ν. Niech Y b¦dzie skªadow¡ spójno±ci

zawieraj¡c¡ x. Wówczas prosty rachunek pokazuje, i» µ(Y ) = (∂ν)(Y ) = 0.

Jednak»e µ(Y ) = (αδx + βδy)(Y ) = α, co daje sprzeczno±¢, gdy» α ̸= 0.

Dowód dla miar skupionych na wi¦kszej liczbie punktów przeprowadza

si¦ analogicznie.

�

Zaªo»enie o borelowskich skªadowych ªukowych jest istotne w powy»szym

twierdzeniu. Skonstruujemy teraz przestrze«, dla której kanoniczny homo-

mor�zm nie jest injektywny.

Twierdzenie 0.13. (patrz Theorem 3.11) Istnieje przestrze« X, dla której

kanoniczny homomor�zm H0(X) → H0(X) nie jest injektywny.

Szkic dowodu. Istnieje rozbicie [−1, 1] \ Q = N0 ∪ N1 takie, »e ka»dy

borelowski podzbiór zbioru N0 lub zbioru N1 jest miary Lebesgue'a zero

(patrz Lemma 3.5). Rzecz jasna zbiory N0 i N1 nie s¡ mierzalne w sensie

Lebesgue'a.

Rozwa»my teraz dwa sto»ki CN0 i CN1, nad zbiorem N0 i N1 odpowied-

nio. Zbiór [−1, 1]\Q wraz ze sto»kami traktujemy jako podzbiór pªaszczyzny

z topologi¡ indukowan¡ i oznaczamy Y .

Do tak skonstruowanej przestrzeni dokleimy rozª¡czne kopie odcinków

I0 = [0, 1], I1 = [−1, 0]. Punkt 1 ∈ I0 uto»samiamy z wierzchoªkiem sto»ka

CN0 a punkt −1 ∈ I1 z wierzchoªkiem sto»ka CN1. Tak skonstruowan¡
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przestrze« oznaczmy X. Topologi¦ na na X zadajemy tak, aby topologia

podprzestrzeni Y pokrywaªa si¦ z t¡ indukowan¡ z pªaszczyzny. Natomiast

otoczenia wewn¦trznych punktów odcinków Ii, dla i = 0, 1, skªadaj¡ si¦ z

pododcinków odcinka Ii i z odpowiednich pododcinków prawie wszystkich

wªókien sto»ka CXi. Natomiast niech otoczenia punktów 0 ∈ I0 i 0 ∈ I1

(pami¦tajmy, »e odcinki I0 i I1 byªy rozª¡czne) zawieraj¡ odpowiednie odcinki

z prawie wszystkich wªókien obu sto»ków. Przestrze« X nie speªnia wi¦c

aksjomatu separowalno±ci T2.

Przestrze« X ma dwie ªukowe skªadowe spójno±ci, z których ka»da za-

wiera jeden ze sto»ków. Rozwa»my teraz miar¦ µ = δx0 − δx1 gdzie xi jest

wierzchoªkiem sto»ka CXi. Istnieje miara ν taka, »e ∂ν = µ. Miara ta jest

jednorodnie skupiona na wªóknach (traktowanych jako sympleksy singularne)

sto»ka CX0 i sto»ka CX1. Powodem dla którego »aden punkt odcinka [0, 1]

nie znajduje si¦ w no±niku miary ∂ν jest fakt, »e ka»dy podzbiór borelowski

zbiorów X0 i X1 ma miar¦ zero. Dlatego w brzegu miary ν znajduj¡ si¦ tylko

punkty x0 i x1, le»¡ce w ró»nych ªukowych skªadowych spójno±ci.

�



Introduction

The aim of this thesis is to investigate the behaviour of invariants from

algebraic topology when applied to topological spaces with a complicated

local structure. For such spaces the term �wild topological spaces� is used

(this is not a formally de�ned notion, here it refers mostly to topological

spaces with no CW-complex structure).

The crucial problem when we try to apply methods of algebraic topol-

ogy to non-triangulable spaces is �niteness of basic algebraic constructions.

For example, the homology groups are described by �nite linear combina-

tions of simplices, and the classical methods for computing the fundamental

groups focus on decomposing each element of the group into �nite words of

generators.

This approach seems ine�ective, since fundamental groups of non-tame

spaces are often uncountably generated caused by the fact that such spaces

contain in�nitely many small non-nullhomotopic loops. Consequently, the

structure of the fundamental group of such a space can only be adequately

re�ected by in�nite multiplication. We see that the most natural solution to

this problem is to describe the group by countable in�nite words instead of

�nite ones. In the last two decades some papers in this direction were pub-

lished. For example, there were articles published where the authors consider

such a description of the fundamental groups of the Hawaiian Earring [9, 13],

the Gri�ths space [8] or the Sierpi«ski Gasket [1, 12, 17].

The issue of �niteness is also important when it comes to homology theory.

Therefore, a homology theory with in�nite chains of simplices is worth being

xvi
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investigated in perspective for wild topological spaces.

Milnor-Thurston homology theory is a particular example of a homo-

logy theory that admits in�nite chains. They are by de�nition compactly

supported Borel measures on the space of singular simplices (note that in

this thesis the notion of compactness does not require the Hausdor� axiom).

A formal de�nition of Milnor-Thurston homology can be found in Section 1.3.

We see that singular chains, which are �nite linear combinations of sin-

gular simplices, can also be interpreted as Milnor-Thurston chains. We just

have to identify �nite linear combinations with measures concentrated on a �-

nite number of points (this identi�cation leads to the de�nition of a canonical

homomorphism between singular homology and Milnor-Thurston homology,

see Section 1.3).

This homology theory was invented in order to have a more convenient

representation of cycles. It was supposed to coincide with singular homo-

logy for hyperbolic manifolds. And in fact, as it was proved, it satis�es the

Eilenberg-Steenrod axioms at least for normal spaces [34]. However, its cal-

culation for spaces more complicated than CW-complexes is by no means

automatic. The �rst results in this direction was provided by Zastrow [35]

[34, Section 6.], and the �rst concrete computation of Milnor-Thurston ho-

mology groups was done for the Warsaw Circle by the author of this thesis

[27].

Chapter 1 contains a presentation of known results, a brief history and

a formal de�nition of Milnor-Thurston homology. Chapter 2 presents calcu-

lation of Milnor-Thurston homology groups of the Warsaw Circle and some

other similar spaces. Moreover, it also contains an answer to Berlanga's ques-

tion whether Milnor-Thurston homology groups are Hausdor� [5]. Chapter 3

contains further results on the zeroth Milnor-Thurston homology group � a

proof that for Peano continua it is one-dimensional, a proof that the canoni-

cal homomorphism is injective for spaces satisfying some technical conditions

(see Theorem 3.3) and �nally a counterexample that the canonical homomor-

phism need not be injective in general. Results of Chapter 2 have already
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been published by the author of this dissertation [27] and results of Chapter 3

are contained in the preprint [28] which is currently under review.

Aknowledgements. I would like to thank Andreas Zastrow � patient

advisor and inspiring interlocutor, in particular for directing my attention

onto the problems studied in this thesis. I would like also to thank Paweª

Józiak for his impact on the shape of this dissertation.



Chapter 1

Preliminaries

This chapter is devoted to recalling results that exist in literature. In

the �rst section we de�ne some notions and recall several results that will be

used in this thesis. The purpose of the second section is to present Milnor-

Thurston homology theory.

1.1 Results from analysis and measure theory

A σ-algebra over a set Ω is a family of subsets of Ω that contains the

empty set and is closed with respect to complements and countable unions,

hence also countable intersections. An intersection of any collection of σ-

algebras is also a σ-algebra. Thus, for every family S of subsets of Ω there

exists the smallest σ-algebra containing S. We call it the σ-algebra generated

by S, and it is denoted by σ(S).

De�nition 1.1. A pair (Ω,F) where F is a σ-algebra over Ω is called mea-

surable space.

De�nition 1.2. Let (Ω,F) be a measurable space. A function µ : F → R is

called a �nite signed measure if it is countably additive and vanishes on the

empty set.

Remark. In this thesis we consider only �nite signed measures, thus for

simplicity we shall call them measures.

1
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Every topological space is a measurable space in the following natural

way: Let (X, τ) be a topological space. The σ-algebra generated by τ is

called the Borel σ-algebra and it is denoted by B(X).

Let (Ωi,Fi) for i = 1, 2 be measurable spaces. A function f : Ω1 → Ω2 is

called measurable if the preimage of every set in F2 is contained in F1.

De�nition 1.3. Given a measurable function f : Ω1 → Ω2 and a measure µ

on Ω1 we de�ne the image measure fµ by the formula

(fµ)(A) = µ(f−1(A)), for any measurable set A

We easily see that the composition of measurable maps is again measur-

able. Moreover, we have the following

Lemma 1.4. Let f : Ω1 → Ω2, g : Ω2 → Ω3 be measurable maps and let µ

be a measure on Ω1. Then we have

(g ◦ f)(µ) = g(fµ)

Proof. Take a measurable set A ⊂ Ω1. Then we have (g ◦ f)−1(A) =

f−1(g−1(A)). Thus, we have

(g ◦ f)(µ)(A) = µ(f−1(g−1(A))) = (fµ)(g−1(A)) = g(fµ)(A).

From that, the assertion of our lemma follows.

�

De�nition 1.5. Let µ be a measure on a measurable space (Ω,F). A carrier

of measure µ is a set D ⊂ Ω such that µ(A) = 0 for any F ∋ A ⊂ Ω \D.

The following result helps us to deal with signed measures.

Theorem 1.6. (Hahn [19, Theorem A, p. 121])) Let µ be a signed measure on

(Ω,F). Then there exist two disjoint sets Ω+, Ω− ∈ F such that Ω = Ω+∪Ω−

and such that for every F ∈ F we have µ(F ∩ Ω+) ≥ 0, µ(F ∩ Ω−) ≤ 0.
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The decomposition of our space Ω into sets Ω+, Ω− is not unique. Nev-

ertheless, for two distinct decompositions: Ω+
i , Ω

−
i , i = 1, 2, one can prove

that, given any F ∈ F it is µ(F ∩Ω+
1 ) = µ(F ∩Ω+

2 ), µ(F ∩Ω−
1 ) = µ(F ∩Ω−

2 )

[19, p. 122]. Therefore the signed measure µ can be uniquely decomposed

into the following di�erence of unsigned measures

µ = µ+ − µ−,

where µ+(·) = µ(· ∩ Ω+), µ−(·) = −µ(· ∩ Ω−).

De�nition 1.7. Let µ be a measure on a space X, the variation |µ| of the
measure µ shall be de�ned as

|µ| = µ+ + µ−.

The total variation ∥µ∥ shall be de�ned as

∥µ∥ = |µ|(X).

De�nition 1.8. Let µ be a signed �nite Borel measure. We say that µ is

regular if for every Borel set B

• |µ|(B) is the supremum of |µ|(K) where K ⊂ B is compact,

• |µ|(B) is the in�mum of |µ|(U) where U ⊃ B is open.

The space of regular �nite Borel measures on a topological space X shall

be denoted by M(X). It is a normed space equipped with the total vari-

ation norm. Let C(X) denote the space of real continuous functions on a

topological space X. We have

Theorem 1.9. (Compact version of Riesz Representation Theorem [10, Chap-

ter III, Theorem 5.7]) Let X be a compact Hausdor� space and let µ ∈ M(X).

De�ne Fµ : C(X) → R by:

Fµ(f) =

∫
X

fdµ.

Then Fµ ∈ C(X)∗ and the map µ 7→ Fµ is an isometric isomorphism of

M(X) onto C(X)∗.
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Here �()∗� denotes the space of continuous functionals on a topological

vector space.

We de�ne the following notions as in [7, p. 41]:

De�nition 1.10. A non-empty family of sets is called a π-system if it is

closed under �nite intersections.

Obviously any topology is a π-system.

De�nition 1.11. A non-empty family of subsets of space X is called λ-

system if: it contains X, it is closed under complements and it is closed

under countable disjoint unions.

Notice, that any σ-algebra is a λ-system.

Theorem 1.12. (Dynkin's lemma [7, Theorem 3.2]) Let D be a λ-system

and let P ⊂ D be a π-system. Then σ(P ) ⊂ D.

Corollary 1.13. Let µ and ν be Borel measures on a topological space X.

Suppose µ and ν are equal on open sets, then µ = ν.

Proof. Let D be the subset of Borel σ-algebra such that for every A ∈ D
we have µ(A) = ν(A). We see that D is a λ-system. The topology τ of X is

a π-system such that τ ⊂ D. So by Dynkin's lemma we see that D is in fact

the Borel σ-algebra and hence µ = ν.

�

The de�nition of an algebra of subsets is analogous to the de�nition of a

σ-algebra but with �nite unions instead of countable unions. In construction

of measures we shall use the following result of Constatin Carathéodory:

Theorem 1.14. (Carathéodory Extension Theorem [2, Theorem 1.3.10]) Let

µ be an unsigned measure on an algebra of sets F0. Then, µ has a unique

extension to a measure on σ(F0).

In fact, if we want to construct a measure it is convenient to de�ne it on

some �smaller� family of sets:
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De�nition 1.15. We say that a family S of subsets of X is a semi-algebra

if it contains the empty set, it is closed under �nite intersections and for any

set E ∈ S there exists a �nite disjoint collection of sets Ci ∈ S, such that

X \ E =
∪

iCi.

Remark. An example of a semi-algebra over [−1, 1] may be the family

of semi-closed intervals of the form when [a, b) intersected with [−1, 1].

Corollary 1.16. If µ is a non-negative countably additive set function on a

semi-algebra S such that µ(∅) = 0, then there exists an extension of µ to

σ(S).

Proof. The algebra of sets F0 that is generated by S has a simple

description:

F0 =
{∪

E | E is a �nite subset of S
}

It is easy to see that every element of F0 is in fact a disjoint union of elements

in S. Hence, µ has a natural (and well de�ned!) extension to an additive set

function on F0.

We will prove that it is in fact countably additive. Take a countable

collection of subsets Fj ∈ F0 such that F =
∪

j Fj ∈ F0. As we noted above,

F can be decomposed into a disjoint union of a �nite number of sets Ei ∈ S.
Similarly, Fj =

∪
iE

j
i , where {E

j
i }i is a �nite subset of S. By the intersection

property of a semi-algebra we can assume that each Ej
i is a subset of some

Ek. Thus, we have

Ei =
∪

Ej
i⊂Ei

Ej
i .

Hence, countable additivity of µ on S implies countable additivity of µ on

F0. Finally, by the Carathéodory Extension Theorem we know that there

exists an extension of µ on σ(F0) = σ(S).

�

Let A and B be families of subsets of X and let Y ⊂ X, then Y ∩ A
denotes {Y ∩ A | A ∈ A} and A ⊕ B denotes {A ∪ B | A ∈ A, B ∈ B}.
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Moreover notice that if F is a σ-algebra over X then A ∩ F is a σ-algebra

over A.

Lemma 1.17. Let A ⊂ X be a subset of a measurable space (X,F). Let F
be generated by a semi-algebra S. Then A ∩ F = σ(A ∩ S) as a σ-algebra

over A.

Proof. The idea of this proof is a slight generalisation of the proof of [34,

Proposition 1.10] (proofs by this method can also be found in some standard

texts on measure theory [4, I.1 (1.4)], [21, 1.5(Satz 8)]). So let G be the

σ-algebra over A generated by A ∩ S. Obviously, we have G ⊂ A ∩ F . In

order to prove the other inclusion notice that G⊕((X \A)∩F) is a σ-algebra

over X containing S. Thus, F ⊂ G ⊕ ((X \A) ∩F). Now, applying to both

sides of this inclusion A∩ we obtain A ∩ F ⊂ G.

�

Lemma 1.18. Let f : X → Y be a map between a set X and a measur-

able space (Y,G). Let G be generated by a semi-algebra S. Then f−1(G) =
σ(f−1(S)) as a σ-algebra over X.

Proof. Without loss of generality we can assume that f is a surjection.

This follows from Lemma 1.17 and the fact that f−1(f(X) ∩ A) = f−1(A),

for every family A of subsets of Y .

Let F ⊂ f−1(G) be the σ-algebra generated by f−1(S). First, we will

prove that f(F) := {f(B) | B ∈ F} is a σ-algebra. Countable additivity is

proved using good behaviour of images with respect to unions. Finally, let

A = f(B) for some B ∈ F , then Y \A = f(X \B) because f is a surjection

and every set in F is a preimage of a set in G.
We can see that S ⊂ f(F), thus G ⊂ f(F). Applying the operation f−1

to this equation we obtain f−1(G) ⊂ F , which proves our lemma.

�
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Lemma 1.19. Let G be an open set of a metric space (X, d). Then there

exists a sequence of continuous functions converging pointwise from below to

the characteristic function of G.

Proof. Let χG denote the characteristic function of G and let f be a

continuous function on [0,∞) such that f(0) = 0, f(t) = 1 for t ≥ 1 and

0 ≤ f ≤ 1. Then fn(x) = f(n · d(x,X \ G)) converge pointwise to χG and

fn ≤ χG for all n.

�

Theorem 1.20. (Lebesgue Dominated Convergence Theorem [29, p.229])

Let (X,F , µ) be a measure space, let E ∈ F and let fn be a sequence of

measurable functions on E such that

|fn(x)| ≤ g(x), for x ∈ E

and for an integrable function g on E. Suppose

fn(x) → f(x)

almost everywhere on E. Then f is integrable, and∫
E

fdµ = lim

∫
E

fndµ.

Theorem 1.21. (Hahn-Banach Theorem [29, p.187]) Let p be a real valued

function de�ned on a vector space W satisfying p(x + y) ≤ p(x) + p(y) and

p(αx) = αp(x) for all α ≥ 0. Suppose that λ is a linear functional de�ned

on a subspace V ⊂ W and that λ(v) ≤ p(v) for all v ∈ V . Then there is a

linear functional Λ de�ned on W such that Λ(w) ≤ p(w) for all w ∈ W and

Λ(v) = λ(v) for all v ∈ V .

Corollary 1.22. Let W be a normed real vector space and let V ⊂ W be

its subspace. Then any bounded linear functional V → R has a bounded

extension to W of the same norm.
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The last well known result we mention here is purely topological. We use

it in Chapter 3.

De�nition 1.23. A Peano continuum is a compact and locally connected

metric space.

Theorem 1.24. (Hahn-Mazurkiewicz [22, Theorem 3-30]) Let X be a Peano

continuum, then there exists a continuous surjection f : [0, 1] → X.

1.2 A brief history of Milnor-Thurston homo-

logy theory

The idea of Milnor-Thurston homology emerged from Gromov's proof of

the Mostow Rigidity Theorem. The �rst mention of this theory can be found

in circulated lecture notes [32, Chapter 6]. Thurston remarks that the proof

presented in the notes is di�erent from Gromov's original proof and that

it is to be published in his paper with Milnor Characteristic numbers for

three-manifolds. The paper, however, never appeared.

Simplicial volume, introduced by Gromov in the proof of the Mostow

Rigidity Theorem, is a topological invariant deeply connected with the ge-

ometric structure of a hyperbolic manifold. Let M be a closed orientable

smooth manifold. There is a natural ℓ1-norm on the space Ck(M ;R) gener-
ated by singular k-simplices (the norm of a linear combination of simplices is

de�ned to be sum of absolute values of the coe�cients). This norm induces

the Gromov seminorm on the level of homology � it is the in�mum to the

norm of cycles in the particular homology class (or equivalently the distance

of the given homology class to the subspace of boundaries). Now, the simpli-

cial volume is de�ned to be the Gromov seminorm of the fundamental class

of M .

Since simplicial volume is de�ned via homology groups, it is a homotopy

invariant. Moreover, Thurston, following Gromov's ideas, proved that for

orientable closed hyperbolic manifolds it is proportional to the hyperbolic
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volume [32, Theorem 6.2]. Thus, any hyperbolic manifold homotopically

equivalent to M must have the same volume.

In the proof of Theorem 6.2 in [32] Thurston represents the fundamental

class by a measure supported on geodesic simplices of arbitrarily large vol-

ume. Thus, there was a need of homology theory, where chains are measures

supported on simplices. Thurston creates such a theory and extends the

Gromov seminorm to chains of that type (it is simply de�ned to be the total

variation of a measure). The fact that the fundamental class is represented

by a measure supported on isometric simplices allowed to calculate the in-

tegral of the volume form in an automatic way (it just yields an integral of

a constant function!), and thus �nding the relation between the simplicial

volume and the hyperbolic volume.

In this proof Thurston used the obvious fact that his measure homo-

logy and singular homology coincide for hyperbolic manifolds in an iso-

metric way (with respect to Thurston's seminorm on measure homology,

and the Gromov seminorm on singular homology). Recently it has been

proved even more. First, coincidence result of measure homology (called

here Milnor-Thurston homology) was shown by Hansen and Zastrow inde-

pendently [20, 34]. The authors prove that the homology theory in principal

satis�es Eilenberg-Steenrod axioms and thus it coincides with singular homo-

logy for CW-complexes. The next essential step, was to prove that Thurston's

seminorm and the Gromov seminorm coincide for spaces more general then

hyperbolic manifolds. This was done by Clara Löh [25].

Another application of Milnor-Thurston homology groups was found by

Ricardo Berlanga. The mass �ow is a homomorphism from the universal

covering of the group of measure preserving homomorphisms to �rst homo-

logy group with real coe�cients. Fathi [16] attributes it to Schwartzman [30].

Application of Milnor-Thurston homology instead of singular homology al-

lowed Berlanga to extend Fathi's results on the mass �ow and simplify his

arguments. In particular, Berlanga introduced a structure of topological vec-

tor space on Milnor-Thurston homology groups [5] and proved that the mass
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�ow is continuous with respect to this topology and the Whitney topology

on the space of homeomorphisms of a given manifold [6].

1.3 Milnor-Thurston homology theory

Now, we shall present the construction of Milnor-Thurston homology the-

ory. Here we use calligraphic letters (C, H, etc.) for constructions in Milnor-

Thurston homology theory and ordinary letters for the corresponding con-

structions in singular homology theory (C, H, etc.).

First, we will construct the chain complex C∗(X) for a given topological

space X. Let C0(∆k, X) denote the set of singular simplices (continuous

functions from the standard simplex ∆k to X, where k is a non-negative

integer). We shall consider C0(∆k, X) as a topological space equipped with

a compact-open topology. The vector space Ck(X) of k-dimensional chains

shall consist of �nite measures with a compact carrier (cf. De�nition 1.5; in

this thesis the notion of compactness does not require Hausdor�ness, this is

a di�erent terminology than the one used by Zastrow in [34, Section 1.8]).

Next, in order to make the sequence of vector spaces Ck(X) a chain com-

plex, we shall de�ne a boundary operator. We can see that the natural

inclusions of faces δi : ∆k−1 ↪→ ∆k, for i = 0, 1, ..., k, induce continuous maps

∂i : C0(∆k, X) → C0(∆k−1, X) on the level of singular simplices. These

functions are constructed just by using the composition: ∂i : σ 7→ σ ◦ δi.

It can be easily proved that ∂i are continuous, since the spaces of singular

simplices are endowed with the compact-open topology [34, Lemma 2.8].

Now, the continuous functions ∂i induce maps ∂i : Ck(X) → Ck−1(X)

(denoted by the same symbol!). The operator ∂i : Ck(X) → Ck−1(X) by

de�nition sends a measure to its image measure (cf. De�nition 1.3) with

respect to continuous (and hence, measurable) function ∂i : C
0(∆k, X) →

C0(∆k−1, X). Finally, the boundary operator ∂ : Ck(X) → Ck−1(X) is given

with the usual formula:

∂ :=
k∑

i=0

(−1)i∂i.
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We have the following theorem:

Theorem 1.25. (see [34, Corollary 2.9]) The sequence Ck(X) of real vec-

tor spaces together with the boundary operators de�ned above forms a chain

complex C∗(X).

We can see that C∗ is a functor from the category of topological spaces to

the category of chain complexes. Indeed, the chain map f• : C∗(X) → C∗(Y )

induced by a continuous function f : X → Y is de�ned in a similar way as

the boundary operator. Namely, on the level of singular simplices we have

a function f : C0(∆k, X) → C0(∆k, Y ) denoted by the same symbol f and

de�ned by the composition

f : σ 7→ f ◦ σ.

This function is continuous (again see [34, Lemma 2.8]). Finally, f•k :

Ck(X) → Ck(Y ) is de�ned as an operator sending a measure to its image

measure with respect to f .

Now, in order to see that C∗ is a functor, we have to prove that it be-

haves well with respect to a composition of morphisms. It is an immediate

consequence of distributivity of composition operation that C0(∆k,−) is a

contravariant functor. Thus, it is su�cient to prove that the image measure

construction behaves well. But it is implied by Lemma 1.4.

From the same lemma we see that f• is in fact a chain mapping. We need

to prove that f•k−1 ◦ ∂i = ∂i ◦ f•k, for i = 0, 1, ..., k. But from the lemma we

see that the operators on the both sides of this equation are induced by the

mapping σ 7→ f ◦ σ ◦ δi on singular simplices, and thus they are equal.

De�nition 1.26. The Milnor-Thurston homology groups H∗(X) are de�ned

as homology groups of this chain complex C∗(X):

Hk(X) :=
Zk(X)

Bk(X)
=

ker{∂ : Ck(X) → Ck−1(X)}
im{∂ : Ck+1(X) → Ck(X)}

.

Moreover, we see that H∗ is a functor from the category of topological

spaces to the category of graded real vector spaces.
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We can also de�ne relative Milnor-Thurston homology groups. Let X be

a topological space and let A be its subspace. The relative chain complex

C∗(X,A) is de�ned as a quotient of C∗(X) by i•(C∗(A)) where i : A ↪→ X is

the inclusion map. The relative Milnor-Thurston homology groups H∗(X,A)

are by de�nition homology groups of C∗(X,A).

De�nition 1.27. Let X be a topological space, and let x ∈ X. The Kro-

necker measure concentrated on x is a measure δx such that δx(B) = 1 if

x ∈ B, and δx(B) = 0 otherwise.

There is a canonical homomorphism from singular chains with real coef-

�cients to Milnor-Thurston chains

Ck(X;R) → Ck(X),∑
i

αiσi 7→
∑
i

αiδσi
,

where δ denotes the Kronecker measure.

This homomorphism is a monomorphism if and only if X satis�es the

separation axiom T0. Indeed, suppose there are two points x1, x2 ∈ X that

have the same neighbourhoods. Let σ1 and σ2 be the singular k-simplices

that map the whole standard simplex into x1 or x2, respectively. Both of

these simplices have the same neighbourhoods in C0(∆k, X). Now, notice

that δσ1 and δσ2 are the same Borel measures, even though the chains σ1 and

σ2 are di�erent.

On the other hand assume that X is T0. Take a linear combination∑
i αiσi that is mapped to zero by the canonical homomorphism. There

exists a neighbourhood of σ1 that does not contain any of σi for i ̸= 1.

The value of
∑

i αiδσi
on this neighbourhood is α1. But, it is zero by the

assumption, thus α1 = 0. In the same way we prove that all αi = 0, and thus

the kernel of the canonical homomorphism is trivial.

Let σ be a singular k-simplex. It is easy to see, that ∂iδσ = δ∂iσ. From

that, we have

∂δσ =
k∑

i=0

(−1)iδ∂iσ.
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The right hand side of this formula is the value of the canonical homomor-

phism on
∑k

i=0(−1)i∂iσ = ∂σ. Thus, we see that the canonical homomor-

phism of chains commutes with the boundary operator, and therefore it in-

duces a canonical homomorphism on the level of homology

Hk(X;R) → Hk(X).

As was mentioned before, this homomorphism is an isomorphism when X

is a CW-complex (it is a consequence of the Eilenberg-Steenrod axioms, see

[34]).

As can be easily seen this homomorphism is also a natural transformation

of singular homology and Milnor-Thurston homology functors. Moreover, the

following notion will be useful in our proofs:

De�nition 1.28. A homology class in Hk(X) shall be called singular homo-

logy class if it lies in the image of the canonical homomorphism Hk(X;R) →
Hk(X). Otherwise it shall be called non-singular homology class.

1.4 The Mayer-Vietoris theorem

The Mayer-Vietoris theorem is a way to relate the homology groups of a

space X with the homology groups of two of its subspaces A and B.

Theorem 1.29. (Mayer-Vietoris) Let h∗ be a homology theory that satis�es

the Eilenberg-Steenrod axioms and let A and B be open subspaces such that

X = A ∪B. Then the following sequence is exact:

· · · (i∗n, j∗n)−−−−−→ hn(A)⊕ hn(B)
k∗n − l∗n−−−−−→ hn(X)

∂∗−−−→ hn−1(A ∩B) −−−→

· · · → h0(A ∩B)
(i∗0, j∗0)−−−−−→ h0(A)⊕ h0(B)

k∗n − l∗n−−−−−→ h0(X) −−−→ 0

where i : A ∩ B → A, j : A ∩ B → B, k : A → X, l : B → X are inclusion

maps.

The proof of this theorem can be found in [14, Theorem 14.6 of Chapter

I]. In fact, it is the modern proof. The original result by Walther Mayer
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[26, IV. Abschnitt] concerned only Betti numbers. One year later it was

generalised to homology groups by Leopolod Vietoris [33], but still it was far

before formulation of the notion of exact sequence [11, p. 345]. The modern

version of this theorem �rst appeared in [14].

Eilenberg's and Steenrod's proof of the Mayer-Vietoris theorem used the

Excision Axiom and the Exactness Axiom. Therefore, the result is true

in Milnor-Thurston homology theory for any space for which the Excision

Axiom is ful�lled (at least for normal spaces; see [34, Section 4]). In the next

chapter we shall use this theorem to calculate Milnor-Thurston homology

groups for the Warsaw Circle and some other wild topological spaces.

Remark. The Mayer-Vietoris theorem can also be proved more directly.

Let X be a topological space with subspaces A and B. According to [34,

Lemma 4.10] the inclusion

C∗(A) + C∗(B) → C∗(X)

induces an isomorphism on the level of homology if there exist V such that

X \ A ⊂
◦
V⊂ V ⊂ B (when X is a normal space it su�ces that A and B are

open) and A ∪B = X.

Using this identity we can construct the short sequence of chain complexes

0 −−−→ C∗(A ∩B)
(i•, j•)−−−−→ C∗(A)⊕ C∗(B)

k• − l•−−−−→ C∗(A) + C∗(B) −−−→ 0,

and then its exactness yields Mayer-Vietoris theorem by homological algebra

[24, Theorem 2.1 of Chapter XX].

1.5 Berlanga topology on Milnor-Thurston ho-

mology groups

Berlanga equipped Milnor-Thurston homology groups with a topology

consistent with their linear space structure [5]. Moreover, it is proved that

this topology is locally convex when the underlying topological space is sec-

ond countable and separable (it is discussed below in more details). Con-

sequently, we obtain a functor from the category of second countable and
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separable topological spaces to the category of graded locally convex topo-

logical vector spaces (not necessarily Hausdor�!):

Let X be a second countable separable topological space. Given any

continuous function f : C0(∆k, X) → R we de�ne a linear functional Λf :

Ck(X) → R:

Λf (µ) =

∫
C0(∆k,X)

fdµ,

for every µ ∈ Ck(X). The above functional is well de�ned, since f is contin-

uous and every measure in Ck(X) has a compact carrier. We shall work with

the weakest topology on Ck(X) for which all such functionals are continuous.

It has been proved, that this weak topology is locally convex and Hausdor�

when X is second countable and separable [5, Assertion 2.2].

Berlanga proved that the boundary operator ∂ is continuous [5, Assertion

2.1]. Consequently the homology groups

Hk(X) = Zk(X)/Bk(X)

can be endowed with the structure of locally convex topological vector space.

We call this topology Berlanga topology.

Remark. Notice, that the notion of local convexity does not include

Hausdorfness here. There is no reason to think that Bk(X) are closed sub-

spaces, and thus Hk(X) need not to be Hausdor�. In fact, Berlanga asked

a question whether Milnor-Thurston homology groups are Hausdor� in this

topology [5].

Berlanga himself was able to show that H1 is always Hausdor� for spaces

that are homotopy equivalent to CW-complexes. Moreover, Frigerio extended

this result to every dimension [18]. On the other hand, Zastrow constructed

an example of the space V where H0(V ) is not Hausdor� [35]. This space V

is the Warsaw Circle with a part of accumulation line removed (see Figure

2.7). We present a proof of this fact in Chapter 2 (see Theorem 2.5).



Chapter 2

Milnor-Thurston homology for

wild topological spaces

We know that Milnor-Thurston homology theory coincides with singular

homology for CW-complexes (see Section 1.3). Additionally, Zastrow con-

structed a space where the canonical homomorphism is not an isomorphism

[34, p. 393]. This space, that we call here the Convergent Arcs Space, is

not a CW-complex, and therefore its study naturally �ts our topic, since the

general question of this thesis is: �What is the behaviour of Milnor-Thurston

homology for spaces that are not homotopy equivalent to CW-complexes?�.

Another interesting research problem within this topic, is comparing

Milnor-Thurston homology with �ech homology. There is the well known

example of the Warsaw Circle W (it is formally de�ned below in Section 2.1)

that has the same �ech homology groups as a circle [23, Remark 2.7]. More-

over, �rst singular homology group of W is trivial. The natural question is:

�Does Milnor-Thurston homology detect the circular shape of the Warsaw

Circle like �ech homology does?�.

The techniques we present in this chapter are powerful enough to un-

derstand the structure of Milnor-Thurston homology groups of the Warsaw

Circle and the Convergent Arcs Space. Additionally, we can also answer the

question of Berlanga: �Are Milnor-Thurston homology groups Hausdor� in

16
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Figure 2.1: The Warsaw Circle
Figure 2.2: The Convergent

Arcs Space

Berlanga topology� [5, p. 367].

2.1 Spaces we are interested in

In this chapter we focus on three di�erent examples of spaces: the Warsaw

CircleW , the Convergent Arcs Space CA and the Double Warsaw CircleDW .

We de�ne them formally in this section.

The Warsaw Circle (see Figure 2.1) is de�ned as the subset of R2 that

consists of:

• the part of �Topologists Sine Curve� {(x, y) ∈ R2 | y = sin 1/x} between
the line x = 0 and the rightmost minimum,

• the �accumulation line� {(0, y) ∈ R2 | −1 ≤ y ≤ 1},

• an arc connecting the point (0,−1) with the rightmost minimum.

By the Double Warsaw Circle (see Figure 2.3) we mean the space that is

a copy of two Warsaw Circles overlapping at the accumulation line.

The Convergent Arcs Space (see Figure 2.2) is a space built of a countable

number of arcs connecting two given vertices. They converge, in the topology

induced from the plane, to a line segment that is also a part of this space.
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Figure 2.3: The Double Warsaw Circle

2.2 Geometric intuition

This section explains the geometric intuition behind the results of this

chapter. They will be proved by formal arguments in the next sections.

First, we try to understand why the canonical homomorphism (cf. Sec-

tion 1.3) from singular homology to Milnor-Thurston homology may not be

an isomorphism. More generally, we will see that there is no isomorphism

between �rst homology groups for the Convergent Arcs Space CA.

Let us denote the building arcs of CA by li for i = 1, 2, .... The limit arc

is denoted by l0, and we denote endpoints of those arcs by P and Q. For

every arc li we choose some singular simplex σi that parametrises it. Let δi
denote the Kronecker measure on σi.

Now, pick some µ ∈ Z1(CA). Every singular 1-simplex in CA can be

homotoped relative to its vertices to a 1-simplex that passes through P and

Q only �nite number of times. Thus, µ is homologous to some cycle µ1

supported on such simplices.

Next, every singular 1-simplex in a carrier of µ1 can be divided into paths

such that at least one of its vertices is P or Q. Therefore, there exists

µ2 ∈ Z1(CA) homologous to µ1, and such that each 1-simplex in its carrier is
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attached to P or Q. Notice, that µ2 is a �nite measure. This is a consequence

of compactness of a carrier D of µ1 that implies existence of a uniform bound

to the number of occurrences of P and Q in 1-simplices in D.

In the carrier of µ2 there are simplices with only one vertex in {P,Q}.
However, since µ2 is a cycle, we can merge such simplices together. Thus, we

get a measure µ3 that is supported only on simplices connecting P and Q.

Finally, by homotopy relative to the endpoints P and Q (and change

of orientation if necessary) we construct measure µ4 that is supported on

{δi}∞i=0. Hence, we see that every 1-cycle is homologous to a measure of the

form
∞∑
i=0

aiδi,

where (ai)
∞
i=0 is an absolutely summable sequence.

An analogous reasoning shows that every singular 1-cycle is homologous

to a �nite linear combination of σli . Additionally, we see that the canonical

homomorphism is
n∑

i=0

aiσli 7→
n∑

i=0

aiδi.

This clearly shows, that the canonical homomorphism is an injection, but it

is not isomorphism. Moreover,

H1(CA) ∼= R∞ ∼=
⊕
ℵ0

R, H1(CA) ∼= ℓ1 ∼=
⊕
c

R,

where ℓ1 denotes the vector space of absolutely summable sequences and R∞

denote the vector space of sequences with almost all elements zero. Thus, we

see that these groups cannot be isomorphic.

The next problem posed by us was, whether the �rst Milnor-Thurston

homology group of the Warsaw Circle is a one-dimensional vector space.

Again, we address this question in this section in an intuitive manner and

we postpone a formal argument to the next section.

Let us divide the Warsaw Circle into arcs as presented on Figure 2.4.

Choose a family {τi}∞i=0 of singular 1-simplices that parametrise the cor-
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Figure 2.4: The Warsaw Circle subdivided into simplices

responding arcs and let {σi}∞i=0 denote the vertices of the corresponding

1-simplices.

The argument analogous as in the case of the Convergent Arcs Space

shows us, that we can represent chains by absolutely summable real functions

supported on simplices τi. The boundary is calculated in the usual way, so,

for instance, the coe�cient of σ1 is equal to the di�erence of coe�cients of

τ0 and τ1.

However, there is one 0-simplex that is a face of only one 1-simplex (it

is denoted by σ0 on Figure 2.4), so the condition to be a cycle implies that

coe�cient of σ0 and, consequently, coe�cient of τ0 is zero. By induction we

see that coe�cients of τi should be zero, for every i ∈ N. As a consequence,

there is no �fundamental class� for the Warsaw Circle.

The above problem is caused by the 0-simplex that does not belong to

two 1-simplices. Therefore, it is reasonable to consider the case where no

such simplex exists. This leads us to the idea of the Double Warsaw Circle

(this space can be divided into simplices in a similar manner as the Warsaw

Circle). Here, the cycle condition implies that coe�cients for all 1-simplices

should be the same. However, this contradicts �niteness of the corresponding
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measures. Hence, we have no �fundamental class� again.

Now, let us focus onH0(W ) for a moment. By the above argument, we see

that every 0-chain can be represented by a measure concentrated on {σi}∞i=0.

Every such a measure is a cycle, by de�nition. In order to �nd H0(W ) we

need to �nd cycles that are in the image of the boundary operator, and then

mod out by these cycles.

At �rst glance it is hard to see what we get, but there are some things

we can say right away. The zeroth singular homology group of W is one-

dimensional, since W is a path-connected space. From that, we see that

every 0-cycle concentrated on �nite number of σi will be homologous to a

chain ασ0, for some α ∈ R.
The natural question is whether there exist cycles concentrated on in�nite

number of σi which are not homologous to ασ0. We will show that the answer

is positive and the condition such cycles need to satisfy is a convergence of

coe�cients of σi to zero that is slow enough. Consequently, the group H0(W )

is not one-dimensional. To see the above facts, one has to write down the

formulae for the boundary operator. However, we postpone it to the next

section.

The arguments given in this section can be formalised. Although, there

already exists an algebraic technique, that can be used to prove the above

results in a formal way. It is the Mayer-Vietoris theorem. However, the

intuition presented here can help us to understand how this abstract method

really works, as we can see in the next section.

2.3 Higher dimensional homology groups for the

Warsaw Circle

The goal of this section is to prove that Milnor-Thurston homology groups

of the Warsaw Circle W are trivial in positive dimensions. The algebraic

technique we use is the Mayer-Vietoris theorem applied in a proper way.

We cover W by two open subsets L and U . Both of them are constructed
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m0 m1m2m3

u0 u1u2u3

l0 l1l2l3

Figure 2.5: The Warsaw Circle with distinguished points

Figure 2.6: Three covering sets for the Warsaw Circle: U =
∪∞

i=0 Ui, L =∪∞
i=0 Li, U ∩ L =

∪∞
i=0Mi
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using the embedding of W in the plane. Let L be an intersection of W with

the halfplane {(x, y) | y < η}, where 0 < η < 1. Similarly, the subset U is an

intersection of W with {(x, y) | y > −η}. Let us denote the path components

of L by Lk, for k = 0, 1, ... (see Figure 2.6). In the same way U and U ∩L is

decomposed into its path components denoted by Uk and Mk, respectively.

We pick up one point from each of these components; this will be useful

in the following proofs. Namely, let m1 be the �rst zero of sin 1/x after

the rightmost minimum. The next zero is denoted by m2, and so on (see

Figure 2.5 and Figure 2.6). Additionally, let m0 = (0, 0). We see that all

mk ∈ Mk ⊂ U ∩ L.

Similarly, let u1 denote the �rst maximum after the rightmost minimum,

let u2 denote the next maximum, and so on. Moreover, let u0 = (0, 1). Again,

we see that all uk ∈ Uk ⊂ U .

Finally, we do the same for L: let l1 denote the �rst minimum on the left

of the rightmost minimum, let l2 denote the �rst minimum on the left of l1,

and so on. Then, let l0 = (0,−1). We get lk ∈ Lk ⊂ L.

According to our intuition as presented in the previous section, it is nec-

essary to divide singular simplices into shorter ones. This process can be

technically realised via the Mayer-Vietoris theorem. The key idea of this

theorem is to divide all singular 1-simplices into their parts contained in U

or L (this is done by the barycentric subdivision of simplices, which is used

to prove the Excision Axiom [34, Section 4] or the Mayer-Vietoris theorem

itself, cf. Remark on p. 14). After this process of division, every simplex is

contained in one of Lk or Uk.

Moreover, we would like to reduce our attention to 1-simplices that have

their endpoints in {mk}∞k=0. In this case, however, the Mayer-Vietoris theo-

rem is not much of a help � the only thing we know is that their endpoints

lie in
∪∞

k=0Mk.

There is however another approach to this problem � we can prove that

U , L and U ∩L all have the homotopy type of a convergent sequence with its

limit. For that kind of space the calculation of the Milnor-Thurston homology
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groups is straightforward.

So, let S denote a convergent sequence (xk)
∞
k=0 with its limit x0 (its topol-

ogy is induced from the plane). This space is so simple that we can put our

hands on the space of singular simplices, and also on the space of measures

(cf. Lemma 2.2). Consequently, this will allow us to do our calculations.

Lemma 2.1. The spaces U ∩ L, U and L have the homotopy type of S.

Proof. Let us start with proving this lemma for U ∩ L. We de�ne a

function fM : U ∩ L → S in the following way: let x ∈ Mk, than we put

fM(x) = xk. Next, we de�ne gM : S → U ∩ L by g(xk) = mk. We can see

that fM ◦ gM = idS and gM ◦ fM is a map that sends each point in Mk to

mk, for k = 0, 1, .... This composition is homotopic to idU∩L.

Next, we prove the lemma for U . We de�ne functions fU : U → S and

gU : S → U in the similar way as in the previous case. That is: fU(x) = xk

for x ∈ Uk and gU(xk) = uk. We can see, that fU ◦gU = idS and gU ◦fU ≃ idU .

Finally, we prove the lemma for L. The functions fL : L → S and

gL : S → L are de�ned in a similar manner as before. That is: fL(x) = xk

for x ∈ Lk and gL(xk) = lk. We can see that f ◦ g = idS and gL ◦ fL ≃ idL.

�

Since Milnor-Thurston homology groups are homotopy invariant (because

the theory satis�es Eilenberg-Steenrod axioms, cf. Section 1.3), the next

lemma allows us to calculate them for U , L and U ∩ L.

Lemma 2.2. If n > 0, then Hn(S) = 0 and H0(S) ∼= ℓ1, where ℓ1 denotes

the space of sequences which form an absolutely convergent series.

Proof. We can see that

C0(∆n, S) = {xn
k : ∆n → S | xn

k sends any point of ∆n to xk, k ∈ N0}.

For every n ≥ 0, the space C0(∆n, S) is homeomorphic to S, because

(xn
k)

∞
k=0 is a convergent sequence with limit xn

0 . From that, every subset
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of this space is Borel, and every two Borel measures which are equal on

singletons {xn
k} are equal. Therefore, we can identify a sequence of real

numbers (ak)∞k=0 with a measure µ such that µ({xn
k}) = ak. Additionally, we

can see that

∥(ak)∞k=0∥ := ∥µ∥ =
∞∑
k=0

|ak|,

and every measure has a compact carrier (that is the whole space). Conse-

quently,

Cn(S) ∼= ℓ1 := {(ak)∞k=0 | ak ∈ R,
∞∑
k=0

|ak| < ∞}.

We have ∂ixn
k = xn−1

k , which implies that ∂i(ak)∞k=0 = (ak)
∞
k=0. From that,

∂(ak)
∞
k=0 =

n∑
i=0

(−1)i∂i(ak)
∞
k=0 = (ak)

∞
k=0 ·

n∑
i=0

(−1)i.

From here, ∂ = 0 when n is odd, and ∂ = id when n > 0 is even. Thus,

homology groups are trivial for n > 0. Indeed, this implies that if n is odd

Zn(S) = Cn(S), but on the other hand Bn(S) = Cn(S). Hence, Hn(S) = 0.

If n is even, the subspace Zn(S) of cycles is trivial, and so is Hn(S).

On the other hand, we have ∂ = 0, for n = 0. Hence, every element

in ℓ1 is a cycle. Because ∂ = 0, for n = 1, there are no boundaries and

H0(S) = C0(S) ∼= ℓ1.

�

Finally, using the Mayer-Vietoris sequence, we can calculate homology

groups.

Theorem 2.3. If n > 0, then Hn(W ) = 0.

Proof. The Mayer-Vietoris sequence

· · · (i∗n, j∗n)−−−−−→ Hn(U)⊕Hn(L)
k∗n − l∗n−−−−−→ Hn(W )

∂∗−−−→ Hn−1(U ∩ L) −−−→

· · · → H0(U ∩ L)
(i∗0, j∗0)−−−−−→ H0(U)⊕H0(L)

k∗0 − l∗0−−−−−→ H0(W ) −−−→ 0
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is exact. Hence, by Lemmas 2.1 and 2.2, we have Hn(W ) = 0, for n > 1. So,

we have to investigate the case n = 1 only.

By exactness of the Mayer-Vietoris sequence and the fact that H1(U) ∼=
H1(L) ∼= 0 we see that ∂∗ : H1(W ) → H0(U ∩ L) is a monomorphism.

Consequently,

H1(W ) ∼= ker(i∗0, j∗0).

Therefore, we need to �nd the kernel of (i∗0, j∗0).

By Lemma 2.2:

H0(U) ∼= H0(L) ∼= H0(U ∩ L) ∼= C0(S) ∼= ℓ1,

so we can identify elements of all these homology groups with absolutely

summable real sequences. This identi�cation allows us to write down formu-

lae for i∗0 and j∗0.

Let (mk)
∞
k=0 ∈ ℓ1 denote a homology class in H0(U ∩ L). This class is

represented by a measure supported on the set {mk}∞k=0, where mk's are the

values of the measure on the singletons {mk}. Similarly, every homology

class in H0(U) is described by some (uk)
∞
k=0 ∈ ℓ1, and it is represented by a

measure supported on {uk}∞k=0.

In order to investigate i∗0, we have to associate a measure supported

on {uk}∞k=0 with a measure supported on {mk}∞k=0 that represents the same

homology class in U . So, let µ be a measure supported on {mk}∞k=0 (cf.

Figure 2.5) represented by the sequence (mk)
∞
k=0. We will construct a measure

supported on {uk}∞k=0 which belongs to the same H0(U)-homology class as

µ.

Let σ0 be a singular 1-simplex that connects m0 with u0. And, let σ2k

denote a singular 1-simplex connectingm2k with uk and let σ2k+1 be a singular

1-simplex connecting m2k+1 with uk. Now, let ν =
∑∞

k=0mkδσk
, where δσk

is the Kronecker measure supported on σk. We can see, that ν ∈ C1(U),

since ν is �nite and has a compact carrier (because (σk)
∞
k=0 is a convergent

sequence). The measure µ + ∂ν is supported on {uk}∞k=0, its coe�cients

depend on (mk)
∞
k=0 as described below. From the de�nition of σ0 we have
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that

u0 = m0. (2.1)

Furthermore, from the de�nitions of σ2k and σ2k+1 we have

uk = m2k +m2k−1 for k > 0. (2.2)

These are the equations that describe i∗0.

In the similar way, we can write down formulae for j∗0:

lk = m2k +m2k+1. (2.3)

We can describe (i∗0, j∗0) in a compact way. So let x2k = uk and x2k−1 =

lk. From now on an absolutely summable sequence (xk)
∞
k=0 is identi�ed with

elements of H0(U) ⊕ H0(L). In this notation, equations (2.1), (2.2), (2.3)

yield

xk =

{
m0 for k = 0,

mk +mk−1 for k > 0.
(2.4)

Now, we have that the kernel of (i∗0, j∗0) and, consequently, H1(W ) is

trivial.

�

2.4 Zeroth Milnor-Thurston homology group for

the Warsaw Circle

The Mayer-Vietoris theorem allowed us to prove triviality of the �rst

Milnor-Thurston homology group of the Warsaw Circle. Now, we shall focus

on the zeroth homology group; it can also be calculated using this technique.

Here, we use the notation de�ned in the Section 2.3. The following theorem

unveils the structure of the zeroth homology group

Theorem 2.4. The vector space H0(W ) is continuum-dimensional.
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Proof. Once again our basic technique to do the calculations shall be

the Mayer-Vietoris theorem and we shall use equation (2.4) together with

notations from the proof of Theorem 2.3. The Mayer-Vietoris sequence is

(cf. Theorem 1.29)

0 → H0(U ∩ L)
(i∗0, j∗0)−−−−−→ H0(U)⊕H0(L)

s∗0 − t∗0−−−−−→ H0(W ) −−−→ 0.

From that, we can see H0(W ) is the quotient ℓ1/h(ℓ1), where h : ℓ1 → ℓ1

is the map de�ned by equation (2.4). This equation can be inverted so that,

given an arbitrary sequence (xk)
∞
k=0, we can �nd a unique sequence (mx

k)
∞
k=0

that satis�es it; a simple calculation yields

mx
k =

k∑
i=0

(−1)i+kxi. (2.5)

An element (xk)
∞
k=0 ∈ ℓ1 represents a nonzero homology class in H0(W ) i� it

is not in the image of (i∗0, j∗0) or, equivalently, if the corresponding (mx
k)

∞
k=0

is not an absolutely summable sequence.

Now, we shall �nd a one dimensional subspace of H0(W ) corresponding

to singular homology classes. In singular homology theory we consider chains

with only �nite numbers of simplices, so now restrict ourselves to considering

a sequence (xk)
∞
k=0 with �nitely many nonzero elements. We will prove that

such an element (xk)
∞
k=0 ∈ ℓ1 represents the same homology class as (yk)∞k=0 ∈

ℓ1 of the form (yk)
∞
k=0 = (α, 0, 0, 0, . . . ), for some α ∈ R. Let N denote the

biggest index of nonzero elements in (xk)
∞
k=0, then for k > N we have

mx−y
k = (−1)k

(
N∑
i=0

(−1)ixi − α

)
.

So putting α =
∑N

k=0(−1)ixk, yields mx−y
k = 0. Thus, it is absolutely

summable and (xk)
∞
k=0 − (yk)

∞
k=0 represents the zero homology class.

This result is very intuitive. TheWarsaw Circle is a path-connected space,

thus its zeroth singular homology group is one-dimensional. Moreover, one

can easily deduce this result using our intuitive model (cf. Section 2.2). A
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simple calculation shows that every measure concentrated on a �nite number

of points σi is homologous to a measure concentrated on σ0 (see Figure 2.4).

Now, we shall prove that H0(W ) is much bigger than the one-dimensional

subspace of singular homology classes. In fact, as was stated in our theorem,

its dimension is continuum.

We will start with some sequence of positive numbers nk which is mono-

tonically decreasing with limnk = 0. From now on, up to the end of this

proof, let (xk)
∞
k=0 have a special form:

xk = (−1)k(nk+1 − nk).

We can see that
N∑
k=0

|xk| = n0 − nN+1,

hence (xk)
∞
k=0 ∈ ℓ1.

Let us calculate mx
k using (2.5):

mx
k =

k∑
i=0

(−1)i+kxi = (−1)k
k∑

i=0

(ni+1 − ni) = (−1)k(nk+1 − n0). (2.6)

The sequence (mx
k)

∞
k=0 is not absolutely summable, since it does not ful�l the

necessary condition limk→∞ mx
k = 0. Hence, (xk)

∞
k=0 does not correspond to

the zero homology class

More generally, we will check what conditions should be imposed on

(xk)
∞
k=0 in order to make it a non-singular homology class. So let (yk)∞k=0 =

(α, 0, 0, ...), for α ∈ R, be a sequence corresponding to some singular homo-

logy class. In this case obviously:

mx−y
k = (−1)k(nk+1 − n0 − α);

we can easily see this when we notice that (mx
k)

∞
k=0 is linear with respect to

x according to equation (2.5). So, if we take α = −n0 the sequence satis�es

the necessary condition of series convergence. Then, we see that a su�cient

condition for x to be a non-singular homology class is
∞∑
k=0

nk = ∞,
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so we are interested in sequences (nk)
∞
k=0 converging to zero but not too fast.

As an example of such a sequence we consider:

nβ
k =

1

(k + 1)β
,

with 0 < β < 1.

Now, we shall prove that the homology classes in H0(W ) corresponding

to the family of sequences (xβ
i )

∞
i=0 de�ned by xβ

k = (−1)k(nβ
k+1 − nβ

k) form

a set of linearly independent vectors. So, take a �nite sequence of numbers

0 < βi < 1 in an increasing order, and some �nite sequence of real numbers

bi. We shall prove that the homology class of (zk)∞k=0 =
∑

i bi · (x
βi

k )
∞
k=0 is

nontrivial.

In order to do this we need to prove that the sequence

mz
k = (−1)k

∑
i

bi

(
1

(k + 2)βi
− 1

)
is not absolutely summable. To obtain the above formula we used the fact

that (mx
i )

∞
i=0 is linear with respect to x, and the equation (2.6).

First, we notice that for the necessary condition of convergence for series∑∞
k=0 |mz

k| to be satis�ed, we should have
∑

i bi = 0. Then, the study of the

absolute summability of the above sequence can be reduced to the study of

∞∑
k=0

∣∣∣∣∣∑
i

bi
(k + 2)βi

∣∣∣∣∣ .
For su�ciently big k the expression in | · | has the sign of b0 (since β0 is the

smallest of the numbers), so we can consider:

∞∑
k=0

∑
i

bi
(k + 2)βi

.

This series is divergent. The easiest way to see this is to use the integral

criterion. First, we need to notice, that it is for monotonic su�ciently big k.

Then, application of the criterion is straightforward.

�



CHAPTER 2. MILNOR-THURSTON HOMOLOGY 31

Figure 2.7: The Modi�ed Warsaw Circle

2.5 On Hausdor�ness of the Berlanga topology

The question that was posed by Berlanga in [5] is whether Milnor-Thurston

homology groups are Hausdor� with respect to a topology de�ned in this pa-

per. There are three results in this direction. Firstly, Berlanga's paper that

was mentioned above, ends with a proof that H1 is always Hausdor� for

spaces that are homotopy equivalent to countable CW-complexes. Secondly,

Frigerio proved that Berlanga topology on all Milnor-Thurston homology

groups of CW-complexes is the strongest weak topology, and thus Hausdor�

[18].

Finally, Zastrow constructed an example of a space V where H0(V ) is not

Hausdor� [35]. This space V is the Warsaw Circle with a part of the accumu-

lation line removed (see Figure 2.7). The space V is obviously non-compact,

and this fact is essential in Zastrow's proof. Then, the natural question

arises, whether we can �nd a compact space where zeroth Milnor-Thurston

homology group is non-Hausdor�. As we shall see in this section a good

example is the Warsaw Circle and the techniques that we have developed so

far are powerful enough to show it.

One observation that we would like to point out in the beginning is that
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for any space X the homology group Hn(X) is non-Hausdor� i� Bn(X) is

not closed in Cn(X). Indeed, Hn(X) is non-Hausdor� i� Bn(X) is not closed

in Zk(X). But the latter group is closed in Cn(X), since it is a kernel of a

continuous operator. Thus, in both proofs presented in this section our goal

is to construct a sequence of boundaries whose limit is not a boundary.

Let V denote the Warsaw Circle W ⊂ R2 with an interval {(0, y) ∈ R2 |
0 < y ≤ 1} removed. Since Zastrow's construction and the proof was not

made public apart from the conference talk [35], we shall present Zastrow's

proof that H0(V ) is non-Hausdor�. Here we use the notation introduced in

Section 2.3.

Theorem 2.5. The topological vector space H0(V ) is non-Hausdor�.

Proof. As we mentioned above, we will construct a sequence of measures

µn ∈ C0(V ), such that there exists νn ∈ C1(V ) with ∂νn = µn. However, we

will show that µ := limµn which is not a boundary.

Just as in Section 2.3 let {lk}∞k=1 denote the sequence of minima of the

sinusoid. Moreover,

µn := (1− 2−n)δl0 −
n∑

k=1

2−kδlk ,

where δ denotes the Kronecker measure. The measures µn ∈ B0(V ), because

they are concentrated on a �nite numbers of points and the coe�cients sum

up to zero.

The natural candidate for a limit is

µ = δl0 −
∞∑
k=1

2−kδlk

Indeed, it is su�cient to show that for every continuous function f : V → R
(here we identify C0(V ) with appropriate measures on V ) we have

lim
n→∞

∫
V

fd(µ− µn) = 0.

This is equivalent to

lim
n→∞

∞∑
k=n+1

2−kf(lk) = 0,
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which is true because tails of convergent series converge to zero and the values

of f are bounded since it is continuous and compactly supported.

Now we shall prove that µ is not a boundary. So suppose there is ν ∈
C1(V ) such that ∂ν = µ. Then, it will follow that a compact carrier of ν

cannot omit two consecutive maxima of the sinusoid. Being more speci�c,

let D be a compact carrier of ν. Then we have a continuous evaluation

function

F : D ×∆1 → V

σ × q 7→ σ(q).

We want to show that F (D ×∆1) must contain in�nitely many maxima of

the sinusoid.

To the contrary, suppose that uk and uk+1 are maxima of the sinusoid

such that uk, uk+1 /∈ F (D × ∆1). Then let Y = V \ {uk, uk+1}. We can

interpret µ and ν as elements of C0(Y ) and C1(Y ) respectively. Naturally,

∂ν = µ still holds.

Then, we can embed Y into Z = Y ∪ S, where S is an open rectangle

with opposite vertices uk+1 and l0 and with sides parallel to the axes. This

allows us to identify µ and ν with measures in C0(Z) and C1(Z) respectively.
Still, we have the condition ∂ν = µ, hence µ represents zero homology class

in H0(Z).

On the other hand, we can see that µ represents the same homology

class in Z as 2−kδl0 − 2−kδlk which is not zero since points l0 and lk lie in

a di�erent components of Z. Therefore, we got a contradiction and we see

that F (D ×∆1) contains in�nitely many maxima of the sinusoid.

Since F is continuous, the set F (D×∆1) must be compact, so it cannot

contain in�nitely many maxima of the sinusoid. Again, we have a contradic-

tion. So, there cannot exist measure ν such that ∂ν = µ, and consequently

H0(V ) is not Hausdor�.

�
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Based on di�erent arguments than in [35] we obtain the following result

for the Warsaw Circle itself:

Theorem 2.6. The Milnor-Thurston homology group H0(W ) is not Haus-

dor� in Berlanga topology.

Proof. We need �nd a sequence of boundaries such that the limit of this

sequence is not a boundary. From the proof of Theorem 2.4 we know that

the homology classes in H0(W ) can be described by elements of ℓ1. So, for

each natural number n let us take an element (xn
k)

∞
k=0 ∈ ℓ1 de�ned in the

following way:

xn
k =


−
∑n

i=1(−1)i(ni+1 − ni), for k = 0,

(−1)k(nk+1 − nk), for 0 < k ≤ n,

0, for k > n.

where (nk)
∞
k=0 /∈ ℓ1 is a decreasing sequence of positive numbers converging

to zero (compare with proof of Theorem 2.4).

For each natural number n, the sequence (xn
k)

∞
k=0 represents the zero ho-

mology class in H0(W ). To justify it, recall the proof of Theorem 2.4. From

that, we know that an arbitrary sequence (zk)∞k=0 ∈ ℓ1 with at mostN nonzero

elements represents the same homology class as the sequence (α, 0, 0, . . . ),

where α =
∑N

k=0(−1)kzk. Therefore, we see that for each n the sequence (xn
k)

∞
k=0

represents the zero homology class.

The natural candidate for the limit of (xn
k)

∞
k=0 is a sequence (xk)

∞
k=0 with

xk =

{
−
∑∞

i=1(−1)i(ni+1 − ni), for k = 0,

(−1)k(nk+1 − nk), for k > 0.

In order to show that the above sequence is the limit of (xn
k)

∞
k=0 we need to

prove that

lim
n→∞

∫
W

fd(µ− µn) = 0,

for any continuous f : W → R. Here µ and µn are measures on W repre-

senting homology classes (xk)
∞
k=0 and (xn

k)
∞
k=0, respectively (remember that

we identify C0(∆0,W ) with W ).
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We shall see that the measures µ and µn need to be chosen to be concen-

trated on a countable set of points: namely the sets {uk}∞k=0 and {lk}∞k=0 con-

taining maxima and minima of the sinusoid. Indeed, let us �rst consider the

sequence (xk)
∞
k=0. It can be interpreted as an element of H0(U)⊕H0(L) (this

is a consequence of the Mayer-Vietoris theorem, see proof of Theorem 2.4).

The subsequence of (xk)
∞
k=0 with even indices represents a homology class

in H0(U). Since the inclusion of {uk}∞k=0 into U is a homotopy equivalence

(see the proof of Lemma 2.1), this homology class can be represented by a

measure µU concentrated on the set {uk}∞k=0. In a similar way we construct

a measure µL concentrated on {lk}∞k=0. The measure µ representing our ho-

mology class in H0(W ) is just de�ned to be µ = µU − µL. We construct the

measures µn analogously.

Now, we can see that the above integral can be calculated as an in�nite

series. The values of the continuous function f on the countable set of points

{uk}∞k=0∪{lk}∞k=0 form a bounded sequence (ak)∞k=0, so we need to prove that

lim
n→∞

(
−a0

∞∑
i=n+1

(−1)i(ni+1 − ni) +
∞∑

i=n+1

(−1)iai(ni+1 − ni)

)
= 0,

for every bounded sequence (ak)
∞
k=0. We can easily see that it is true since

tails of absolutely convergent series converge to zero.

Assume that the homology class represented by (xk)
∞
k=0 is zero. Let yk =

(−1)k(nk+1 − nk). Then, consider the di�erence

yk − xk =

{ ∑∞
i=0(−1)i(ni+1 − ni), for k = 0,

0, for k > 0.

We assumed that at the level of homology (xk)
∞
k=0 represents zero, and thus

it represents a singular homology class. On the other hand, from the above

equation we see that (yk)
∞
k=0 − (xk)

∞
k=0 also represents a singular homology

class. Therefore, (yk)∞k=0 should also represent a singular homology class.

However, (yk)∞k=0 is exactly the form of a sequence considered in the proof of

Theorem 2.4, and we know that it represents a non-singular homology class

(note that the sequence denoted here by (yk)∞k=0 was denoted by (xk)
∞
k=0 in the
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proof of that theorem). Hence, we obtained a contradiction. Consequently,

we see that (xk)
∞
k=0 is not zero, so µ is not a boundary even though it is a limit

the sequence (µn)
∞
n=1 ⊂ B0(W ). Therefore, B0(W ) is not closed and H0(W )

is not Hausdor�.

�

2.6 Corresponding calculations for two other

examples

The proof strategy in the case of two other examples: the Double Warsaw

Circle DW and the Convergent Arcs Space CA is analogous as in the case of

the Warsaw Circle.

The Warsaw Circle can be viewed as a hal�ine equipped with a topology

that is weaker than the usual Euclidean topology. Roughly speaking, the

fact that there are no Milnor-Thurston 1-cycles in the Warsaw Circle is a

consequence of the fact that hal�ine has a starting point, so the measure

cycle that is zero on this starting point is zero everywhere (cf. equation (2.4)).

On the other hand, the Double Warsaw Circle can be interpreted as a line

equipped with some special toplology. A line does not have a starting point,

so one may suspect that there should exist some Milnor-Thurston cycles.

However, this is not the case, as one can see in the proof of the following

theorem:

Theorem 2.7. The Milnor-Thurston homology groups of the Double Warsaw

Circle DW are trivial except for H0(DW ) which is a continuum-dimensional

real vector space.

Proof. The key idea is again to apply the Mayer-Vietoris theorem. Let

us divide DW into the upper part U and the lower part L like we did for the

Warsaw Circle in Section 2.3.

Again we can see that U , L and U ∩ L are homotopy equivalent to a

convergent sequence with limit. Thus, by Lemma 2.2 the Mayer-Vietoris
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sequence reduces to (cf. proof of Theorem 2.3)

0 −−−→ H1(DW )
∂∗−−−→ H0(U ∩ L)

(i∗0, j∗0)−−−−−→

→ H0(U)⊕H0(L)
k∗0 − l∗0−−−−−→ H0(DW ) −−−→ 0,

and we see that higher Milnor-Thurston homology groups of DW vanish.

Next, we derive formulae for (i∗0, j∗0) in the above Mayer-Vietoris se-

quence. Again, we get the same answer (cf. equation 2.4)

xk = mk +mk−1. (2.7)

The notation is analogous to the one in the proof of Theorem 2.3. Here, how-

ever, k runs through all integers and there is no initial condition. Neverthe-

less, if look for a kernel of this mapping, we get the equationmk = −mk−1 and

we know that nonzero sequences of this type cannot be absolutely summable.

Thus, the kernel is trivial again, and the �rst Milnor-Thurston homology

group vanishes.

Now, the dimension of H0(DW ) shall be found in an analogous way as

in the proof of Theorem 2.4. From the Mayer-Vietoris sequence we see that

H0(DW ) is again a quotient of ℓ1 and the image of ℓ1 by the map de�ned by

equation (2.7).

We shall �nd continuum many sequences (xβ)∞i=−∞ in ℓ1 such that any

linear combination of these sequences is nontrivial in the quotient of ℓ1 by

ℓ1. Let 0 < β < 1, again we put xβ
k = (−1)k(nβ

k+1 − nβ
k) where (cf. proof of

Theorem 2.4)

nβ
k =

{
1
kβ
, for k > 0,
1

(1−k)β
, for k ≤ 0.

Next, for each β we derive formulae for the solution (mβ
k)

∞
i=−∞ of equation

(2.7). After simple calculations we get

mβ
k =

 (−1)k
(

1
(k+1)β

− 1
)
+ (−1)kmβ

0 , for k > 0,

(−1)k
(
1− 1

(−k)β

)
+ (−1)kmβ

0 , for k ≤ 0.
(2.8)
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Now let us choose �nite collection of numbers 0 < βi < 1 and for each i

pick a real number bi. Now, let us consider a linear combination of sequences

(xk)
∞
k=−∞ =

∑
i bi(x

βi

k )
∞
k=−∞. A possible solution (mk)

∞
k=−∞ to equation (2.7)

is a linear combination of sequences of the form (2.8). The most general

solution depends on parameters mβi
0 , however if we want (mk)

∞
k=−∞ to be in

ℓ1 it has to satisfy the necessary condition of sequence convergence. Hence

we get
∑

i bi =
∑

im
βi
0 , and from that

mk =
∑
i

(−1)k
1

(k + 1)βi
,

for k > 0. Hence, we see that it is not absolutely summable (cf. proof of The-

orem 2.4) and we see that (xk)
∞
k=−∞ represents a nontrivial homology class.

Thus, we constructed a family with continuum-many linearly independent

vectors.

�

Finally, the case of the Convergent Arcs Space CA is done in a similar

way.

Theorem 2.8. The Milnor-Thurston homology groups of the Convergent

Arcs Space CA are trivial except for H1(CA) ∼= ℓ1 and H0(CA) ∼= R.

Proof. This time the space shall be divided into left and right part,

denoted L and R respectively. Both L and R are contractible, and hence

their Milnor-Thurston homology groups are trivial, except for the zeroth

group which is one-dimensional. Thus, the Mayer-Vietoris sequence is

0 −−−→ H1(CA)
∂∗−−−→ H0(L ∩R)

(i∗0, j∗0)−−−−−→

→ H0(L)⊕H0(R)
k∗0 − l∗0−−−−−→ H0(CA) −−−→ 0.

The intersection L∩R is homotopy equivalent to a convergent sequence with

its limit, thus H0(L∩R) ∼= ℓ1 (see Lemma 2.2). The argument similar to the
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one in the proof of Theorem 2.3 allows us to write down equations for the

homomorphism (i∗0, j∗0):

x =
∞∑
k=0

mk, y =
∞∑
k=0

mk,

where mk ∈ H0(L ∩ R) ∼= ℓ1, x ∈ H0(L) ∼= R and y ∈ H0(R) ∼= R. From

that, we see that the kernel of (i∗0, j∗0) consists of sequences whose sum is

equal zero. Yet, such a space is isomorphic to ℓ1 itself. Moreover, we see that

the quotient of H0(L)⊕H0(R) by the image of H0(L∩R) is one-dimensional.



Chapter 3

More on the zeroth

Milnor-Thurston homology group

In the previous chapter the Milnor-Thurston homology groups of the

Warsaw Circle were computed, with the surprising result that the zeroth

Milnor-Thurston homology group is in�nite-dimensional. Milnor-Thurston

homology theory satis�es the Eilenberg-Steenrod axioms with the Excision

Axiom holding for at least normal spaces, so that the coincidence of Milnor-

Thurston homology with singular homology is guaranteed for spaces with

homotopy type of CW-complexes. Since the example of the Warsaw Circle

(i.e. of a metric compact space), implies that, although zeroth homology

is usually related to the number of path-components, for non-triangulable

spaces the canonical homomorphism from singular to Milnor-Thurston ho-

mology can even in this dimension fail to be an isomorphism (in particular:

fail to be surjective). Moreover, for the Convergent Arcs space the canonical

homomorphism is injective in every dimension. Hence, there are the following

natural two questions:

• Is the canonical homomorphism injective in general?

• Are there beyond triangulability su�cient criteria, when it will be an

isomorphism?

40
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In this chapter we provide the following answers to these questions:

• For Peano continua (cf. De�nition 1.23) we have coincidence in dimen-

sion zero, i.e here the canonical homomorphism will be an isomorphism

for any such space (cf. Section 3.1).

• For spaces with Borel path-components this homomorphism will be at

least injective in dimension zero (cf. Section 3.2).

• However, we will also provide an example, where it will not even be

injective (cf. Section 3.3).

Peano continua are in general not triangulable. Thus, the fact that the

zeroth Milnor-Thurston homology group of a Peano continuum will in any

case be one-dimensional does neither follow from the Eilenberg-Steenrod Ax-

ioms, nor, as the above mentioned example shows, from the fact that these

spaces are path-connected. Nevertheless it holds, as we will show in this

chapter (see Theorem 3.2).

3.1 Zeroth Milnor-Thurston homology for Pea-

no continua

In the previous chapter it has been proved that the Warsaw Circle has

uncountable-dimensional zeroth Milnor-Thurston homology group. We may

suspect that the fact that this space is not locally connected is the rea-

son behind this phenomenon. However, we may notice that there exist

path-connected spaces that are not locally path connected and have one-

dimensional zeroth homology group. The example may be the Broom Space

(it is the cone over the space consisting of the sequence 1/n and its limit

point).

Nevertheless, we may ask the opposite question: Does a connected and

locally connected metric space have one-dimensional zeroth Milnor-Thurston
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homology group? In this section we prove that the answer is a�rmative at

least when the space is compact (see Theorem 3.2).

The Hahn-Mazurkiewicz theorem together with the following lemma, will

allow us to prove one of the main results of this chapter (cf. De�nition 1.23

and Theorem 1.24).

Lemma 3.1. Let f : [0, 1] → X be a continuous surjection on a metric space

X. Suppose µ is a �nite Borel measure on X, then there exists a measure µ̃

on [0, 1] such that fµ̃ = µ.

Proof. Let V = {g ∈ C([0, 1]) | there exists h ∈ C(X) such that g =

h ◦ f}. We see that V is a nonempty linear space. Let g ∈ V , thanks to

surjectivity of f the function h ∈ C(X) such that g = h ◦ f is unique. We

shall denote it by hg. Notice, that hg is linear with respect to g.

One can show that the linear functional de�ned below is bounded (it

follows from the fact that the norm on V is supremum norm and that µ is

�nite):

V → R, g 7→
∫
X

hgdµ.

By our Corollary 1.22 of the Hahn-Banach Theorem there exists a bounded

extension ξ to C([0, 1]) of this linear functional. Then, by the Riesz Repre-

sentation Theorem we know that there exists a Borel measure µ̃ such that

ξ(g) =

∫
[0,1]

gdµ̃.

Now, we shall prove that fµ̃ = µ. By Corollary 1.13 it is su�cient to

check this only for open sets. So, let G ⊂ X be an arbitrary open set.

By Lemma 1.19 there exists a sequence (hn)n∈N of positive functions that is

pointwise convergent to χG and such that hn ≤ χG. Let gn = hn◦f . Then for

each n the function gn ∈ V , and the sequence (gn)n∈N is pointwise convergent

from below to χf−1(G).

We know that ∫
[0,1]

gndµ̃ = ξ(gn) =

∫
X

hndµ.
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Using Theorem 1.20 on the both sides of the above equation we get∫
[0,1]

χf−1(G)dµ̃ =

∫
X

χGdµ,

which means that µ̃(f−1(G)) = µ(G), hence fµ̃(G) = µ(G).

�

Theorem 3.2. If X is a Peano continuum, then H0(X) ∼= R.

Proof. Let µ ∈ C0(X) represent some homology class. From Lemma 3.1

we know that there exists a measure µ̃ on [0, 1] such that fµ̃ = µ.

Next, let us de�ne g : [0, 1] → C0(∆1, X) with the following formula:

g(x)(t) = f(tx). Let ν = gµ̃, we shall prove that ∂ν = µ − µ(X)δf(0). Take

any Borel subset A ⊂ X ≈ C0(∆0, X), then

∂ν(A) = µ̃(g−1(∂−1
0 A))− µ̃(g−1(∂−1

1 A)). (3.1)

Suppose f(0) /∈ A. Then, g−1(∂−1
0 A) = f−1(A) and g−1(∂−1

1 A) is empty, so

equation (3.1) reduces to:

∂ν(A) = µ̃(f−1(A)) = µ(A).

And when f(0) ∈ A, we have g−1(∂−1
0 A) = f−1(A) and g−1(∂−1

1 A) = [0, 1],

then equation (3.1) reduces to:

∂ν(A) = µ̃(f−1(A))− µ̃(f−1(X)) = µ(A)− µ(X).

From that, we see that every cycle µ ∈ C0(X) is homologous to the measure

µ(X)δf(0).

The Kronecker measure δf(0) is non-trivial on the level of homology. In-

deed, to the contrary suppose ∂α = δf(0) for some measure α. By the

obvious fact that every singular 1-simplex in X has both its endpoints in

X we have the following equality between sets: ∂−1
0 X = ∂−1

1 X. Hence,

(∂α)(X) = α(∂−1
0 X) − α(∂−1

1 X) = α(∂−1
1 X) − α(∂−1

1 X) = 0. That con-

tradicts the fact that δf(0)(X) = 1. Thus, our zeroth homology group is a

one-dimensional vector space.

�
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3.2 Is the canonical map from singular homo-

logy to Milnor-Thurston homology a mono-

morphism?

In Chapter 1 we have seen that there exists a canonical homomorphism

from singular homology groups to Milnor-Thurston homology groups

Hk(X;R) → Hk(X),

where X is a topological space and k is a non-negative integer.

When X is a CW-complex this canonical homomorphism is an isomor-

phism (see Section 1.3), thus it is also an injection. Additionally, for all the

examples considered in Chapter 2 (the Warsaw Circle, the Double Warsaw

Circle and the Convergent Arcs Space) it is also the case. In this section we

will give a partial answer to the question, whether we always get an injection.

We shall prove the following theorem:

Theorem 3.3. Let X be a topological space with Borel path-components.

Then, the canonical map H0(X;R) → H0(X) is an injection.

Lemma 3.4. Let X be a topological space with Borel path-components. Let

µ be a measure on C0(∆1, X), such that ∂µ = νX1 − δx0, where νX1 is con-

centrated on a set X1 ⊂ X and x0 /∈ X1. Then there exists a path starting at

x0 with its endpoint in X1.

Proof. Let Y be the path-component containing x0. Notice that ∂−1
0 (Y ) =

∂−1
1 (Y ). Thus, we have

(∂µ)(Y ) = µ(∂−1
0 (Y ))− µ(∂−1

1 (Y )) = 0.

Now, assume that there is no path from x0 to any point of X1. That is, X1

intersects Y in the empty set. As a consequence, (νX1−δx0)(Y ) = −1 which

contradicts the above calculations.

�
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Proof of Theorem 3.3. Our theorem states that the kernel of the

canonical homomorphism is trivial. In other words, we have to show that ev-

ery boundary in the sense of Milnor-Thurston homology is in fact a boundary

in the sense of singular homology. Let

i : C0(X;R) → C0(X)

denote the canonical homomorphism on the level of chains.

So, suppose we have a singular cycle z =
∑k

i=1 αixi such that

i(z) = ∂µ (3.2)

for some µ ∈ C1(X). We will inductively show that z is a boundary of a

singular chain.

Let us start with z = α1x1. Notice that ∂−1
0 (X) = ∂−1

1 (X) implies that

∂µ(X) = µ(∂−1
0 (X))− µ(∂−1

1 (X)) = 0. (3.3)

From that, α1 = 0. Hence, no singular chain with one simplex can be a

Milnor-Thurston boundary.

Suppose z = α1x1 + α2x2. Application of equation (3.3) implies that

α2 = −α1. Moreover, by Lemma 3.4 there exists a path σ connecting x1 and

x2. Hence, ∂(α1σ) = z.

Now, assume that every z satisfying (3.2) and having a number of 0-

simplices less than k is a singular boundary. The measure µ/αk satis�es the

assumptions of the above Lemma 3.4, so there exists a path σk connecting

xk to, say, xj. Let z′ = z − αkxk + αkxj. We see, that z′ = z + ∂(αkσk).

Moreover, z′ has at most k − 1 simplices, and its image with respect to

homomorphism i is a boundary of a measure µ̃ = µ + αkδσk
. Thus, there

exists a singular 1-chain c′ such that ∂c′ = z′. From that, c = c′ − αkσk has

the desired property ∂c = z, which ends our proof.

�



CHAPTER 3. MORE ON ZEROTH GROUP 46

3.3 A space with a non-injective canonical ho-

momorphism

The assumption that X has Borel path components was crucial in the

proof of Theorem 3.3. Now, we will construct a counterexample showing that

this assumption cannot be omitted. Namely, we will construct a topological

space X, where there exists a measure ν ∈ C1(X) such that ∂ν = δx1 − δx0

where the points x1, x0 ∈ X lie in di�erent path components. The concept

of this construction was provided by my thesis advisor Prof. Zastrow.

The following lemma will allow us to perform our construction

Lemma 3.5. There exists a partition [−1, 1] = A ∪ B, where A and B are

not Lebesgue measurable and every Borel subset of A or B is of measure zero.

We shall now describe brie�y intuition behind our construction. Let N ⊂
[−1, 1] denote the set of all irrational numbers bigger than −1 and smaller

then 1. By the above lemma it can be decomposed into sets N0 and N1 such

that every Borel subset of these sets has Lebesgue measure zero. The next

stage of our construction is to attach cones to these sets. In other words we

consider a space Y := CN0 ∪ CN1. The vertices of the cones lie in di�erent

path components. We shall construct a measure ν �connecting� these vertices.

The idea is fairly simple, the measure ν shall be uniformly distributed over

the �bres of both cones (we treat the �bres as singular 1-simplices). This

measure connects vertices of our cones, the only problem is that it does not

have a compact carrier. In order to deal with this issue we de�ne a space X

which contains Y and two intervals I0 and I1 whose role is to compactify the

sets of �bres of CN0 and CN1, respectively.

Proof of Lemma 3.5. First, we will �nd such a partition for the topo-

logical group S1 := R/Z. It is su�cient to show that there exists a set

A ⊂ S1 with Lebesgue inner measure zero and full Lebesgue outer measure

(here we normalise the Lebesgue measure λ in a way that λ(S1) = 2). In-

deed, if we have λ∗(A) = 0 and λ∗(A) = 2, then the set B can be de�ned as
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a complement of A. We see that

λ∗(B) = sup
B⊃O∈B(S1)

λ(O) = sup
A⊂O′∈B(S1)

(2− λ(O′)) = 2− λ∗(A) = 0,

thus every Borel subset of B has indeed Lebesgue measure zero.

In order to construct the subset A, we will use the natural action of

G := Q/Z ⊂ S1 on S1 by rotations. It is known that B(S1) has the cardinality

of continuum [31, Theorem 3.3.18]. Let (Bα)α<c denote the family B(S1) with

a well-ordering. This well-ordering exists by the well-ordering theorem, which

is equivalent to the Axiom of Choice. Using trans�nite induction, we shall

construct a sequence of elements (xα)α<c.

Suppose, we have chosen xβ for all β < α. Then, we chose xα that satisfy

the following conditions:

• for every β < α, the element xα lies in a di�erent orbit of G-action

than xβ,

• if complement of Bα is uncountable, then xα ∈ S1 \Bα.

Elements satisfying both of these conditions always exist. That is because,

the number of G-orbits is continuum. Moreover, if κ denote the number of

G-orbits that intersect S1 \ Bα in a nonempty set, then the cardinality of

S1 \ Bα is less then ℵ0 · κ = max(ℵ0, κ). Thus, if cardinality of S1 \ Bα

is uncountable then it is continuum, which is true for every uncountable

Borel set [31, Theorem 3.2.7]. Consequently, we see that κ = c, so there are

continuum-many orbits we can choose the element xα from.

Now, we shall prove that the set A := {xα}α<c has the desired properties.

Suppose, we have a Borel set O ⊂ A, then both A and O intersect each orbit

of G in a set with at most one element. From that, the family G + O :=

{g+O | g ∈ G} consist of pairwise disjoint sets. Now, suppose λ(O) > 0, then

λ (
∪
(G+O)) =

∑
g∈G λ(g+O) = ∞, which is impossible. Hence, λ(O) = 0.

On the other hand, consider O ⊃ A. If O has a countable complement, then

it has full Lebesgue measure. Otherwise, from the fact that O = Bα for some

α < c, we know that xα /∈ O, which contradicts O ⊃ A.
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Finally, we can construct our decomposition of the interval [−1, 1]. There

exists a continuous, measure preserving, map f : [−1, 1] → S1 which identi-

�es both ends of the interval. In order to get a partition of [−1, 1] we take

preimages of S1 = A∪B. The properties of the partition are conserved, since

f preserves measure.

�

Now, we will start our construction. As we mentioned above we have the

partition N = N0 ∪N1 and for any Borel set A ⊂ Ni we have λ(A) = 0.

In order to get two connected components, the next stage of our construc-

tion will be taking cones over N0 and N1. So, identify N with the subset

of R × {0} ⊂ R2. We de�ne the cone CN0 as the union of a�ne intervals

connecting the points of N0 with x0 := (0, 1). Analogously, let CN1 be the

union of intervals connecting N1 with x1 := (0,−1).

Notice, that the above construction of a cone is di�erent than usual.

Taking the Cartesian product with the interval, and then collapsing one face

to a point yields a di�erent neighbourhood system of the cone-point than the

one induced from the plane.

Let Y := CN0∪CN1 and let I0, I1 be disjoint copies of [0, 1) and (−1, 0],

respectively. Let the underlying set of our space be X = Y ⊔ I0 ⊔ I1.

By choosing a neighbourhood basis for each point of X we shall equip it

with a topology such that the subspace topology on Y is induced from R2.

So, let t ∈ Y \ {x0, x1}, then we choose the neighbourhood basis to be

Bt := {B(t, ε) ∩ Y | ε > 0},

where B(t, ε) ⊂ R2 is a ball of radius ε centred at t. Now, let t ∈ {x0, x1},
then we de�ne

Bt := {U ϵ ∪ (B(t, ε) ∩ Y ) | ε > 0},

where U ε = (1− ε, 1] ⊂ I0 if t = x0 and U ε = [−1,−1 + ε) ⊂ I1 if t = x1.

Finally, by choosing a neighbourhood basis of each point of Ii for i = 0, 1,

we will complete the de�nition of the topology of X. Let Ji denote the family
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Figure 3.1: Neighbourhoods with radius ε of the following points: t ∈ I0 ⊂ X,

y0 ∈ I0 and x1 ∈ Y

of �nite subsets of Ni. Then for each J ∈ Ji let CNJ
i denote the sub-cone

C(Ni \ J) ⊂ CNi. Now, let t ∈ Ii (remember that t is identi�ed with a real

number). Its basis of neighbourhoods shall be (see Figure 3.1):

Bt = {U ε ∪ U ε
J,K | ε > 0, J ∈ Ji, K ∈ Jj}

where U ε = (t − ε, t + ε) ∩ Ii and U ε
J,K = {(x, y) ∈ R2 | t − ε < y <

t+ ε} ∩ (CNJ
i ∪ CNK

j ), for j = 1− i.

It can be easily checked that {Bt}t∈X is a neighbourhood system, since it

has the following properties (see [15, p. 13]):

1. For every t ∈ X, Bt is nonempty and for every U ∈ Bt, t ∈ U .

2. If u ∈ U ∈ Bt, then there exists a V ∈ Bu such that V ⊂ U .

3. For any U1, U2 ∈ Bt there exists a U ∈ Bt such that U ⊂ U1 ∩ U2.

Thus, the family {Bt}t∈X is su�cient to de�ne the topology on X. We see

that although we started our construction of X with the space Y that is

embedded in the Euclidean plane, the space X is not metrizable. Let yi ∈ Ii

denote the endpoint of Ii, for i = 0, 1. We see that each basis neighbourhood
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of y0 contains all but �nite number of points in N1. Moreover, each basis

neighbourhood of y1 also contains in�nitely many points in N1. Thus, our

space X does not satisfy the T2 separability axiom. Axioms T0 and T1 are

however satis�ed (each basis neighbourhood of yi does not contain the other

point).

Now, let T = N ∪ {y0, y1} with the topology induced from X.

Lemma 3.6. Every continuous map f : [0, 1] → T is constant.

Proof. The lemma is true if f([0, 1]) ⊂ N . So, suppose that f−1({y0, y1})
is not empty. First consider the case when f−1(N) is empty. Then [0, 1] can

be decomposed into the disjoint union of closed sets: f−1({y0})∪ f−1({y1}),
this contradicts connectivity of [0, 1]. Next, let f−1(N) be nonempty. Notice

that it is an open set because N is open in T . Therefore, it must be a

countable disjoint union of open nonempty intervals. Now, take (a, b) to be

one of these intervals. By assumption, f(a) = yi for some i. Because (a, b) is

connected, f should be constant on it with a value, say, x ∈ N . There exists

a neighbourhood of yi without x, therefore f is discontinuous at a.

�

Lemma 3.7. The points x0 and x1 lie in di�erent path-components.

Proof. Suppose that there is a path α : [0, 1] → X connecting x0 and

x1. Notice that there is a supremum t0 of points t such that α(t) = x0. From

the continuity of α we see α(t0) = x0. Similarly, there exists an in�mum t1

of points t > t0 such that α(t) = x1. Now, we have that the points between

t0 and t1 are mapped into X \ {x0, x1}.
Take a point a ∈ [t0, t1] close enough to t0 so that α(a) ∈ CN0 and take

a point b ∈ [t0, t1] close enough to t1 so that α(b) ∈ CN1. We see that

the interval [a, b] is mapped into X \ {x0, x1}, so we can construct a path

β : [0, 1] → X \ {x0, x1} connecting a point of CN0 with a point of CN1.

There is the obvious retraction r : X \{x0, x1} → T that maps each point

to the end-point of its ray in the respective cone. By the above lemma the
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function r ◦β is constant, hence β maps the interval [0, 1] into a single ray of

one of the cones. Consequently, it cannot connect points in separate cones.

�

Now, we shall construct our measure ν on C0(∆1, X) satisfying the equa-

tion ∂ν = δx1−δx0 . It will consist of two parts, one concentrated on simplices

in CN0 and the other concentrated on simplices in CN1. Their carriers shall

consist of singular simplices connecting the points of N with the respective

vertices.

To get a convenient description of the carriers of our measures we shall

still treat Y as a subset of R2 (in the way described above). For x ∈ N0,

let σx
x0

be the singular simplex such that σx
x0
(t) = (fx(t), 1 − t), where fx

is the unique a�ne function such that σx
x0
(t) ∈ Y and σx

x0
(1) = x. In the

analogous way we de�ne the simplex σx1
x for x ∈ N1 (the direction is such

that σx1
x (0) = x).

Now, our carriers shall be S0 = {σx
x0

∈ C0(∆1, X) | x ∈ N0} and S1 =

{σx1
x ∈ C0(∆1, X) | x ∈ N1}.
Notice that each of Si is not compact, however if we add to Si the respec-

tive paths σi connecting xi with yi (parametrised in a�ne proper way) we

shall obtain compact sets of simplices and our measures shall have compact

carriers. Indeed, the topology of Si ∪ {σi} is the same as a compacti�cation

of Ni with a point at in�nity whose basis neighbourhoods contain almost all

points of Ni. The fact that Si is homeomorphic to Ni shall be shown later

(see Lemma 3.9) and the fact that each neighbourhood of σi contains al-

most all points of Si follows directly from the de�nition of the compact-open

topology.

Lemma 3.8. S0 and S1 are Borel sets in C0(∆1, X).

Proof. First, we will show that it is su�cient to prove that Si are Borel

subsets of C0(∆1, Y ). To do so we show that C0(∆1, Y ) is a Borel subset of

C0(∆1, X). It su�ces to do so, since every Borel subset of a Borel subspace

is Borel with respect to the bigger space.
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Take i = 0, 1, and let U i
n denote a sequence of neighbourhoods of xi such

that
∩

n U
i
n = {xi}. Now, let Yn = Y ∪ U0

n ∪ U1
n. We see that each Yn is

an open set in X and
∩

n Yn = Y . By this fact and the de�nition of the

compact-open topology, C0(∆1, Yn) is open in C0(∆1, X). The intersection

of C0(∆1, Yn) is C0(∆1, Y ), so it is a Borel subset of C0(∆1, X).

Now, we shall prove that the each of Si is closed in C0(∆1, Y ). The space

C0(∆1, Y ) is metrizable, thus it is enough to show that the both Si contain

limit points of all convergent sequences. Let σn be a sequence of singular

1-simplices in R2 with a�ne parametrisation, say, σn(t) = (an+bnt, cn+dnt).

Such a sequence is convergent i� the sequences of coe�cients an, bn, etc. are

convergent.

Now, take a sequence of 1-simplices (σn) ⊂ S0 ⊂ C0(∆1, Y ) ⊂ C0(∆1,R2)

convergent in C0(∆1, Y ). By the above observation a limit of such a sequence

is a 1-simplex with a�ne parametrisation that connects x0 with a point

of N . However, any such simplex is an element of S0, hence S0 is closed.

Analogously, we prove that S1 closed.

�

Lemma 3.9. The mappings ∂i|Si
: Si → Ni are homeomorphisms, for each

i = 0, 1.

Proof. The topology of each Si is induced from C0(∆1, Y ). But the

fact that Y is embedded in R2 implies that C0(∆1, Y ) is metrizable with the

supremum metric.

We shall calculate distance between two arbitrary simplices σt
x0
, σu

x0
∈ S0:

d(σt
x0
, σu

x0
) = sup

s∈[0,1]
dE(σ

t
x0
(s), σu

x0
(s)) = dE(t, u),

where dE denotes the Euclidean metric. Hence, we see that ∂0|S0 : S0 → N0

is an isometry. The analogous argument works well for S1.

�
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We preferred to state the following lemma in an abstract way. Its as-

sumptions are satis�ed in our case. Namely, take Z = C0(∆1, X), fi = ∂i|Si
,

Mi = Si (this yields Ri = Ni), and Si is homeomorphic to Ni, for i = 0, 1.

Lemma 3.10. Let Z be a topological space with disjoint Borel subsets Mi ⊂
Z, for i = 0, 1. Let fi : Mi → [−1, 1] be continuous functions such that the

following properties are satis�ed:

• Every Ri := fi(Mi) is dense in [−1, 1],

• R0 and R1 are disjoint

• R0 ∪R1 is a full-measure Borel set

• Every Borel subset of Ri has Lebesgue measure zero,

• fi is a homeomorphism of Mi and Ri.

Then

1. Every Borel set in Mi has the form f−1
i (B) for some Borel subset of

[−1, 1],

2. The semi-algebra Ii = {f−1
i (I) | I ⊂ R is a semi-closed interval } gen-

erates Borel subsets of Mi,

3. The set functions νi : f−1
i (I) 7→ λ(I ∩ [−1, 1]), where λ denotes the

Lebesgue measure and I is a semi-closed subinterval of [−1, 1], can be

extended to a Borel measure νi on Mi.

Proof. To prove the �rst statement take a Borel subset A of Mi. Then

fi(A) is a Borel subset of Ri. Notice, that every Borel subset of Ri is an

intersection of Borel subset of [−1, 1] and Ri, which proves the �rst statement.

To prove the second statement we need to notice that Ii = {f−1
i (I) | I ⊂

R is a semi-closed interval} is a semi-algebra such that Ii = f−1
i (I), where

I is a semi-algebra of semi-closed intervals in R. Then the �rst statement

and Lemma 1.18 give us our result.
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In order to prove the third statement it is su�cient to show that νi are

countably additive (see Corollary 1.16). So, let us take a pairwise disjoint

countable family {Aj = f−1
i (Ij)}j∈J ⊂ f−1

i (I), such that the union of this

family is A ∈ f−1
i (I). Thus, the set A is of the form f−1

i (I) for some semi-

closed interval I.

Without loss of generality we can assume that Ij's and I are subsets of

[−1, 1] (if not we can take intersection with this interval). We claim that

{Ij} is a pairwise disjoint family. To the contrary, assume that two of these

sets, say, I1 and I2, have the non-empty intersection [a, b), for some real

numbers a < b. Consequently, A1 ∩A2 = f−1
i ([a, b)) and is non-empty, since

Ri is dense in [−1, 1]. However, our family of sets is disjoint, hence we got a

contradiction.

Moreover, we claim that I \
∪

j Ij is a Borel subset of [−1, 1]\Ri. Indeed,

from the fact that A is the union of Aj, we get f−1
i (
∪

j Ij) = f−1
i (I). Next,

we see that [−1, 1] \ Ri = Rk ∪ ([−1, 1] \ R0 ∪ R1) for k = 1 − i. Thus,

I \
∪

j Ij can be decomposed into two parts. The �rst one is a Borel subset

of [−1, 1] \ R0 ∪ R1 and hence it is a null-set as a subset of a null-set. The

second one is a Borel subset of Rk and every such subset is a null-set. As a

consequence I \
∪

j Ij is a null-set, which yields λ(I) =
∑

j λ(Ij). This fact

proves that νi's are countably additive.

�

Now, let νi's be the measures on the Borel subsets of Si that exists by

Assertion 3 of Lemma 3.10. We can extend the measures νi for i = 0, 1 to

the Borel σ-algebra of C0(∆1, X) with the formula

νi(A) = νi(A ∩ Si), for any Borel subset A of C0(∆1, X),

which is well-de�ned thanks to Lemma 3.8.

Now, let us put ν = ν1 + ν0. Finally, we can prove our main result.

Theorem 3.11. The canonical homomorphism h : H0(X;R) → H0(X) is

not a monomorhpism.



CHAPTER 3. MORE ON ZEROTH GROUP 55

Proof. The singular homology class of the cycle z = x1−x0 is nontrivial

in H0(X;R), since x0 and x1 lie in di�erent path components (see Lemma

3.7). The canonical homomorphism maps [z] to the Milnor-Thurston class

of the cycle δx1 − δx0 in H0(X). We shall prove that it is trivial. In fact, we

will show that for the measure ν de�ned above we have

∂ν = 2(δx1 − δx0). (3.4)

The crucial step of our proof is to show that every Borel subset of N is

of ∂ν-measure zero. So, let B ⊂ N ⊂ [−1, 1] be a Borel set. Notice, that

ν1(∂
−1
0 (B)) = 0 because S1 ∩ ∂−1

0 (B) is empty. Similarly, ν0(∂−1
1 (B)) = 0.

As a consequence we see

(∂ν)(B) = ν0(∂
−1
0 (B))− ν1(∂

−1
1 (B)).

Now, notice that if B = I ∩ N where I is an interval, then we have

(∂ν)(B) = ν0(∂
−1
0 (I)) − ν1(∂

−1
1 (I)) = λ(I) − λ(I) = 0. So the λ-system of

Borel sets that satisfy (∂ν)(B) = 0 contains a semi-algebra generating Borel

subsets of N . Every semi-algebra is a π-system, so by Theorem 1.12 we see

that (∂ν)(B) = 0 for every Borel set B ⊂ N .

Next, let B ⊂ X \ (N ∪ {x1}) be a Borel set containing the point x0.

Then, we see that ∂−1
0 (B) ∩ (S0 ∪ S1) and ∂−1

1 (B) ∩ S1 are empty, so

(∂ν)(B) = −ν0(∂
−1
1 (B))

follows. Moreover, we have that ∂−1
1 (B) ∩ S0 = S0 = S0 ∩ ∂0([−1, 1]). From

that, we get ν0(∂−1
1 (B)) = λ([−1, 1]) = 2. An analogous assertion is true for

sets B containing x1. There is no simplex in S0 or S1 that has its endpoint in

B ⊂ X \(N∪{x0}∪{x1}), thus we can restrict our attention to the Borel sets

containing some points from L := N ∪ {x0} ∪ {x1}. Finally, every such set

can be decomposed into a disjoint union three sets: the �rst one intersecting

L in x0, the second one intersecting L in N and the last one intersecting L in

x1. Next, by additivity of the measure ∂ν, application of the facts we proved

above yields equation (3.4).

�
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