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Streszczenie

Celem niniejszej pracy jest zbadanie zachowania niezmiennikéw topolo-
gii algebraicznej w zastosowaniu do przestrzeni o skomplikowanej lokalnej
strukturze. Przestrzenie takie nazywamy tu ,dzikimi przestrzeniami topolo-
gicznymi” (nie jest to formalnie zdefiniowany termin, a stosujemy go gltéwnie
majac na mysli przestrzenie nie posiadajace struktury CW-kompleksu).

Kluczowym problemem, ktéry napotykamy, probujac stosowa¢ metody
topologii algebraicznej do nietriangulowalnych przestrzeni, jest skonczonosc¢
konstrukcji algebraicznych. Na przyktad grupy homologii sa opisywane przez
skoniczone kombinacje liniowe sympleksow, natomiast klasyczne metody ob-
liczania grupy podstawowej skupiaja sie na reprezentowaniu jej elementow
poprzez skonczonej dtugosci stowa.

W naszym przypadku powyzsze podejscie jest nieefektywne, gdyz grupy
podstawowe dzikich przestrzeni sa czesto nieprzeliczalnie generowane, co jest
spowodowane faktem, iz tego typu przestrzenie zawieraja czesto dowolnie
matle nietrywialne petle. Zatem najbardziej naturalnym rozwigzaniem tej
trudno$ci wydaje sie by¢ opisywanie grup za pomoca przeliczalnych, a nie
skoniczonych, stow. W ostatnich dwoch dekadach opublikowano kilka prac
wykorzystujacych te idee. Przyktadowo, mamy prace, w ktérych autorzy roz-
wazaja grupy podstawowe: Kolczyka Hawajskiego |9, 13|, Przestrzeni Griffi-
thsa [8] albo Trojkata Sierpinskiego [1, 12, 17].

Kwestia skonczonosci jest rowniez istotna jesli chodzi o teorie homologii.
Dlatego teoria homologii, dopuszczajaca nieskonczone tancuchy sympleksow

jest warta zbadania w kontekscie dzikich przestrzeni topologicznych. Teo-

il
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ria homologii Milnora-Thurstona jest takim przyktadem. FLancuchy sa w
tym przypadku miarami okreslonymi na przestrzeni sympleksow singular-
nych (formalna definicje znajdzie czytelnik w Sekeji 1.3).

Widzimy, ze lancuchy singularne, czyli skoniczone kombinacje liniowe
sympleksoéw singularnych, moga by¢ réwniez rozumiane jako tanicuchy w sen-
sie teorii Milnora-Thurstona. Wystarczy skoriczone kombinacje sympleksow
identyfikowa¢ z miarami skupiona na skonczonej liczbie punktow (to utozsa-
mienie prowadzi do definicji kanonicznego homomorfizmu pomiedzy homolo-
giami singularnymi a homologiami Milnora-Thurstona, patrz Sekcja 1.3).

Jest jeszcze jeden powo6d by zajac sie teorig Milnora-Thurstona w kontek-
Scie dzikich przestrzeni topologicznych. Mianowicie wiadomo, iz owa teoria
spetnia aksjomaty Eilenberga-Steenroda przynajmniej dla przestrzeni nor-
malnych, a zatem jest tozsama z teorig singularng dla przestrzeni o typie
homotopii CW-kompleksu (patrz Sekcja 1.2). Jednakze jej zachowanie dla
dzikich przestrzeni jest w duzej mierze niezbadane. Pierwsze rezultaty w tym
kierunku zostaly otrzymane przez Zastrowa [34, Section 6] [35]|, natomiast
pierwszy opublikowany rezultat dotyczyt obliczenia grup homologii Milnora-
Thurstona dla Okregu Warszawskiego [27] i zostal opisany w niniejszej pracy.

Rozdzial 1 zawiera opis znanych wynikéw oraz krotka historie i formalna
definicje teorii homologii Milnora-Thurstona. Rozdzial 2 jest poswiecony wy-
nikom opublikowanym przez autora w pracy [27| — dotyczy obliczenia grup
homologii Milnora-Thurstona dla Okregu Warszawskiego i wynikajacego stad
rozwiazaniu problemu postawionego przez Berlange [5|. Rozdzial 3 zawiera
dalsze wyniki dotyczace zerowej grupy homologii Milnora-Thurstona. Przed-
stawiono w nim dowod, iz zerowa grupa homologii dla kontinu6w Peano jest
jednowymiarowa, a kanoniczny homomorfizm jest iniektywny dla przestrzeni
z borelowskimi sktadowymi tukowymi. Ponadto przedstawiony jest kontr-
przyktad, iz ostatni wynik nie zachodzi dowolnych przestrzeni topologicz-

nych.
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0.1 Podstawowe definicje

Poniewaz definicja grup homologii Milnora-Thurstona oparta jest o teorie

miary, przedstawimy tutaj jej podstawowe pojecia i koncepcje.

Definicja 0.1. Rodzine podzbioréow zbioru €2 nazywamy o-algebrg nad zbio-
rem €2 jezeli zwiera ona zbiér pusty i jest zamknieta ze wzgledu na dopelnienia

i przeliczalne sumy.

Zauwazmy, ze przekroj dowolniej liczby o-algebr jest rowniez o-algebra.
Stad wynika, ze dla kazdej rodziny S podzbioréw zbioru €2 istnieje najmniej-
sza o-algebra nad 2 zawierajgca rodzine S. Nazywamy te o-algebre genero-

wang przez rodzine S i oznaczamy ja o(S).

Definicja 0.2. Pare uporzadkowana (2, F) gdzie F jest o-algebrg nad €

nazywamy przestrzeniq mierzalng.

Definicja 0.3. Niech (2, F) bedzie przestrzenig mierzalna. Funkcje p: F —
R nazywamy skoriczong miarg ze znakiem jezeli jest przeliczalnie addytywna

i znika na zbiorze pustym.

W niniejszej pracy rozpatrujemy jedynie skonczone miary ze znakiem,
dlatego dalej bedziemy je nazywa¢ po prostu miarami.

Kazda przestrzen topologiczna w naturalny sposob jest przestrzenia mie-
rzalna. Niech wiec (X, 7) bedzie przestrzenia topologiczna. Wowczas o-
algebra generowana przez 7 jest nazywana o-algebra zbiorow borelowskich i
oznaczamy ja B(X). Miary okreslone na B(X) nazywamy miarami borelow-
skimi.

Definicja 0.4. Niech (€;, F;) dla i = 1,2 beda przestrzeniami mierzalnymi.
Funkcja f : Q; — s nazywalna jest funkcjg mierzalng jezeli przeciwobraz

kazdego zbioru z F; jest zawarty JFj.

Definicja 0.5. Majac dang funkcje mierzalna f : {2y — (2 i miare p na

definiujemy miare przetransportowang fu nastepujacym wzorem

(fu)(A) = u(f~'(A)), dla kazdego mierzalnego zbioru A.
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Nietrudno zauwazy¢, iz dla f : Q7 — Qs, g : 29 — Q3 i dla miary p na
przestrzeni {2; mamy nastepujaca tozsamosé: (go flu = g(fu).

Definicja 0.6. Niech p bedzie miarg na przestrzeni mierzalnej (2, F). Mo-
wimy, ze miara p jest skoncentrowana na zbiorze D C €, jezeli u(A) = 0 dla

kazdego F 5 A C Q\ D. Zbiér D nazywamy wowczas nosnikiem miary fu.
Ponizszy fakt bedzie pomagal nam radzi¢ sobie z miarami ze znakiem:

Twierdzenie 0.7. (Hahn [19, Theorem A, p. 121|) Niech p bedzie miarg
na (, F). Wowczas istniejq dwa roztgezne zbiory Qt, Q~ € F takie, ze
Q=Q"UQ" oraz dla kazdego F € F mamy p(FNQT) >0, u(FNQ™) <0.

Rozklad przestrzeni  na dwa podzbiory QF, Q™ nie jest jednoznaczny.

Jednakze w przypadku dwoch roznych rozkladow 7, Q7, i = 1,2, mozna

pokaza¢, ze dla dowolnego F' € F mamy pu(FNQ) = u(FNQY), p(FNQT) =
p(FNQy) (19, p. 122]. Stad tez miara ze znakiem moze byé¢ jednoznacznie
roztozona na nastepujaca réznice miar nieujemnych

po=pt—p,
gdzie pt () i=p(- N Q4 ), p () == —p(- N Q).

Definicja 0.8. Niech p bedzie miarg na przestrzeni X, wariacje || miary

w1 okreslamy wzorem
ul = p" 4+

Catkowitg wariacje ||p|| definiujemy jako

]l = [l (X).

0.2 Teoria homologii Milnora-Thurstona

Teraz pokrotce przedstawimy konstrukcje teorii homologii Milnora-Thur-

stona. Bedziemy uzywaé liter kaligraficznych (C, H, itp.) do oznaczenia
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odpowiednich konstrukcji w teorii Milnora-Thurstona, natomiast zwykte li-
tery (C, H, itp.) oznacza¢ beda odpowiednie grupy w teorii singularnej.

Na poczatek skonstruujemy kompleks tancuchowy C,(X), dla danej prze-
strzeni topologicznej X. Niech C°(A*, X) oznacza przestrzei sympleksow
singularnych (tj. ciaggtych funkcji z sympleksu standardowego AF w X, gdzie
k jest catkowita liczba nieujemna). Bedziemy rozpatrywaé¢ C°(A*, X) jako
przestrzen topologiczna wyposazona w topologie zwarto-otwarta. Przestrzen
wektorows Ci(X) zawierajaca k-wymiarowe laricuchy definiujemy jako zbior
skoriczonych miar borelowskich ze znakiem posiadajacych zwarty nosnik.

W nastepnym kroku uczynimy z C,.(X) kompleks tancuchowy. Niech ¢; :
ALy Ak dla i = 0,1,...,k, oznaczaja wlozenia sympleksu AF! jako
ciany sympleksu A*. Odwzorowania d; indukuja ciagle odwzorowania 0; :
COAF, X) — C°(A* 1, X) na poziomie symplekséow singularnych. Sa one
definiowane jako zlozenia funkcji 0; : 0 — o o 9;. Nietrudno pokazaé, ze z
definicji topologii zwarto-otwartej wynika ich ciaglosé¢ [34, Lemma 2.8|.

Z kolei ciagle funkcje 0; indukuja odwzorowania 0; : Ci(X) — Cp_1(X),
gdzie 0; dziala poprzez transport miary ze wzgledu na ciagta (a wiec mie-
rzalna) funkcje 0; (patrz Definicja 0.4). Ostatecznie operator brzegu jest

definiowany typowym wzorem:

W pracy [34, Corollary 2.9] pokazano, ze C.(X) z tak zdefiniowanym opera-
torem brzegu jest istotnie kompleksem tancuchowym.

Grupy homologii Milnora-Thurstona #H.(X) sa definiowane w jako grupy
homologii kompleksu tancuchowego C.(X). Ponadto widzimy, ze C, jest funk-
torem z kategorii przestrzeni topologicznych do kategorii kompleksow tan-
cuchowych. Rzeczywiscie, odwzorowanie tancuchowe fo : C.(X) — C.(Y)
indukowane przez ciagly funkcje f : X — Y jest definiowane podobnie jak
operator brzegu. Mozemy traktowa¢ C°(AF, —) jako funktor kowariantny, a
wowczas f, odwzorowuje kazda miare na miare przetransportowana przez f

(szczegOtowa analize przedstawiono w Sekcji 1.3).
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Niech X bedzie przestrzenig topologiczng, natomiast A jej podprzestrze-
nig. Wowczas relatywny kompleks tancuchowy C.(X, A) jest definiowany jako
iloraz C.(X) przez i.(C.(A)), gdzie i : A — X jest wlozeniem. Relatywne
grupy homologii Milnora-Thurstona to grupy homologii komplesku C, (X, A).

Istnieje kanoniczny homomorfizm tancuchéow singularnych w tanicuchy

Milnora-Thurstona

Ce(X5R) — Cr(X),

g ;0 g Oéi(;aﬂ
i i

gdzie § oznacza miare Kroneckera. Ten homomorfizm jest monomorfizmem
wtedy 1 tylko wtedy gdy X spelnia aksjomat oddzielania 7j. Ponadto, po-
wyzszy homomorfizm jest przemienny z operatorem brzegu, a zatem indukuje

on odwzorowanie na poziomie homologii
Hy(X;R) — Hi(X).

Odwzorowanie to jest izomorfizmem gdy X ma typ homotopijny C'W-kom-
pleksu [34, Section 5|. Ponadto okazuje sie, ze jest to monomorfizm dla
wielu dzikich przestrzeni (np. w przypadku zerowych homologii dla Okregu
Warszawskiego lub w przypadku przyktadowej przestrzeni zdefiniowanej w
|34, Section 6]).

0.3 Topologia Berlangi

Berlanga wyposazyt grupy homologii Milnora-Thurstona w topologie, kto-
ra jest zgodna z jej struktura liniowa [5]. Co wiecej mozna udowodnié, ze
jest ona lokalnie wypukta kiedy przestrzen topologiczna spekia drugi aksjo-
mat przeliczalnosci i jest o§rodkowa. A zatem homologie stanowiag funktory
z kategorii oS$rodkowych przestrzeni topologicznych spelniajacych drugi ak-
sjomat przeliczalnosci do kategorii lokalnie wypuklych przestrzeni liniowo

topologicznych (niekoniecznie spelniajacych aksjomat Hausdorffa!).
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Owa topologia jest okreslona w naturalny sposob. Niech X bedzie o$rod-
kowa przestrzenia topologiczna spelniajaca drugi aksjomat przeliczalnosci.

Majac dang funkcje f : C°(A*, X) — R mozemy okredli¢ nastepujacy funk-

As(p) = /C T
0 k,X

gdzie p € Cy(X). Bedziemy pracowaé z najstabsza topologia na Ci(X) taka,

cjonal liniowy

ze wszystkie powyzsze funkcjonaty sa ciggte. Berlanga udowodnil, ze opera-

tor brzegowy 0 jest ciagly [5, Assertion 2.1]. A zatem grupy homologii
Hi(X) = Z(X)/Br(X)

moga by¢ wyposazone w strukture lokalnie wypuklej przestrzeni liniowo to-
pologicznej. Jej topologie bedziemy nazywaé topologiq Berlangs.

R. Berlanga postawit pytanie czy grupy homologii Milnora-Thurstona
speliaja aksjomat Hausdorffa. W pracy [5] autor przedstawia dowod, iz
H1(X) jest przestrzenia Hausdorffa, jezeli X jest homotopijnie rownowazna
7z CW-kompleksem. 7 kolei Zastrow pokazal przyktad przestrzeni V gdzie
Ho(V) nie jest Hausdorffa [35]. Ta przestrzen V to Okrag Warszawski z
usunietym fragmentem linii akumulacji (patrz Theorem 2.5).

Przestrzen V badana przez Zastrowa nie jest zwarta. Fakt ten jest w
istotny sposob wykorzystywany w dowodzie. Zatem nasuwa si¢ pytanie, czy
rowniez dla przestrzeni zwartych mozemy znalezé przyktad gdzie topologia
Berlangi nie jest Hausdorffa. Istotnie, okazuje sie, ze zwykly Okrag War-

szawski jest takim przyktadem, co zostalo pokazane w Rozdziale 2.

0.4 Teoria homologii Milnora-Thurstona dla dzi-

kich przestrzeni topologicznych

Mianem dzikie przestrzenie topologiczne okreslamy przestrzenie o skom-
plikowanej lokalnej strukturze. Nie przywolujemy zadnej formalnej definicji
,dzikosci”, a podstawowa cecha, ktora odroznia przestrzenie dzikie od oswo-

jonych jest ich nietriangulowalnos¢.
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~Rysunek 2: Przestrzen Zbiez-
Rysunek 1: Okrag Warszawski
nych Lukow

Wiadomo, ze kanoniczny homomorfizm pomiedzy homologiami singular-
nymi a homologiami Milnora-Thurstona jest izomorfizmem, gdy przestrzen
ma typ homotopijny CW-kompleksu. Dlatego tez badanie homologii Milnora-
Thurstona dla tego typu przestrzeni sprowadza sie do badania homologii sin-
gularnych.

Sprawa wyglada inaczej w przypadku dzikich przestrzeni. Mozna poda¢
przyklady przestrzeni (np. Okrag Warszawski, patrz dalej), gdzie obie teo-
rie homologii sie r6znia. Celem niniejszej pracy jest badanie tych roznic i,
bardziej ogdlnie, zbadanie wtasnosci grup homologii Milnora-Thurstona dla
dzikich przestrzeni topologicznych.

Przyktadowymi dzikimi przestrzeniami, na ktérych skupiliSmy sie w tej
pracy, sa: Okrag Warszawski W, Przestrzen Zbieznych Lukow CA i Podwéjny
Okrag Warszawski DW.

Okrag Warszawski, przedstawiony na Rysunku 1, jest zdefiniowany jako

podzbior R? sktadajacy sie z:

e czesci Sinusoidy Warszawskiej {(z,y) € R? | y = sinl/x}, zawiera-
jacej sie pomiedzy prosta x = 0 a najbardziej wysunietym na prawo

minimum,

e linii akumulacji {(0,y) € R* | -1 <y < 1},
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Rysunek 3: Podwojny Okrag Warszawski

e luku taczacego punkt (0,—1) z minimum wysunietym najbardziej na

prawo.

Podwojny Okrag Warszawski przedstawiono na Rysunku 3, jest on skleje-
niem dwoch kopii Okregu Warszawskiego wzdtuz linii akumulacji. Przestrzen
Zbieznych Lukoéw przedstawiona na Rysunku 2 jest zbudowana z przeliczalnej
liczby tukow taczacych dwa dane punkty i zbiegajacych do odcinka euklide-
sowego pomiedzy tymi punktami.

Przystapimy teraz do prezentacji wynikéw pracy

Twierdzenie 0.9. (patrz Theorem 2.3) Niech n > 0, wéwczas H,(W) = 0.

Szkic dowodu. Z geometrycznego punktu widzenia idea dowodu polega
na podziale sympleksow singularnych w taki sposob, zeby kazdy przechodzit
przez co najwyzej jedno maksimum Sinusoidy Warszawskiej. Jest to moz-
liwe, gdyz no$nik tancuchéw Milnora-Thurstona jest zwarty. Taki podzial
pozwala pokazaé, ze grupy homologii daja sie opisa¢ za pomoca absolutnie
sumowalnych ciggow. A stad, wykonujac odpowiednie obliczenia, pokazu-

jemy wynik.
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Technicznym narzedziem wykorzystywanym w tym dowodzie jest twier-
dzenie Mayera-Vietorisa. Jezeli podzielimy Okrag Warszawski na dwie po-
towki, gorng i dolng, uzyskamy opisany powyzej efekt podziatu sympleksow
singularnych. Nastepnie dzieki homotopijnej niezmienniczosci grup homolo-
gii, widzimy ze obie poltowki maja te same grupy homologii do ciag punktow
z granicg. Dla tego typu przestrzeni nietrudno policzy¢ grupy homologii
Milnora-Thurstona wprost z definicji. Okazuje sie, ze 0-tancuchy sa izomor-
ficzne z przestrzenig ciaggéw absolutnie sumowalnych. Stad widaé, ze ciagi
absolutnie sumowalne opisuja homologie Okregu Warszawskiego W.

Wykorzystujac taki opis grup homologii mozemy napisa¢ wzor okreslajacy
operator brzegu (patrz rownanie (2.4)). Stad odczytujemy, zZe nie istnieja

nietrywialne 1-cykle, a zatem pierwsza grupa homologii jest trywialna.

O

Twierdzenie 0.10. (patrz Theorem 2.4) Przestrzen liniowa Ho(W) jest

kontinuum-wymiarowa.

Szkic dowodu. Powyzsze twierdzenie dowodzi sie wykorzystujac tech-
niki przedstawione w dowodzie Twierdzenia 0.9. Jak byto wspomniane, grupy
homologii sg opisywane przez ciagi absolutnie sumowalne. Z tego opisu, mo-
zemy zauwazy¢, ze niezerowe klasy homologii odpowiadaja ciggom zbiegaja
do z dostatecznie powoli (sa sumowalne, ale ciag sum czesciowych juz nie
jest). Mozemy podaé¢ wiele takich ciagow, piszac odpowiednie kombinacje
liniowe ciagoéw postaci 1/k“. Poniewaz parametr a moze by¢ zmieniany w
przedziale (0,1) w dowolny sposob, mozemy tak wygenerowa¢ kontinuum

wiele liniowo niezaleznych klas homologii.
OJ

Analogicznymi metodami wyliczamy grupy homologii pozostatych roz-
patrywanych przez nas przestrzeni (patrz Theorem 2.7 i Theorem 2.8). W
szczegolnosci grupy homologii Podwojnego Okregu Warszawskiego DW sg
takie same jak W. Ponadto #H;(CA) = @ R. Natomiast dla homologii
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singularnych mamy H,(CA) = @, R, stad gotym okiem wida¢ brak izomor-
fizmu pomiedzy teoriag Milnora-Thurstona a teorig singularng. Natomiast w
wymiarze zero obie teorie homologii przystaja dla przestrzeni CA. Pokazu-
jemy to podobnie jak w przypadku Okregu Warszawskiego. Z drugiej strony,

dla przestrzeni lokalnie spojnych mamy nastepujacy wynik:

Twierdzenie 0.11. (patrz Theorem 3.2) Niech X bedzie kontinuum Peano,
wiwezas Ho(X) = R.

Szkic dowodu. Kontinuum Peano jest to zwarta przestrzen metryczna,
ktora jest lokalnie spéjna. W dowodzie wykorzystamy twierdzenie Hahna-
Mazurkiewicza, ktore powiada iz istnieje ciagla suriekcja f : [0,1] — X.

Nalezy wykaza¢, ze dowolny O-taricuch Milnora-Thurstona g na prze-
strzeni X jest homologiczny z miarg skupiona w jednym punkcie. Mozna
pokazaé, ze istnieje miara g na [0, 1] taka, ze fi = u. Nastepnie kazdemu
punktowi ¢ € [0, 1] mozemy przypisa¢ 1-sympleks, ktory zaczyna sie w f(0)
a konczy w f(t). Stad mamy odwzorowanie [0, 1] — CY(A', X). Dalej trans-
portujac miare i poprzez to odwzorowanie, dostajemy miare v ktorej brze-

giem jest roznica p i miary skupionej w punkcie f(0).
]

ZauwazyliSmy juz, ze pierwsza grupa homologii Milnora-Thurstona dla
przestrzeni CA nie jest izomorficzna z odpowiednia grupa homologii singu-
larnych. Mozemy zauwazy¢ jednak, ze kanoniczny homomorfizim jest tutaj
injektywny (jest to naturalne wlozenie Py R w €D, R). Podobnie sprawa sie
ma w przypadku Okregu Warszawskiego. Okazuje sie, ze mamy nastepujace

twierdzenie:

Twierdzenie 0.12. (patrz Theorem 3.3) Niech X bedzie przestrzeniq, kto-
rej wszystkie tukowe sktadowe sq borelowskie. Wowczas homomorfizm kano-

niczny Ho(X) — Ho(X) jest iniekcjq.

Szkic dowodu. Niech p € Cy(X) bedzie miara skupiona na skonczonej

liczbie punktéw reprezentujaca nietrywialna klase homologii singularnych.
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To znaczy, ze nie istnieje miara v € C;(X) skupiona na skonczonej liczbie
punktéow spekiajaca

v = .

Musimy wykaza¢, ze zadna miara v € C;(X) nie spelnia powyzszego rowna-
nia.

Dowo6d przeprowadzimy dla przypadku gdy p jest skupiona na dwdoch
punktach. Czyli 4 = «ad, + (0,, gdzie punkty z,y € X leza w roéznych
tukowych sktadowych spojnosci, a wspotezynniki o, 5 # 0.

Zalozmy, ze istnieje v taka, ze u = dv. Niech Y bedzie sktadowa spdjnosci
zawierajaca . Wowczas prosty rachunek pokazuje, iz pu(Y) = (0v)(Y) = 0.
Jednakze p(Y') = (ad, + £0,)(Y) = «, co daje sprzecznoséé, gdyz a # 0.

Dowo6d dla miar skupionych na wiekszej liczbie punktow przeprowadza

sie analogicznie.
O

Zalozenie o borelowskich sktadowych tukowych jest istotne w powyzszym
twierdzeniu. Skonstruujemy teraz przestrzen, dla ktorej kanoniczny homo-

morfizm nie jest injektywny.

Twierdzenie 0.13. (patrz Theorem 3.11) Istnieje przestrzen X, dla ktorej
kanoniczny homomorfizm Ho(X) — Ho(X) nie jest injektywny.

Szkic dowodu. Istnieje rozbicie [-1,1] \ Q = Ny U N; takie, ze kazdy
borelowski podzbiér zbioru Ny lub zbioru N; jest miary Lebesgue’a zero
(patrz Lemma 3.5). Rzecz jasna zbiory Ny i N; nie sg mierzalne w sensie
Lebesgue’a.

Rozwazmy teraz dwa stozki C'Ny i C'N7, nad zbiorem Ny i N7 odpowied-
nio. Zbior [—1, 1]\ Q wraz ze stozkami traktujemy jako podzbior plaszczyzny
z topologia indukowang i oznaczamy Y.

Do tak skonstruowanej przestrzeni dokleimy roztaczne kopie odcinkéw
Iy =1[0,1], I = [~1,0]. Punkt 1 € I, utozsamiamy z wierzcholkiem stozka
CNy a punkt —1 € I} z wierzchotkiem stozka C'N;. Tak skonstruowang
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przestrzen oznaczmy X. Topologie na na X zadajemy tak, aby topologia
podprzestrzeni Y pokrywata sie z ta indukowang z ptaszczyzny. Natomiast
otoczenia wewnetrznych punktow odcinkow I;, dla ¢ = 0,1, skladaja sie z
pododcinkéw odcinka I; i z odpowiednich pododcinkéw prawie wszystkich
wlokien stozka CX;. Natomiast niech otoczenia punktow 0 € Ip 1 0 € [
(pamietajmy, ze odcinki I i I; byly roztaczne) zawieraja odpowiednie odcinki
z prawie wszystkich wlokien obu stozkow. Przestrzen X nie spelnia wiec
aksjomatu separowalnosci 7.

Przestrzen X ma dwie tukowe sktadowe spojnosci, z ktorych kazda za-
wiera jeden ze stozkow. Rozwazmy teraz miare u = d,, — 0., gdzie xz; jest
wierzchotkiem stozka CX;. Istnieje miara v taka, ze dv = u. Miara ta jest
jednorodnie skupiona na wtoknach (traktowanych jako sympleksy singularne)
stozka C' Xy 1 stozka C'X;. Powodem dla ktorego zaden punkt odcinka [0, 1]
nie znajduje sie w no$niku miary Ov jest fakt, ze kazdy podzbior borelowski
zbiorow X i X7 ma miare zero. Dlatego w brzegu miary v znajduja sie tylko

punkty xg i x1, lezace w roznych tukowych sktadowych spojnodci.



Introduction

The aim of this thesis is to investigate the behaviour of invariants from
algebraic topology when applied to topological spaces with a complicated
local structure. For such spaces the term “wild topological spaces” is used
(this is not a formally defined notion, here it refers mostly to topological
spaces with no CW-complex structure).

The crucial problem when we try to apply methods of algebraic topol-
ogy to non-triangulable spaces is finiteness of basic algebraic constructions.
For example, the homology groups are described by finite linear combina-
tions of simplices, and the classical methods for computing the fundamental
groups focus on decomposing each element of the group into finite words of
generators.

This approach seems ineffective, since fundamental groups of non-tame
spaces are often uncountably generated caused by the fact that such spaces
contain infinitely many small non-nullhomotopic loops. Consequently, the
structure of the fundamental group of such a space can only be adequately
reflected by infinite multiplication. We see that the most natural solution to
this problem is to describe the group by countable infinite words instead of
finite ones. In the last two decades some papers in this direction were pub-
lished. For example, there were articles published where the authors consider
such a description of the fundamental groups of the Hawaiian Earring [9, 13],
the Griffiths space [8] or the Sierpinski Gasket [1, 12, 17].

The issue of finiteness is also important when it comes to homology theory.

Therefore, a homology theory with infinite chains of simplices is worth being

xXvi
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investigated in perspective for wild topological spaces.

Milnor-Thurston homology theory is a particular example of a homo-
logy theory that admits infinite chains. They are by definition compactly
supported Borel measures on the space of singular simplices (note that in
this thesis the notion of compactness does not require the Hausdorff axiom).
A formal definition of Milnor-Thurston homology can be found in Section 1.3.

We see that singular chains, which are finite linear combinations of sin-
gular simplices, can also be interpreted as Milnor-Thurston chains. We just
have to identify finite linear combinations with measures concentrated on a fi-
nite number of points (this identification leads to the definition of a canonical
homomorphism between singular homology and Milnor-Thurston homology,
see Section 1.3).

This homology theory was invented in order to have a more convenient
representation of cycles. It was supposed to coincide with singular homo-
logy for hyperbolic manifolds. And in fact, as it was proved, it satisfies the
Eilenberg-Steenrod axioms at least for normal spaces [34]. However, its cal-
culation for spaces more complicated than CW-complexes is by no means
automatic. The first results in this direction was provided by Zastrow [35]
[34, Section 6.], and the first concrete computation of Milnor-Thurston ho-
mology groups was done for the Warsaw Circle by the author of this thesis
[27].

Chapter 1 contains a presentation of known results, a brief history and
a formal definition of Milnor-Thurston homology. Chapter 2 presents calcu-
lation of Milnor-Thurston homology groups of the Warsaw Circle and some
other similar spaces. Moreover, it also contains an answer to Berlanga’s ques-
tion whether Milnor-Thurston homology groups are Hausdorff [5|. Chapter 3
contains further results on the zeroth Milnor-Thurston homology group — a
proof that for Peano continua it is one-dimensional, a proof that the canoni-
cal homomorphism is injective for spaces satisfying some technical conditions
(see Theorem 3.3) and finally a counterexample that the canonical homomor-

phism need not be injective in general. Results of Chapter 2 have already
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been published by the author of this dissertation |27 and results of Chapter 3
are contained in the preprint [28| which is currently under review.
Aknowledgements. I would like to thank Andreas Zastrow — patient
advisor and inspiring interlocutor, in particular for directing my attention
onto the problems studied in this thesis. I would like also to thank Pawetl

Joziak for his impact on the shape of this dissertation.



Chapter 1
Preliminaries

This chapter is devoted to recalling results that exist in literature. In
the first section we define some notions and recall several results that will be
used in this thesis. The purpose of the second section is to present Milnor-

Thurston homology theory.

1.1 Results from analysis and measure theory

A o-algebra over a set € is a family of subsets of {2 that contains the
empty set and is closed with respect to complements and countable unions,
hence also countable intersections. An intersection of any collection of o-
algebras is also a o-algebra. Thus, for every family S of subsets of {2 there
exists the smallest o-algebra containing S. We call it the o-algebra generated
by S, and it is denoted by o(S).

Definition 1.1. A pair (2, F) where F is a o-algebra over €2 is called mea-

surable space.

Definition 1.2. Let (2, F) be a measurable space. A function p: F — R is
called a finite signed measure if it is countably additive and vanishes on the

empty set.

Remark. In this thesis we consider only finite signed measures, thus for

simplicity we shall call them measures.

1
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Every topological space is a measurable space in the following natural
way: Let (X, 7) be a topological space. The o-algebra generated by 7 is
called the Borel o-algebra and it is denoted by B(X).

Let (€2;, F;) for i = 1,2 be measurable spaces. A function f:Q; — Qy is

called measurable if the preimage of every set in F5 is contained in JF7.

Definition 1.3. Given a measurable function f : € — €25 and a measure

on ); we define the image measure fu by the formula
(fu)(A) = u(f~'(A)), for any measurable set A

We easily see that the composition of measurable maps is again measur-

able. Moreover, we have the following

Lemma 1.4. Let f : Qy — Qo, g : Qs — Q3 be measurable maps and let

be a measure on 1. Then we have

(go f)(u) = g(fn)

Proof. Take a measurable set A C €;. Then we have (go f)71(A) =
(g7 (A)). Thus, we have

(g0 ))(A) = u(f~ (g7 (A)) = (fu)(g~"(A)) = g(fu)(A).
From that, the assertion of our lemma follows.

O

Definition 1.5. Let i be a measure on a measurable space (2, F). A carrier
of measure p is a set D C € such that u(A) =0 for any F 5 A C Q\ D.

The following result helps us to deal with signed measures.

Theorem 1.6. (Hahn [19, Theorem A, p. 121|)) Let i be a signed measure on
(Q, F). Then there exist two disjoint sets QT, Q= € F such that Q = QTUQ~
and such that for every F € F we have p(FNQT) >0, p(FNQ™) <0.
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The decomposition of our space € into sets O, Q™ is not unique. Nev-
ertheless, for two distinct decompositions: 7,

that, given any F' € F it is p(FNQT) = w(FNQT), w(FNQT) = w(FNQy)
[19, p. 122]. Therefore the signed measure p can be uniquely decomposed

1 = 1,2, one can prove

into the following difference of unsigned measures
po=pt—p,
where p* () = p(-NQy), p= (1) = —p(- N Q).

Definition 1.7. Let p be a measure on a space X, the variation || of the

measure j shall be defined as
| = p* 4+
The total variation ||u|| shall be defined as

]l = [l (X).

Definition 1.8. Let p be a signed finite Borel measure. We say that p is

reqular if for every Borel set B

e |u|(B) is the supremum of |u|(K) where K C B is compact,

e |4|(B) is the infimum of |x|(U) where U D B is open.

The space of regular finite Borel measures on a topological space X shall
be denoted by M(X). It is a normed space equipped with the total vari-
ation norm. Let C(X) denote the space of real continuous functions on a

topological space X. We have

Theorem 1.9. (Compact version of Riesz Representation Theorem [10, Chap-
ter ITI, Theorem 5.7|) Let X be a compact Hausdorff space and let € M(X).
Define F,, : C(X) = R by:
Ff) = [ fi
X

Then F, € C(X)* and the map p — F, is an isometric isomorphism of
M(X) onto C(X)*.
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Here “()*” denotes the space of continuous functionals on a topological
vector space.

We define the following notions as in [7, p. 41]:

Definition 1.10. A non-empty family of sets is called a w-system if it is

closed under finite intersections.
Obviously any topology is a m-system.

Definition 1.11. A non-empty family of subsets of space X is called -
system if: it contains X, it is closed under complements and it is closed

under countable disjoint unions.
Notice, that any o-algebra is a A-system.

Theorem 1.12. (Dynkin’s lemma [7, Theorem 3.2]) Let D be a \-system
and let P C D be a w-system. Then o(P) C D.

Corollary 1.13. Let p and v be Borel measures on a topological space X.

Suppose p and v are equal on open sets, then p = v.

Proof. Let D be the subset of Borel o-algebra such that for every A € D
we have p(A) = v(A). We see that D is a A-system. The topology 7 of X is
a m-system such that 7 C D. So by Dynkin’s lemma we see that D is in fact

the Borel o-algebra and hence u = v.
O

The definition of an algebra of subsets is analogous to the definition of a
o-algebra but with finite unions instead of countable unions. In construction

of measures we shall use the following result of Constatin Carathéodory:

Theorem 1.14. (Carathéodory Extension Theorem |2, Theorem 1.3.10|) Let
1 be an unsigned measure on an algebra of sets Fo. Then, p has a unique

extension to a measure on o(Fp).

In fact, if we want to construct a measure it is convenient to define it on

some “smaller” family of sets:
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Definition 1.15. We say that a family S of subsets of X is a semi-algebra
if it contains the empty set, it is closed under finite intersections and for any
set 2 € S there exists a finite disjoint collection of sets C; € S, such that
X\E=,0C.

Remark. An example of a semi-algebra over [—1,1] may be the family

of semi-closed intervals of the form when [a,b) intersected with [—1, 1].

Corollary 1.16. If i1 is a non-negative countably additive set function on a

semi-algebra S such that (&) = 0, then there exists an extension of p to

a(S).

Proof. The algebra of sets Fy that is generated by S has a simple

description:
Fo = {UE | E is a finite subset of S}

It is easy to see that every element of F is in fact a disjoint union of elements
in S. Hence, i has a natural (and well defined!) extension to an additive set
function on Fj.

We will prove that it is in fact countably additive. Take a countable
collection of subsets F; € Fy such that F' = J; Fj € Fy. As we noted above,
F can be decomposed into a disjoint union of a finite number of sets F; € S.
Similarly, F; =, EZ] , where {Ef }i is a finite subset of S. By the intersection
property of a semi-algebra we can assume that each Ef is a subset of some

E).. Thus, we have
E=|J E.

EZCE»L
Hence, countable additivity of g on S implies countable additivity of p on
Fo. Finally, by the Carathéodory Extension Theorem we know that there

exists an extension of p on o(Fy) = o(S).
0

Let A and B be families of subsets of X and let Y C X, then Y N A
denotes {YNA| A e A} and A@ B denotes {AUB | A € A B € B}.
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Moreover notice that if F is a o-algebra over X then A N F is a o-algebra

over A.

Lemma 1.17. Let A C X be a subset of a measurable space (X, F). Let F
be generated by a semi-algebra S. Then ANF = a(ANS) as a o-algebra

over A.

Proof. The idea of this proof is a slight generalisation of the proof of |34,
Proposition 1.10] (proofs by this method can also be found in some standard
texts on measure theory [4, 1.1 (1.4)], [21, 1.5(Satz 8)]). So let G be the
o-algebra over A generated by A N'S. Obviously, we have G C AN F. In
order to prove the other inclusion notice that G & ((X \ A) NF) is a o-algebra
over X containing S. Thus, F C G & ((X \ A) N F). Now, applying to both
sides of this inclusion AN we obtain ANF C G.

O

Lemma 1.18. Let f : X — Y be a map between a set X and a measur-
able space (Y,G). Let G be generated by a semi-algebra S. Then f~1(G) =
o(f~1(8S)) as a o-algebra over X

Proof. Without loss of generality we can assume that f is a surjection.
This follows from Lemma 1.17 and the fact that f~'(f(X)NA) = f~1(A),
for every family A of subsets of Y.

Let F C f~Y(G) be the o-algebra generated by f~(S). First, we will
prove that f(F) := {f(B) | B € F} is a o-algebra. Countable additivity is
proved using good behaviour of images with respect to unions. Finally, let
A = f(B) for some B € F, then Y\ A= f(X \ B) because f is a surjection
and every set in F is a preimage of a set in G.

We can see that S C f(F), thus G C f(F). Applying the operation f~1

to this equation we obtain f~!(G) C F, which proves our lemma.
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Lemma 1.19. Let G be an open set of a metric space (X,d). Then there
exists a sequence of continuous functions converging pointwise from below to

the characteristic function of G.

Proof. Let x¢ denote the characteristic function of G and let f be a
continuous function on [0,00) such that f(0) = 0, f(t) = 1 for t > 1 and
0 < f <1 Then f,(x) = f(n-d(x,X \ G)) converge pointwise to yg and
fn < x¢ for all n.

OJ

Theorem 1.20. (Lebesgue Dominated Convergence Theorem [29, p.229])
Let (X, F,u) be a measure space, let E € F and let f, be a sequence of

measurable functions on E such that

| fn(2)] < g(x), forx e E

and for an integrable function g on E. Suppose

fulx) = f(x)

almost everywhere on E. Then f is integrable, and

/E fdy = lim /E e m

Theorem 1.21. (Hahn-Banach Theorem [29, p.187|) Let p be a real valued
function defined on a vector space W satisfying p(z + y) < p(x) + p(y) and
plax) = ap(z) for all « > 0. Suppose that X is a linear functional defined
on a subspace V- C W and that A\(v) < p(v) for allv € V. Then there is a
linear functional A defined on W such that A(w) < p(w) for allw € W and
A(v) = A(v) for allv e V.

Corollary 1.22. Let W be a normed real vector space and let V- C W be
its subspace. Then any bounded linear functional V- — R has a bounded

extension to W of the same norm.
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The last well known result we mention here is purely topological. We use
it in Chapter 3.

Definition 1.23. A Peano continuum is a compact and locally connected

metric space.

Theorem 1.24. (Hahn-Mazurkiewicz |22, Theorem 3-30|) Let X be a Peano

continuum, then there exists a continuous surjection f :[0,1] — X.

1.2 A brief history of Milnor-Thurston homo-
logy theory

The idea of Milnor-Thurston homology emerged from Gromov’s proof of
the Mostow Rigidity Theorem. The first mention of this theory can be found
in circulated lecture notes [32, Chapter 6]. Thurston remarks that the proof
presented in the notes is different from Gromov’s original proof and that
it is to be published in his paper with Milnor Characteristic numbers for
three-manifolds. The paper, however, never appeared.

Simplicial volume, introduced by Gromov in the proof of the Mostow
Rigidity Theorem, is a topological invariant deeply connected with the ge-
ometric structure of a hyperbolic manifold. Let M be a closed orientable
smooth manifold. There is a natural £*-norm on the space Cj(M;R) gener-
ated by singular k-simplices (the norm of a linear combination of simplices is
defined to be sum of absolute values of the coefficients). This norm induces
the Gromov seminorm on the level of homology — it is the infimum to the
norm of cycles in the particular homology class (or equivalently the distance
of the given homology class to the subspace of boundaries). Now, the simpli-
cial volume is defined to be the Gromov seminorm of the fundamental class
of M.

Since simplicial volume is defined via homology groups, it is a homotopy
invariant. Moreover, Thurston, following Gromov’s ideas, proved that for

orientable closed hyperbolic manifolds it is proportional to the hyperbolic
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volume |32, Theorem 6.2]. Thus, any hyperbolic manifold homotopically
equivalent to M must have the same volume.

In the proof of Theorem 6.2 in [32] Thurston represents the fundamental
class by a measure supported on geodesic simplices of arbitrarily large vol-
ume. Thus, there was a need of homology theory, where chains are measures
supported on simplices. Thurston creates such a theory and extends the
Gromov seminorm to chains of that type (it is simply defined to be the total
variation of a measure). The fact that the fundamental class is represented
by a measure supported on isometric simplices allowed to calculate the in-
tegral of the volume form in an automatic way (it just yields an integral of
a constant function!), and thus finding the relation between the simplicial
volume and the hyperbolic volume.

In this proof Thurston used the obvious fact that his measure homo-
logy and singular homology coincide for hyperbolic manifolds in an iso-
metric way (with respect to Thurston’s seminorm on measure homology,
and the Gromov seminorm on singular homology). Recently it has been
proved even more. First, coincidence result of measure homology (called
here Milnor-Thurston homology) was shown by Hansen and Zastrow inde-
pendently [20, 34]. The authors prove that the homology theory in principal
satisfies Eilenberg-Steenrod axioms and thus it coincides with singular homo-
logy for CW-complexes. The next essential step, was to prove that Thurston’s
seminorm and the Gromov seminorm coincide for spaces more general then
hyperbolic manifolds. This was done by Clara Loh [25].

Another application of Milnor-Thurston homology groups was found by
Ricardo Berlanga. The mass flow is a homomorphism from the universal
covering of the group of measure preserving homomorphisms to first homo-
logy group with real coefficients. Fathi [16] attributes it to Schwartzman [30].
Application of Milnor-Thurston homology instead of singular homology al-
lowed Berlanga to extend Fathi’s results on the mass flow and simplify his
arguments. In particular, Berlanga introduced a structure of topological vec-

tor space on Milnor-Thurston homology groups [5] and proved that the mass
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flow is continuous with respect to this topology and the Whitney topology

on the space of homeomorphisms of a given manifold [6].

1.3 Milnor-Thurston homology theory

Now, we shall present the construction of Milnor-Thurston homology the-
ory. Here we use calligraphic letters (C, H, etc.) for constructions in Milnor-
Thurston homology theory and ordinary letters for the corresponding con-
structions in singular homology theory (C, H, etc.).

First, we will construct the chain complex C.(X) for a given topological
space X. Let C°(A* X) denote the set of singular simplices (continuous
functions from the standard simplex A* to X, where k is a non-negative
integer). We shall consider C°(AF, X)) as a topological space equipped with
a compact-open topology. The vector space Cr(X) of k-dimensional chains
shall consist of finite measures with a compact carrier (cf. Definition 1.5; in
this thesis the notion of compactness does not require Hausdorffness, this is
a different terminology than the one used by Zastrow in [34, Section 1.8]).

Next, in order to make the sequence of vector spaces C(X) a chain com-
plex, we shall define a boundary operator. We can see that the natural
inclusions of faces §; : AF~t < AF fori = 0,1, ..., k, induce continuous maps
0; + COAF, X) — C°A* 1 X) on the level of singular simplices. These
functions are constructed just by using the composition: 0; : ¢ +— o 0 §;.
It can be easily proved that 0; are continuous, since the spaces of singular
simplices are endowed with the compact-open topology |34, Lemma 2.8|.

Now, the continuous functions 0; induce maps 0; : Cip(X) — Cr_1(X)
(denoted by the same symbol!). The operator 0; : Ci(X) — Cr_1(X) by
definition sends a measure to its image measure (cf. Definition 1.3) with
respect to continuous (and hence, measurable) function 9; : C°(A* X) —
C°(A*=1) X). Finally, the boundary operator 0 : Ci(X) — Cp_1(X) is given

with the usual formula:
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We have the following theorem:

Theorem 1.25. (see [34, Corollary 2.9]) The sequence Ci(X) of real vec-
tor spaces together with the boundary operators defined above forms a chain

complex C.(X).

We can see that C, is a functor from the category of topological spaces to
the category of chain complexes. Indeed, the chain map f, : C.(X) — C.(Y)
induced by a continuous function f : X — Y is defined in a similar way as
the boundary operator. Namely, on the level of singular simplices we have
a function f : C°(A*, X) — C°(A*Y) denoted by the same symbol f and
defined by the composition

fio— foo.

This function is continuous (again see |34, Lemma 2.8|). Finally, fer :
Cr(X) — Cr(Y) is defined as an operator sending a measure to its image
measure with respect to f.

Now, in order to see that C, is a functor, we have to prove that it be-
haves well with respect to a composition of morphisms. It is an immediate
consequence of distributivity of composition operation that C°(A*, —) is a
contravariant functor. Thus, it is sufficient to prove that the image measure
construction behaves well. But it is implied by Lemma 1.4.

From the same lemma we see that f, is in fact a chain mapping. We need
to prove that fep_100; = 0; 0 for, for i = 0,1, ..., k. But from the lemma we
see that the operators on the both sides of this equation are induced by the

mapping o — f oo o¢; on singular simplices, and thus they are equal.
Definition 1.26. The Milnor-Thurston homology groups H.(X) are defined
as homology groups of this chain complex C,(X):

Hel) = B3 = (0 Con(X) = G(X)}

Moreover, we see that H, is a functor from the category of topological

spaces to the category of graded real vector spaces.
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We can also define relative Milnor-Thurston homology groups. Let X be
a topological space and let A be its subspace. The relative chain complex
C.(X, A) is defined as a quotient of C,(X) by i4(Ci(A)) where i : A — X is
the inclusion map. The relative Milnor-Thurston homology groups H.(X, A)
are by definition homology groups of C.(X, A).

Definition 1.27. Let X be a topological space, and let x € X. The Kro-
necker measure concentrated on x is a measure 0, such that 0,(B) = 1 if
x € B, and 6,(B) = 0 otherwise.

There is a canonical homomorphism from singular chains with real coef-

ficients to Milnor-Thurston chains

E o;0; E aiéUi’
7 7

where 0 denotes the Kronecker measure.

This homomorphism is a monomorphism if and only if X satisfies the
separation axiom 7Tj. Indeed, suppose there are two points z1, 9 € X that
have the same neighbourhoods. Let o; and oy be the singular k-simplices
that map the whole standard simplex into x; or s, respectively. Both of
these simplices have the same neighbourhoods in C°(A*, X). Now, notice
that d,, and 0,, are the same Borel measures, even though the chains oy and
o9 are different.

On the other hand assume that X is Ty. Take a linear combination
>, oo; that is mapped to zero by the canonical homomorphism. There
exists a neighbourhood of o that does not contain any of o; for i # 1.
The value of ), a;d,, on this neighbourhood is ;. But, it is zero by the
assumption, thus a; = 0. In the same way we prove that all a; = 0, and thus
the kernel of the canonical homomorphism is trivial.

Let o be a singular k-simplex. It is easy to see, that 0,0, = dg,,. From

that, we have
k

06, =Y (—1)"8p,0-

=0
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The right hand side of this formula is the value of the canonical homomor-
phism on Zfzo(—l)"(‘?icr = 0o. Thus, we see that the canonical homomor-
phism of chains commutes with the boundary operator, and therefore it in-

duces a canonical homomorphism on the level of homology
Hy(X5R) — Hi(X).

As was mentioned before, this homomorphism is an isomorphism when X
is a CW-complex (it is a consequence of the Eilenberg-Steenrod axioms, see
[341).

As can be easily seen this homomorphism is also a natural transformation
of singular homology and Milnor-Thurston homology functors. Moreover, the

following notion will be useful in our proofs:

Definition 1.28. A homology class in H(X) shall be called singular homo-
logy class if it lies in the image of the canonical homomorphism Hy(X;R) —

Hi(X). Otherwise it shall be called non-singular homology class.

1.4 The Mayer-Vietoris theorem

The Mayer-Vietoris theorem is a way to relate the homology groups of a

space X with the homology groups of two of its subspaces A and B.

Theorem 1.29. (Mayer-Vietoris) Let h. be a homology theory that satisfies
the Eilenberg-Steenrod axioms and let A and B be open subspaces such that

X = AU B. Then the following sequence is exact:

Lol (AY @ ho(B) Eo =l po(X) —2 s by (AN B) ——

o ho(AN B) 2 o (A) @ ho(B) Emmln p(X) —— 0
wherei: ANB — A, j: ANB— B, k:A— X, [l:B— X are inclusion
maps.

The proof of this theorem can be found in [14, Theorem 14.6 of Chapter
I]. In fact, it is the modern proof. The original result by Walther Mayer
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|26, IV. Abschnitt| concerned only Betti numbers. One year later it was
generalised to homology groups by Leopolod Vietoris [33], but still it was far
before formulation of the notion of exact sequence [11, p. 345]. The modern
version of this theorem first appeared in [14].

Eilenberg’s and Steenrod’s proof of the Mayer-Vietoris theorem used the
Excision Axiom and the Exactness Axiom. Therefore, the result is true
in Milnor-Thurston homology theory for any space for which the Excision
Axiom is fulfilled (at least for normal spaces; see [34, Section 4]). In the next
chapter we shall use this theorem to calculate Milnor-Thurston homology
groups for the Warsaw Circle and some other wild topological spaces.

Remark. The Mayer-Vietoris theorem can also be proved more directly.
Let X be a topological space with subspaces A and B. According to (34,

Lemma 4.10] the inclusion
C.(A) 4+ Ci(B) = C.(X)

induces an isomorphism on the level of homology if there exist V' such that
X\ A C‘O/C V C B (when X is a normal space it suffices that A and B are
open) and AU B = X.

Using this identity we can construct the short sequence of chain complexes

0 —— C(ANB) =9 ey me(B) B . (A)+C.(B) —— 0,

and then its exactness yields Mayer-Vietoris theorem by homological algebra
[24, Theorem 2.1 of Chapter XX].

1.5 Berlanga topology on Milnor-Thurston ho-

mology groups

Berlanga equipped Milnor-Thurston homology groups with a topology
consistent with their linear space structure |5|. Moreover, it is proved that
this topology is locally convex when the underlying topological space is sec-
ond countable and separable (it is discussed below in more details). Con-

sequently, we obtain a functor from the category of second countable and
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separable topological spaces to the category of graded locally convex topo-
logical vector spaces (not necessarily Hausdorft!):
Let X be a second countable separable topological space. Given any

continuous function f : C°(AF, X) — R we define a linear functional A; :

Ag(n) = / fdu,
CO(AF,X)

for every pu € Cr(X). The above functional is well defined, since f is contin-
uous and every measure in Ci(X) has a compact carrier. We shall work with
the weakest topology on C(X) for which all such functionals are continuous.
It has been proved, that this weak topology is locally convex and Hausdorff
when X is second countable and separable [5, Assertion 2.2|.

Berlanga proved that the boundary operator 0 is continuous [5, Assertion

2.1]. Consequently the homology groups
Hi(X) = Z(X)/Bi(X)

can be endowed with the structure of locally convex topological vector space.
We call this topology Berlanga topology.

Remark. Notice, that the notion of local convexity does not include
Hausdorfness here. There is no reason to think that B (X) are closed sub-
spaces, and thus Hy(X) need not to be Hausdorff. In fact, Berlanga asked
a question whether Milnor-Thurston homology groups are Hausdorff in this
topology [5].

Berlanga himself was able to show that H; is always Hausdorff for spaces
that are homotopy equivalent to CW-complexes. Moreover, Frigerio extended
this result to every dimension [18]. On the other hand, Zastrow constructed
an example of the space V' where Ho(V') is not Hausdorff [35]. This space V
is the Warsaw Circle with a part of accumulation line removed (see Figure
2.7). We present a proof of this fact in Chapter 2 (see Theorem 2.5).



Chapter 2

Milnor-Thurston homology for

wild topological spaces

We know that Milnor-Thurston homology theory coincides with singular
homology for CW-complexes (see Section 1.3). Additionally, Zastrow con-
structed a space where the canonical homomorphism is not an isomorphism
[34, p. 393]. This space, that we call here the Convergent Arcs Space, is
not a CW-complex, and therefore its study naturally fits our topic, since the
general question of this thesis is: “What is the behaviour of Milnor-Thurston
homology for spaces that are not homotopy equivalent to CW-complexes?”.

Another interesting research problem within this topic, is comparing
Milnor-Thurston homology with Cech homology. There is the well known
example of the Warsaw Circle W (it is formally defined below in Section 2.1)
that has the same Cech homology groups as a circle [23, Remark 2.7|. More-
over, first singular homology group of W is trivial. The natural question is:
“Does Milnor-Thurston homology detect the circular shape of the Warsaw
Circle like Cech homology does?”.

The techniques we present in this chapter are powerful enough to un-
derstand the structure of Milnor-Thurston homology groups of the Warsaw
Circle and the Convergent Arcs Space. Additionally, we can also answer the

question of Berlanga: “Are Milnor-Thurston homology groups Hausdorff in

16
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) ) Figure 2.2: The Convergent
Figure 2.1: The Warsaw Circle
Arcs Space

Berlanga topology” [5, p. 367].

2.1 Spaces we are interested in

In this chapter we focus on three different examples of spaces: the Warsaw
Circle W, the Convergent Arcs Space CA and the Double Warsaw Circle DW.
We define them formally in this section.

The Warsaw Circle (see Figure 2.1) is defined as the subset of R? that

consists of:

e the part of “Topologists Sine Curve” {(z,y) € R? | y = sin 1/} between

the line x = 0 and the rightmost minimum,
e the “accumulation line” {(0,y) € R? | -1 <y < 1},
e an arc connecting the point (0, —1) with the rightmost minimum.

By the Double Warsaw Circle (see Figure 2.3) we mean the space that is
a copy of two Warsaw Circles overlapping at the accumulation line.

The Convergent Arcs Space (see Figure 2.2) is a space built of a countable
number of arcs connecting two given vertices. They converge, in the topology

induced from the plane, to a line segment that is also a part of this space.
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Figure 2.3: The Double Warsaw Circle

2.2 Geometric intuition

This section explains the geometric intuition behind the results of this
chapter. They will be proved by formal arguments in the next sections.

First, we try to understand why the canonical homomorphism (cf. Sec-
tion 1.3) from singular homology to Milnor-Thurston homology may not be
an isomorphism. More generally, we will see that there is no isomorphism
between first homology groups for the Convergent Arcs Space CA.

Let us denote the building arcs of CA by [; for ¢ = 1,2, .... The limit arc
is denoted by Iy, and we denote endpoints of those arcs by P and (). For
every arc [; we choose some singular simplex o; that parametrises it. Let 9;
denote the Kronecker measure on o;.

Now, pick some p € Z;(CA). Every singular 1-simplex in CA can be
homotoped relative to its vertices to a 1-simplex that passes through P and
@ only finite number of times. Thus, x is homologous to some cycle
supported on such simplices.

Next, every singular 1-simplex in a carrier of j4; can be divided into paths
such that at least one of its vertices is P or (). Therefore, there exists

w2 € 2Z1(CA) homologous to (1, and such that each 1-simplex in its carrier is
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attached to P or (). Notice, that ps is a finite measure. This is a consequence
of compactness of a carrier D of p; that implies existence of a uniform bound
to the number of occurrences of P and () in 1-simplices in D.

In the carrier of uy there are simplices with only one vertex in {P, Q}.
However, since p5 is a cycle, we can merge such simplices together. Thus, we
get a measure pg that is supported only on simplices connecting P and Q).

Finally, by homotopy relative to the endpoints P and @) (and change
of orientation if necessary) we construct measure py that is supported on
{6:}2,. Hence, we see that every 1-cycle is homologous to a measure of the

form
o

Z a;0;,

i=0
where (a;)°, is an absolutely summable sequence.

An analogous reasoning shows that every singular 1-cycle is homologous
to a finite linear combination of o;,. Additionally, we see that the canonical
homomorphism is

n n
Z a;o; Z azéz
i=0 =0
This clearly shows, that the canonical homomorphism is an injection, but it

is not isomorphism. Moreover,

H\(CA) = R* =~ PR, H,(CA) ="~ PR,

Ro ¢
where /! denotes the vector space of absolutely summable sequences and R*
denote the vector space of sequences with almost all elements zero. Thus, we
see that these groups cannot be isomorphic.

The next problem posed by us was, whether the first Milnor-Thurston
homology group of the Warsaw Circle is a one-dimensional vector space.
Again, we address this question in this section in an intuitive manner and
we postpone a formal argument to the next section.

Let us divide the Warsaw Circle into arcs as presented on Figure 2.4.

Choose a family {7;}°, of singular 1-simplices that parametrise the cor-
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Figure 2.4: The Warsaw Circle subdivided into simplices

responding arcs and let {0;}3°, denote the vertices of the corresponding
1-simplices.

The argument analogous as in the case of the Convergent Arcs Space
shows us, that we can represent chains by absolutely summable real functions
supported on simplices 7;. The boundary is calculated in the usual way, so,
for instance, the coefficient of o1 is equal to the difference of coefficients of
7o and 7.

However, there is one O-simplex that is a face of only one 1-simplex (it
is denoted by oy on Figure 2.4), so the condition to be a cycle implies that
coefficient of oy and, consequently, coefficient of 7y is zero. By induction we
see that coefficients of 7; should be zero, for every ¢ € N. As a consequence,
there is no “fundamental class” for the Warsaw Circle.

The above problem is caused by the O-simplex that does not belong to
two 1-simplices. Therefore, it is reasonable to consider the case where no
such simplex exists. This leads us to the idea of the Double Warsaw Circle
(this space can be divided into simplices in a similar manner as the Warsaw
Circle). Here, the cycle condition implies that coefficients for all 1-simplices

should be the same. However, this contradicts finiteness of the corresponding
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measures. Hence, we have no “fundamental class” again.

Now, let us focus on Hy(W) for a moment. By the above argument, we see
that every O-chain can be represented by a measure concentrated on {o;}72,.
Every such a measure is a cycle, by definition. In order to find Hy(WW') we
need to find cycles that are in the image of the boundary operator, and then
mod out by these cycles.

At first glance it is hard to see what we get, but there are some things
we can say right away. The zeroth singular homology group of W is one-
dimensional, since W is a path-connected space. From that, we see that
every O-cycle concentrated on finite number of o; will be homologous to a
chain aoy, for some o € R.

The natural question is whether there exist cycles concentrated on infinite
number of o; which are not homologous to aoy. We will show that the answer
is positive and the condition such cycles need to satisfy is a convergence of
coefficients of 0; to zero that is slow enough. Consequently, the group Ho(W)
is not one-dimensional. To see the above facts, one has to write down the
formulae for the boundary operator. However, we postpone it to the next
section.

The arguments given in this section can be formalised. Although, there
already exists an algebraic technique, that can be used to prove the above
results in a formal way. It is the Mayer-Vietoris theorem. However, the
intuition presented here can help us to understand how this abstract method

really works, as we can see in the next section.

2.3 Higher dimensional homology groups for the

Warsaw Circle

The goal of this section is to prove that Milnor-Thurston homology groups
of the Warsaw Circle W are trivial in positive dimensions. The algebraic
technique we use is the Mayer-Vietoris theorem applied in a proper way.

We cover W by two open subsets L and U. Both of them are constructed
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Figure 2.5: The Warsaw Circle with distinguished points

U, U, 0, U,
Ys U, Y,
m, ) _
= m
myim, 1

Tl ¢ t5 fm N,

M, M, M,

U

Figure 2.6: Three covering sets for the Warsaw Circle: U = ;2 Us, L =
Uzio Li, UNL= Ufio M;
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using the embedding of W in the plane. Let L be an intersection of W with
the halfplane {(x,y) | y < n}, where 0 < n < 1. Similarly, the subset U is an
intersection of W with {(x,y) | y > —n}. Let us denote the path components
of L by Ly, for k = 0,1, ... (see Figure 2.6). In the same way U and U N L is
decomposed into its path components denoted by U, and My, respectively.

We pick up one point from each of these components; this will be useful
in the following proofs. Namely, let 72, be the first zero of sinl/x after
the rightmost minimum. The next zero is denoted by T2, and so on (see
Figure 2.5 and Figure 2.6). Additionally, let Ty = (0,0). We see that all
my € M C UN L.

Similarly, let u; denote the first maximum after the rightmost minimum,
let 5 denote the next maximum, and so on. Moreover, let g = (0,1). Again,
we see that all w, € U, C U.

Finally, we do the same for L: let [; denote the first minimum on the left
of the rightmost minimum, let I, denote the first minimum on the left of [;,
and so on. Then, let Iy = (0, —1). We get I, € Ly C L.

According to our intuition as presented in the previous section, it is nec-
essary to divide singular simplices into shorter ones. This process can be
technically realised via the Mayer-Vietoris theorem. The key idea of this
theorem is to divide all singular 1-simplices into their parts contained in U
or L (this is done by the barycentric subdivision of simplices, which is used
to prove the Excision Axiom [34, Section 4] or the Mayer-Vietoris theorem
itself, cf. Remark on p. 14). After this process of division, every simplex is
contained in one of L; or U,.

Moreover, we would like to reduce our attention to 1-simplices that have
their endpoints in {7, }32,. In this case, however, the Mayer-Vietoris theo-
rem is not much of a help — the only thing we know is that their endpoints
lie in (Jpo g M.

There is however another approach to this problem — we can prove that
U, L and UN L all have the homotopy type of a convergent sequence with its
limit. For that kind of space the calculation of the Milnor-Thurston homology
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groups is straightforward.

So, let S denote a convergent sequence (xy)3>, with its limit x, (its topol-
ogy is induced from the plane). This space is so simple that we can put our
hands on the space of singular simplices, and also on the space of measures

(cf. Lemma 2.2). Consequently, this will allow us to do our calculations.
Lemma 2.1. The spaces UN L, U and L have the homotopy type of S.

Proof. Let us start with proving this lemma for U N L. We define a
function fy; : U N L — S in the following way: let x € My, than we put
fu(z) = zg. Next, we define gy : S — U N L by g(xg) = M. We can see
that fys o gy = idg and gy o fys is a map that sends each point in M, to
my, for £ =0,1,.... This composition is homotopic to idynr,.

Next, we prove the lemma for U. We define functions fy : U — S and
gu : S — U in the similar way as in the previous case. That is: fy(x) = zy
for x € Uy and gy (zr) = uy. We can see, that fyogy = idg and gyo fy ~ idy.

Finally, we prove the lemma for L. The functions fr, : L — S and
gr : S — L are defined in a similar manner as before. That is: f;(z) =

for € Ly and gr(z)) = Ir. We can see that f o g =idg and gz o fr ~ id;.
O

Since Milnor-Thurston homology groups are homotopy invariant (because
the theory satisfies Eilenberg-Steenrod axioms, cf. Section 1.3), the next

lemma allows us to calculate them for U, L and U N L.

Lemma 2.2. Ifn > 0, then H,(S) = 0 and Ho(S) = (', where ¢* denotes

the space of sequences which form an absolutely convergent series.

Proof. We can see that
CO(A™, S) = {a} : A™ — S | 2} sends any point of A™ to zy, k € No}.

For every n > 0, the space C°(A",S) is homeomorphic to S, because

(x})32, is a convergent sequence with limit z{j. From that, every subset
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of this space is Borel, and every two Borel measures which are equal on
singletons {z}} are equal. Therefore, we can identify a sequence of real
numbers (ay)2, with a measure p such that p({z}}) = a,. Additionally, we

can see that

an)iZoll = Nl =Y lal,
k=0

and every measure has a compact carrier (that is the whole space). Conse-
quently,
o0
Co(S) = 0" = {(a)iy | ax €R,Y  Jag| < o0}
k=0
We have 9,2 = x}~ !, which implies that 9;(a )32, = (ax)3%,. From that,

n n

Oan)o = D (DD = (@) D (-1)'

i=0 i=0
From here, 9 = 0 when n is odd, and 0 = id when n > 0 is even. Thus,
homology groups are trivial for n > 0. Indeed, this implies that if n is odd
Z,(8) = C,(S), but on the other hand B, (S) = C,(S). Hence, H,(S) = 0.
If n is even, the subspace Z,(S) of cycles is trivial, and so is H,(S).

On the other hand, we have @ = 0, for n = 0. Hence, every element

in /! is a cycle. Because 0 = 0, for n = 1, there are no boundaries and

Ho(S) = Co(S) =2 1,
0

Finally, using the Mayer-Vietoris sequence, we can calculate homology

groups.
Theorem 2.3. If n > 0, then H, (W) = 0.

Proof. The Mayer-Vietoris sequence
Lemdend 90 (U) @ Ho(L) E2=tomy 3, (W) =25 M, ,(UNL) ——

o Ho(UN L) L2 0 (U) @ Ho(L) £ 240(W) —— 0
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is exact. Hence, by Lemmas 2.1 and 2.2, we have H,(W) = 0, for n > 1. So,
we have to investigate the case n =1 only.

By exactness of the Mayer-Vietoris sequence and the fact that H,(U) =
Hi(L) = 0 we see that 0, : Hi(W) — Ho(U N L) is a monomorphism.
Consequently,

H1 (W) = ker(ix0, Jx0)-

Therefore, we need to find the kernel of (.0, jo)-
By Lemma 2.2:

Ho(U) = Ho(L) = Ho(U N L) = Co(S) = (1,

so we can identify elements of all these homology groups with absolutely
summable real sequences. This identification allows us to write down formu-
lae for 7,0 and j.q.

Let (mg)2, € ¢* denote a homology class in Ho(U N L). This class is
represented by a measure supported on the set {my}2,, where my’s are the
values of the measure on the singletons {m}. Similarly, every homology
class in Ho(U) is described by some (uy);2, € ¢!, and it is represented by a
measure supported on {Ty}22,.

In order to investigate i.o, we have to associate a measure supported
on {7}, with a measure supported on {7}, that represents the same
homology class in U. So, let u be a measure supported on {my}p2, (cf.
Figure 2.5) represented by the sequence (my)52,. We will construct a measure
supported on {uy}?2, which belongs to the same H,(U)-homology class as
IL.

Let 0y be a singular 1-simplex that connects my with wy. And, let og
denote a singular 1-simplex connecting ma; with uy and let o951 be a singular
1-simplex connecting Mo, 1 with u,. Now, let v = Z:‘;O My0y,, Where d,,
is the Kronecker measure supported on o,. We can see, that v € C;(U),
since v is finite and has a compact carrier (because (o), is a convergent
sequence). The measure p + Jv is supported on {ug}32,, its coefficients

depend on (my)2, as described below. From the definition of oy we have
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that
Ug = My. (21)

Furthermore, from the definitions of o9, and 9,11 we have
Up = Moy, + Map—1  for k > 0. (2.2)

These are the equations that describe 7,q.

In the similar way, we can write down formulae for j.o:
lk = Moy + magt1- (23)

We can describe (i, j«0) in a compact way. So let zop = uy and xo,_1 =
l,. From now on an absolutely summable sequence (zj)2, is identified with
elements of Ho(U) & Ho(L). In this notation, equations (2.1), (2.2), (2.3)

yield
for k=0
z=4 orE= (2.4)
my +mp—1 for k > 0.

Now, we have that the kernel of (i.,j.0) and, consequently, H, (W) is

trivial.

2.4 Zeroth Milnor-Thurston homology group for

the Warsaw Circle

The Mayer-Vietoris theorem allowed us to prove triviality of the first
Milnor-Thurston homology group of the Warsaw Circle. Now, we shall focus
on the zeroth homology group; it can also be calculated using this technique.
Here, we use the notation defined in the Section 2.3. The following theorem

unveils the structure of the zeroth homology group

Theorem 2.4. The vector space Ho(W) is continuum-dimensional.
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Proof. Once again our basic technique to do the calculations shall be
the Mayer-Vietoris theorem and we shall use equation (2.4) together with
notations from the proof of Theorem 2.3. The Mayer-Vietoris sequence is
(cf. Theorem 1.29)

0 — Ho(UNL) 25 90(U) @ Ho(L) 2750 Ho(W) —— 0.

From that, we can see Ho(W) is the quotient ¢* /h(¢'), where h : £ — (*
is the map defined by equation (2.4). This equation can be inverted so that,
given an arbitrary sequence (zx)52,, we can find a unique sequence (mf)s,

that satisfies it; a simple calculation yields
k
mp =Y (=1)"a;. (2.5)
i=0

An element (z1,)5°, € ¢* represents a nonzero homology class in Ho(W) iff it
is not in the image of (7.0, j«0) or, equivalently, if the corresponding (m7)32,
is not an absolutely summable sequence.

Now, we shall find a one dimensional subspace of Ho(WW) corresponding
to singular homology classes. In singular homology theory we consider chains
with only finite numbers of simplices, so now restrict ourselves to considering
a sequence (xy)7, with finitely many nonzero elements. We will prove that
such an element (z1)5°, € ¢! represents the same homology class as (yx)72, €
2 of the form (yx)2, = (,0,0,0,...), for some o € R. Let N denote the

biggest index of nonzero elements in (z)p2, then for £ > N we have

N
my ¥ = (—1)F <2:(—1)1xZ - a) :
i=0
So putting o = chvzo(—l)ixk, yields m; ¥ = 0. Thus, it is absolutely
summable and (zx)52, — (yx)72, represents the zero homology class.
This result is very intuitive. The Warsaw Circle is a path-connected space,
thus its zeroth singular homology group is one-dimensional. Moreover, one

can easily deduce this result using our intuitive model (cf. Section 2.2). A
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simple calculation shows that every measure concentrated on a finite number
of points o; is homologous to a measure concentrated on oy (see Figure 2.4).
Now, we shall prove that H(1/) is much bigger than the one-dimensional
subspace of singular homology classes. In fact, as was stated in our theorem,
its dimension is continuum.
We will start with some sequence of positive numbers n; which is mono-
tonically decreasing with limn; = 0. From now on, up to the end of this

proof, let (z1)72, have a special form:
T = (—1)k(nk+1 — nk)

We can see that v

Z |z = no — Ny,

k=0
hence (z3)2, € £*.

Let us calculate mj using (2.5

E
my, = Z(—l)i+k$i = (—1)k Z(”m —n;) = (_1)k(nk+1 — o). (2.6)

=0 i=0
The sequence (mj)2, is not absolutely summable, since it does not fulfil the
necessary condition limy_,., mj = 0. Hence, (z;)72, does not correspond to
the zero homology class

More generally, we will check what conditions should be imposed on
(2k)52, in order to make it a non-singular homology class. So let (yx)52, =
(,0,0,...), for & € R, be a sequence corresponding to some singular homo-

logy class. In this case obviously:

miy Y = (=1)" (g1 — no — a);

we can easily see this when we notice that (m})2, is linear with respect to
x according to equation (2.5). So, if we take o = —ng the sequence satisfies
the necessary condition of series convergence. Then, we see that a sufficient

condition for x to be a non-singular homology class is

oo
E ng = 00,
k=0
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so we are interested in sequences (ny)%2,, converging to zero but not too fast.

As an example of such a sequence we consider:

n? = _ 1
P+ )87
with 0 < 8 < 1.
Now, we shall prove that the homology classes in Hy(W) corresponding

to the family of sequences (), defined by z! = (—1)k(n§+1 — ) form

a set of linearly independent vectors. So, take a finite sequence of numbers
0 < B; < 1 in an increasing order, and some finite sequence of real numbers
b;. We shall prove that the homology class of (z;)32, = >, b; - (207, is
nontrivial.

In order to do this we need to prove that the sequence

mi = 0 (g 1)

is not absolutely summable. To obtain the above formula we used the fact
that (m?)$, is linear with respect to z, and the equation (2.6).

First, we notice that for the necessary condition of convergence for series
Y reo Imi| to be satisfied, we should have ), b; = 0. Then, the study of the

absolute summability of the above sequence can be reduced to the study of

b;
> ko

For sufficiently big k the expression in | - | has the sign of by (since [y is the

[e.9]

>

k=0

smallest of the numbers), so we can consider:

This series is divergent. The easiest way to see this is to use the integral
criterion. First, we need to notice, that it is for monotonic sufficiently big k.

Then, application of the criterion is straightforward.
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Figure 2.7: The Modified Warsaw Circle

2.5 On Hausdorffness of the Berlanga topology

The question that was posed by Berlanga in [5] is whether Milnor-Thurston
homology groups are Hausdorff with respect to a topology defined in this pa-
per. There are three results in this direction. Firstly, Berlanga’s paper that
was mentioned above, ends with a proof that H; is always Hausdorff for
spaces that are homotopy equivalent to countable CW-complexes. Secondly,
Frigerio proved that Berlanga topology on all Milnor-Thurston homology
groups of CW-complexes is the strongest weak topology, and thus Hausdorff
[18].

Finally, Zastrow constructed an example of a space V' where Hy (V) is not
Hausdorff [35]. This space V' is the Warsaw Circle with a part of the accumu-
lation line removed (see Figure 2.7). The space V' is obviously non-compact,
and this fact is essential in Zastrow’s proof. Then, the natural question
arises, whether we can find a compact space where zeroth Milnor-Thurston
homology group is non-Hausdorff. As we shall see in this section a good
example is the Warsaw Circle and the techniques that we have developed so
far are powerful enough to show it.

One observation that we would like to point out in the beginning is that
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for any space X the homology group H,(X) is non-Hausdorff iff B, (X) is
not closed in C,(X). Indeed, #, (X) is non-Hausdorff iff B,,(X) is not closed
in Z,(X). But the latter group is closed in C,(X), since it is a kernel of a
continuous operator. Thus, in both proofs presented in this section our goal
is to construct a sequence of boundaries whose limit is not a boundary.

Let V denote the Warsaw Circle W C R? with an interval {(0,y) € R? |
0 < y < 1} removed. Since Zastrow’s construction and the proof was not
made public apart from the conference talk [35], we shall present Zastrow’s
proof that Ho(V') is non-Hausdorff. Here we use the notation introduced in
Section 2.3.

Theorem 2.5. The topological vector space Ho(V') is non-Hausdorff.

Proof. As we mentioned above, we will construct a sequence of measures
tn € Co(V), such that there exists v, € C;(V) with dv,, = p,. However, we
will show that p := lim u,, which is not a boundary.

Just as in Section 2.3 let {I;}2°, denote the sequence of minima of the

sinusoid. Moreover,
fi o= (1 —27")d7, — ZQ_k(%k,
k=1

where ¢ denotes the Kronecker measure. The measures p,, € By(V'), because
they are concentrated on a finite numbers of points and the coefficients sum
up to zero.

The natural candidate for a limit is

p=0, =y 27k,
k=1

Indeed, it is sufficient to show that for every continuous function f: V — R

(here we identify Co(V') with appropriate measures on V') we have

lim / fd(p — p,) = 0.
n—oo Vv
This is equivalent to
. k7
Tim > 27Ff(l) =0,

k=n+1
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which is true because tails of convergent series converge to zero and the values
of f are bounded since it is continuous and compactly supported.

Now we shall prove that p is not a boundary. So suppose there is v €
C1(V) such that Ov = u. Then, it will follow that a compact carrier of v
cannot omit two consecutive maxima of the sinusoid. Being more specific,
let D be a compact carrier of v. Then we have a continuous evaluation

function

F : DxA'—=V

o X qw o(q).

We want to show that F'(D x A') must contain infinitely many maxima of
the sinusoid.

To the contrary, suppose that u; and wu; are maxima of the sinusoid
such that Uy, ugy; ¢ F(D x A'). Then let Y = V \ {w,wps1}. We can
interpret o and v as elements of Cy(Y) and Ci(Y') respectively. Naturally,
Ov = p still holds.

Then, we can embed Y into Z = Y U .S, where S is an open rectangle
with opposite vertices w1 and Il and with sides parallel to the axes. This
allows us to identify p and v with measures in Co(Z) and C,(Z) respectively.
Still, we have the condition 0v = pu, hence p represents zero homology class
in Ho(Z).

On the other hand, we can see that p represents the same homology
class in Z as 2*550 — 2’k5gk which is not zero since points Iy and [, lie in
a different components of Z. Therefore, we got a contradiction and we see
that F/(D x A') contains infinitely many maxima of the sinusoid.

Since F' is continuous, the set F(D x A') must be compact, so it cannot
contain infinitely many maxima of the sinusoid. Again, we have a contradic-

tion. So, there cannot exist measure v such that Ov = pu, and consequently
Ho(V) is not Hausdorff.
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Based on different arguments than in [35] we obtain the following result
for the Warsaw Circle itself:

Theorem 2.6. The Milnor-Thurston homology group Ho(W) is not Haus-
dorff in Berlanga topology.

Proof. We need find a sequence of boundaries such that the limit of this
sequence is not a boundary. From the proof of Theorem 2.4 we know that
the homology classes in Ho(WW) can be described by elements of ¢'. So, for
each natural number n let us take an element (27)2, € ¢* defined in the

following way:

— i (D) (i — ), for k=0,
v =9 (=1 (e — ), for 0 < k <n,
Oa for k > n.

where (ny)?2, ¢ (! is a decreasing sequence of positive numbers converging
to zero (compare with proof of Theorem 2.4).

For each natural number n, the sequence (z7)32, represents the zero ho-
mology class in Hy(W). To justify it, recall the proof of Theorem 2.4. From
that, we know that an arbitrary sequence (2;)32, € ¢* with at most N nonzero
elements represents the same homology class as the sequence («,0,0,...),
where a = Zszo(—l)kzk. Therefore, we see that for each n the sequence (z7)72,
represents the zero homology class.

The natural candidate for the limit of (2})%2, is a sequence ()72, with

_ { — >y (=1 (i1 —ny), for k=0,
T = (

1)k — np), for k > 0.

In order to show that the above sequence is the limit of (x})s, we need to

prove that
w

n—oo
for any continuous f : W — R. Here p and p, are measures on W repre-
senting homology classes (xx)32, and (x})s2,, respectively (remember that
we identify C°(AY, W) with ).
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We shall see that the measures p and p,, need to be chosen to be concen-
trated on a countable set of points: namely the sets {7y }32, and {l; }3°,, con-
taining maxima and minima of the sinusoid. Indeed, let us first consider the
sequence (2;)22,. It can be interpreted as an element of Ho(U) @ Ho(L) (this
is a consequence of the Mayer-Vietoris theorem, see proof of Theorem 2.4).
The subsequence of (x)32, with even indices represents a homology class
in Ho(U). Since the inclusion of {w;}7°, into U is a homotopy equivalence
(see the proof of Lemma 2.1), this homology class can be represented by a
measure p concentrated on the set {u;}22,. In a similar way we construct
a measure jiz, concentrated on {I;}3°,. The measure ; representing our ho-
mology class in Ho(W) is just defined to be u = puy — . We construct the
measures , analogously.

Now, we can see that the above integral can be calculated as an infinite
series. The values of the continuous function f on the countable set of points

()52 U {1152, form a bounded sequence (a;,),, so we need to prove that

Jim <—ao > (=D (ni—n) + Y (=1 ai(nig — nz‘)) =0,

1=n-+1 i=n-+1

for every bounded sequence (ax)52,. We can easily see that it is true since
tails of absolutely convergent series converge to zero.
Assume that the homology class represented by (x)52, is zero. Let y;, =

(—=1)*(ngs1 — ng,). Then, consider the difference

Zfio(—l)"(nm —n;), for k=0,
Y — T =
07 for k£ > 0.

We assumed that at the level of homology (x)%2, represents zero, and thus
it represents a singular homology class. On the other hand, from the above
equation we see that (yx)22, — ()52, also represents a singular homology
class. Therefore, (yx)72, should also represent a singular homology class.
However, (yi)52, is exactly the form of a sequence considered in the proof of
Theorem 2.4, and we know that it represents a non-singular homology class

(note that the sequence denoted here by (yx)7, was denoted by (z)52, in the
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proof of that theorem). Hence, we obtained a contradiction. Consequently,
we see that (x)52, is not zero, so p is not a boundary even though it is a limit
the sequence (11,,)22, C Byo(W). Therefore, By(WW) is not closed and Ho (W)

is not Hausdorf.

2.6 Corresponding calculations for two other

examples

The proof strategy in the case of two other examples: the Double Warsaw
Circle DW and the Convergent Arcs Space CA is analogous as in the case of
the Warsaw Circle.

The Warsaw Circle can be viewed as a halfline equipped with a topology
that is weaker than the usual Euclidean topology. Roughly speaking, the
fact that there are no Milnor-Thurston 1-cycles in the Warsaw Circle is a
consequence of the fact that halfline has a starting point, so the measure
cycle that is zero on this starting point is zero everywhere (cf. equation (2.4)).
On the other hand, the Double Warsaw Circle can be interpreted as a line
equipped with some special toplology. A line does not have a starting point,
so one may suspect that there should exist some Milnor-Thurston cycles.
However, this is not the case, as one can see in the proof of the following

theorem:

Theorem 2.7. The Milnor-Thurston homology groups of the Double Warsaw
Circle DW are trivial except for Ho(DW') which is a continuum-dimensional

real vector space.

Proof. The key idea is again to apply the Mayer-Vietoris theorem. Let
us divide DW into the upper part U and the lower part L like we did for the
Warsaw Circle in Section 2.3.

Again we can see that U, L and U N L are homotopy equivalent to a

convergent sequence with limit. Thus, by Lemma 2.2 the Mayer-Vietoris
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sequence reduces to (cf. proof of Theorem 2.3)

0 Hl(DW) Ox Ho(Um L) (%0, J%0)
— Ho(U) & Ho(L) 2% 3,(DW) — 0,
and we see that higher Milnor-Thurston homology groups of DW vanish.
Next, we derive formulae for (i.,j.0) in the above Mayer-Vietoris se-

quence. Again, we get the same answer (cf. equation 2.4)
Tp = Mg + Mi_1. (27)

The notation is analogous to the one in the proof of Theorem 2.3. Here, how-
ever, k runs through all integers and there is no initial condition. Neverthe-
less, if look for a kernel of this mapping, we get the equation my; = —my_; and
we know that nonzero sequences of this type cannot be absolutely summable.
Thus, the kernel is trivial again, and the first Milnor-Thurston homology
group vanishes.

Now, the dimension of Ho(DW) shall be found in an analogous way as
in the proof of Theorem 2.4. From the Mayer-Vietoris sequence we see that
Ho(DW) is again a quotient of /! and the image of ¢! by the map defined by
equation (2.7).

We shall find continuum many sequences (z7)2___ in ¢! such that any
linear combination of these sequences is nontrivial in the quotient of ¢! by
' Let 0 < B < 1, again we put @} = (—1)*(n},, —n}) where (cf. proof of
Theorem 2.4)

niz{k%,l for k> 0,
e for £ < 0.

Next, for each § we derive formulae for the solution (m} ) __ of equation

(2.7). After simple calculations we get
(1) W - 1) + (=1)*my, for k >0,
(—1)F(1— ﬁ) + (—1)km€, for £ < 0.

T

(2.8)
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Now let us choose finite collection of numbers 0 < 3; < 1 and for each 17
pick a real number b;. Now, let us consider a linear combination of sequences
(2)2 = S0, bi(2)22 . A possible solution (my);> . to equation (2.7)
is a linear combination of sequences of the form (2.8). The most general
solution depends on parameters mgi, however if we want (m)72_ to be in
/' it has to satisfy the necessary condition of sequence convergence. Hence

we get 3. b; = 2. mp, and from that

i 1
my = ;(—1) T 15

for k > 0. Hence, we see that it is not absolutely summable (cf. proof of The-
orem 2.4) and we see that (zx)72__ represents a nontrivial homology class.
Thus, we constructed a family with continuum-many linearly independent

vectors.
O
Finally, the case of the Convergent Arcs Space CA is done in a similar
way.

Theorem 2.8. The Milnor-Thurston homology groups of the Convergent
Ares Space CA are trivial except for Hi(CA) = (' and Ho(CA) = R.

Proof. This time the space shall be divided into left and right part,
denoted L and R respectively. Both L and R are contractible, and hence
their Milnor-Thurston homology groups are trivial, except for the zeroth

group which is one-dimensional. Thus, the Mayer-Vietoris sequence is
O Hl(CA) a* HO(L ﬂ R) (i*Oyj*O)
— Ho(L) ® Ho(R) £2=% 94,(CA) —— 0.

The intersection LN R is homotopy equivalent to a convergent sequence with
its limit, thus Ho(LNR) = ¢! (see Lemma 2.2). The argument similar to the
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one in the proof of Theorem 2.3 allows us to write down equations for the

homomorphism (7.9, j«0):

oo oo
T = E mg, Yy = E mg,
k=0 k=0

where my, € Ho(LNR) 2 (', x € Ho(L) X R and y € Ho(R) = R. From
that, we see that the kernel of (i.o, j«o) consists of sequences whose sum is
equal zero. Yet, such a space is isomorphic to ¢! itself. Moreover, we see that
the quotient of Ho(L) @ Ho(R) by the image of Ho(LNR) is one-dimensional.

O



Chapter 3

More on the zeroth

Milnor-Thurston homology group

In the previous chapter the Milnor-Thurston homology groups of the
Warsaw Circle were computed, with the surprising result that the zeroth
Milnor-Thurston homology group is infinite-dimensional. Milnor-Thurston
homology theory satisfies the Eilenberg-Steenrod axioms with the Excision
Axiom holding for at least normal spaces, so that the coincidence of Milnor-
Thurston homology with singular homology is guaranteed for spaces with
homotopy type of CW-complexes. Since the example of the Warsaw Circle
(i.e. of a metric compact space), implies that, although zeroth homology
is usually related to the number of path-components, for non-triangulable
spaces the canonical homomorphism from singular to Milnor-Thurston ho-
mology can even in this dimension fail to be an isomorphism (in particular:
fail to be surjective). Moreover, for the Convergent Arcs space the canonical
homomorphism is injective in every dimension. Hence, there are the following

natural two questions:
e [s the canonical homomorphism injective in general?

e Are there beyond triangulability sufficient criteria, when it will be an

isomorphism?

40



CHAPTER 3. MORE ON ZEROTH GROUP 41

In this chapter we provide the following answers to these questions:

e For Peano continua (cf. Definition 1.23) we have coincidence in dimen-
sion zero, i.e here the canonical homomorphism will be an isomorphism

for any such space (cf. Section 3.1).

e For spaces with Borel path-components this homomorphism will be at

least injective in dimension zero (cf. Section 3.2).

e However, we will also provide an example, where it will not even be

injective (cf. Section 3.3).

Peano continua are in general not triangulable. Thus, the fact that the
zeroth Milnor-Thurston homology group of a Peano continuum will in any
case be one-dimensional does neither follow from the Eilenberg-Steenrod Ax-
ioms, nor, as the above mentioned example shows, from the fact that these
spaces are path-connected. Nevertheless it holds, as we will show in this

chapter (see Theorem 3.2).

3.1 Zeroth Milnor-Thurston homology for Pea-

no continua

In the previous chapter it has been proved that the Warsaw Circle has
uncountable-dimensional zeroth Milnor-Thurston homology group. We may
suspect that the fact that this space is not locally connected is the rea-
son behind this phenomenon. However, we may notice that there exist
path-connected spaces that are not locally path connected and have one-
dimensional zeroth homology group. The example may be the Broom Space
(it is the cone over the space consisting of the sequence 1/n and its limit
point).

Nevertheless, we may ask the opposite question: Does a connected and

locally connected metric space have one-dimensional zeroth Milnor-Thurston
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homology group? In this section we prove that the answer is affirmative at
least when the space is compact (see Theorem 3.2).

The Hahn-Mazurkiewicz theorem together with the following lemma, will
allow us to prove one of the main results of this chapter (cf. Definition 1.23
and Theorem 1.24).

Lemma 3.1. Let f : [0,1] — X be a continuous surjection on a metric space
X. Suppose p is a finite Borel measure on X, then there exists a measure [i
on [0,1] such that fii = p.

Proof. Let V = {g € C([0,1]) | there exists h € C(X) such that g =
ho f}. We see that V is a nonempty linear space. Let g € V, thanks to
surjectivity of f the function h € C'(X) such that g = ho f is unique. We
shall denote it by h,. Notice, that A, is linear with respect to g.

One can show that the linear functional defined below is bounded (it
follows from the fact that the norm on V is supremum norm and that pu is
finite):

V =R, gl—)/ hgdpu.
b's

By our Corollary 1.22 of the Hahn-Banach Theorem there exists a bounded
extension £ to C([0,1]) of this linear functional. Then, by the Riesz Repre-

sentation Theorem we know that there exists a Borel measure fi such that

£(g) = /[0 N

Now, we shall prove that fii = pu. By Corollary 1.13 it is sufficient to
check this only for open sets. So, let G C X be an arbitrary open set.
By Lemma 1.19 there exists a sequence (h,),en of positive functions that is
pointwise convergent to xs and such that h,, < xg. Let g, = h,of. Then for
each n the function g, € V, and the sequence (g, )nen is pointwise convergent
from below to x-1(q).

We know that

/ gndﬁ=€(9n)=/ hydp.
[0,1] X
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Using Theorem 1.20 on the both sides of the above equation we get

/ Xf—l(G)dﬂI/ Xadit,
[0,1] X

which means that i(f1(GQ)) = u(G), hence fu(G) = u(G).

Theorem 3.2. If X is a Peano continuum, then Ho(X) = R.

Proof. Let pu € Co(X) represent some homology class. From Lemma 3.1
we know that there exists a measure fi on [0, 1] such that fi = p.

Next, let us define g : [0,1] — C°(A', X) with the following formula:
g(x)(t) = f(tx). Let v = gjfi, we shall prove that Ov = p — ju(X)dg(). Take
any Borel subset A C X ~ C°(A% X), then

Ov(A) = (g (05 ' A)) — i(g~" (07" A4)). (3.1)
Suppose f(0) ¢ A. Then, g=*(9;'A) = f~'(A) and g~'(0;*A) is empty, so

equation (3.1) reduces to:

And when f(0) € A, we have g7*(9;'A) = f~1(A) and ¢~ *(9;'A) = [0, 1],
then equation (3.1) reduces to:

Ov(A) = a(f~1(A)) = p(fH(X)) = u(A) — p(X).
From that, we see that every cycle i € Cy(X) is homologous to the measure
(X)o7 (0)-

The Kronecker measure dy(g) is non-trivial on the level of homology. In-
deed, to the contrary suppose da = &5 for some measure a. By the
obvious fact that every singular 1-simplex in X has both its endpoints in
X we have the following equality between sets: J;'X — 0;'X. Hence,
(0a)(X) = a(F;'X) — a(07'X) = a(0;'X) — a(0;'X) = 0. That con-
tradicts the fact that dy)(X) = 1. Thus, our zeroth homology group is a

one-dimensional vector space.
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3.2 Is the canonical map from singular homo-
logy to Milnor-Thurston homology a mono-
morphism?

In Chapter 1 we have seen that there exists a canonical homomorphism

from singular homology groups to Milnor-Thurston homology groups
Hp(X;R) — Hi(X),

where X is a topological space and £ is a non-negative integer.

When X is a CW-complex this canonical homomorphism is an isomor-
phism (see Section 1.3), thus it is also an injection. Additionally, for all the
examples considered in Chapter 2 (the Warsaw Circle, the Double Warsaw
Circle and the Convergent Arcs Space) it is also the case. In this section we
will give a partial answer to the question, whether we always get an injection.

We shall prove the following theorem:

Theorem 3.3. Let X be a topological space with Borel path-components.
Then, the canonical map Ho(X;R) — Ho(X) is an injection.

Lemma 3.4. Let X be a topological space with Borel path-components. Let
w be a measure on CO(A', X), such that Op = vx, — 04, where vx, is con-
centrated on a set X1 C X and xo ¢ X,. Then there exists a path starting at

xo with its endpoint in X;.

Proof. Let Y be the path-component containing . Notice that 9, ' (Y) =
071 (Y). Thus, we have

(Om)(Y) = (@ (Y)) = p(@(Y)) = 0.

Now, assume that there is no path from x( to any point of X;. That is, X3
intersects Y in the empty set. As a consequence, (vx, —d,)(Y) = —1 which

contradicts the above calculations.
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Proof of Theorem 3.3. Our theorem states that the kernel of the
canonical homomorphism is trivial. In other words, we have to show that ev-
ery boundary in the sense of Milnor-Thurston homology is in fact a boundary

in the sense of singular homology. Let

denote the canonical homomorphism on the level of chains.

So, suppose we have a singular cycle z = Zle a;x; such that
i(z) = Op (3.2)

for some p € C;(X). We will inductively show that z is a boundary of a
singular chain.

Let us start with z = ;2. Notice that 9;(X) = d; '(X) implies that

Op(X) = (95 (X)) — u(0y (X)) = 0. (3:3)

From that, a; = 0. Hence, no singular chain with one simplex can be a
Milnor-Thurston boundary.

Suppose z = a;x; + asxrs. Application of equation (3.3) implies that
as = —ay. Moreover, by Lemma 3.4 there exists a path ¢ connecting z; and
xo. Hence, 0(ay0) = 2.

Now, assume that every z satisfying (3.2) and having a number of 0-
simplices less than k is a singular boundary. The measure u/qy satisfies the
assumptions of the above Lemma 3.4, so there exists a path o, connecting
zy, to, say, z;. Let 2/ = z — agay + ;. We see, that 2/ = z 4+ 0(agoy).
Moreover, 2z’ has at most k& — 1 simplices, and its image with respect to
homomorphism 7 is a boundary of a measure ji = p + agd,,. Thus, there
exists a singular 1-chain ¢’ such that 0¢ = z’. From that, ¢ = ¢ — a0}, has

the desired property dc = z, which ends our proof.
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3.3 A space with a non-injective canonical ho-

momorphism

The assumption that X has Borel path components was crucial in the
proof of Theorem 3.3. Now, we will construct a counterexample showing that
this assumption cannot be omitted. Namely, we will construct a topological
space X, where there exists a measure v € Cy(X) such that v = 6., — d,,
where the points z1, 29 € X lie in different path components. The concept
of this construction was provided by my thesis advisor Prof. Zastrow.

The following lemma will allow us to perform our construction

Lemma 3.5. There exists a partition [—1,1] = AU B, where A and B are

not Lebesque measurable and every Borel subset of A or B is of measure zero.

We shall now describe briefly intuition behind our construction. Let N C
[—1, 1] denote the set of all irrational numbers bigger than —1 and smaller
then 1. By the above lemma it can be decomposed into sets Ny and N; such
that every Borel subset of these sets has Lebesgue measure zero. The next
stage of our construction is to attach cones to these sets. In other words we
consider a space Y := C'Ny U CN;. The vertices of the cones lie in different
path components. We shall construct a measure v “connecting” these vertices.
The idea is fairly simple, the measure v shall be uniformly distributed over
the fibres of both cones (we treat the fibres as singular 1-simplices). This
measure connects vertices of our cones, the only problem is that it does not
have a compact carrier. In order to deal with this issue we define a space X
which contains Y and two intervals I, and I; whose role is to compactify the
sets of fibres of C'Ny and C' Ny, respectively.

Proof of Lemma 3.5. First, we will find such a partition for the topo-
logical group S := R/Z. It is sufficient to show that there exists a set
A C S! with Lebesgue inner measure zero and full Lebesgue outer measure
(here we normalise the Lebesgue measure A in a way that A\(S') = 2). In-
deed, if we have A\,(A) = 0 and \*(A) = 2, then the set B can be defined as
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a complement of A. We see that

MB)= sup MO)= sup (2—X0O))=2-X(4) =0,
BDOeB(S1) ACO’eB(S1)

thus every Borel subset of B has indeed Lebesgue measure zero.

In order to construct the subset A, we will use the natural action of
G := Q/Z C S* on S! by rotations. It is known that B(S') has the cardinality
of continuum [31, Theorem 3.3.18]. Let (Bg)a<c denote the family B(S*) with
a well-ordering. This well-ordering exists by the well-ordering theorem, which
is equivalent to the Axiom of Choice. Using transfinite induction, we shall
construct a sequence of elements (4)a<c-

Suppose, we have chosen x3 for all 3 < . Then, we chose z,, that satisfy

the following conditions:

e for every 8 < a, the element x, lies in a different orbit of G-action

than zg,
e if complement of B, is uncountable, then z, € S\ B,.

Elements satisfying both of these conditions always exist. That is because,
the number of G-orbits is continuum. Moreover, if £ denote the number of
G-orbits that intersect S* \ B, in a nonempty set, then the cardinality of
S1\ B, is less then Ry - x = max(Rp, x). Thus, if cardinality of S'\ B,
is uncountable then it is continuum, which is true for every uncountable
Borel set [31, Theorem 3.2.7]. Consequently, we see that x = ¢, so there are
continuum-many orbits we can choose the element z, from.

Now, we shall prove that the set A := {x,}a<. has the desired properties.
Suppose, we have a Borel set O C A, then both A and O intersect each orbit
of GG in a set with at most one element. From that, the family G + O =
{g+0 | g € G} consist of pairwise disjoint sets. Now, suppose A(O) > 0, then
AMUG +0)) =3 o Alg+0) = oo, which is impossible. Hence, A\(O) = 0.
On the other hand, consider O D A. If O has a countable complement, then
it has full Lebesgue measure. Otherwise, from the fact that O = B,, for some

a < ¢, we know that x, ¢ O, which contradicts O D A.



CHAPTER 3. MORE ON ZEROTH GROUP 48

Finally, we can construct our decomposition of the interval [—1, 1]. There
exists a continuous, measure preserving, map f : [—1,1] — S* which identi-
fies both ends of the interval. In order to get a partition of [—1, 1] we take
preimages of S* = AUB. The properties of the partition are conserved, since

f preserves measure.
0J

Now, we will start our construction. As we mentioned above we have the
partition N = Ny U N; and for any Borel set A C N; we have A\(A) = 0.

In order to get two connected components, the next stage of our construc-
tion will be taking cones over Ny and N;. So, identify N with the subset
of R x {0} € R% We define the cone C'Ny as the union of affine intervals
connecting the points of Ny with xy := (0,1). Analogously, let C'N; be the
union of intervals connecting Ny with z; := (0, —1).

Notice, that the above construction of a cone is different than usual.
Taking the Cartesian product with the interval, and then collapsing one face
to a point yields a different neighbourhood system of the cone-point than the
one induced from the plane.

Let Y := CNyUCN; and let I, I; be disjoint copies of [0,1) and (—1,0],
respectively. Let the underlying set of our space be X =Y U Iy U [4.

By choosing a neighbourhood basis for each point of X we shall equip it
with a topology such that the subspace topology on Y is induced from R2.
So, let t € Y\ {x¢, x1}, then we choose the neighbourhood basis to be

B, :={B(t,e)NY | e > 0},

where B(t,e) C R? is a ball of radius € centred at t. Now, let t € {zg, 21},

then we define
B, :={U°U(B(t,e)NY) | e >0},
where U¢ = (1 —e, 1] C Iyif t =xpand U° = [-1,—1+¢) C I, if t = z.
Finally, by choosing a neighbourhood basis of each point of I; for ¢ =0, 1,
we will complete the definition of the topology of X. Let J; denote the family
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Figure 3.1: Neighbourhoods with radius ¢ of the following points: t € Iy C X,
Yo € [pand z; €Y

of finite subsets of N;. Then for each J € J; let CNZ-J denote the sub-cone
C(N;\ J) C CN;. Now, let t € I; (remember that ¢ is identified with a real
number). Its basis of neighbourhoods shall be (see Figure 3.1):

B, ={U°UU5, |e>0,J €T, K €Ty}

where U = (t —e,t+e) N and Uj = {(z,y) e R® [t —e <y <
t+e} N (CN/UCNF), for j =1 —1.
It can be easily checked that {B;}:cx is a neighbourhood system, since it

has the following properties (see [15, p. 13]):
1. For every t € X, B; is nonempty and for every U € B, t € U.
2. If u e U € By, then there exists a V € B, such that V C U.
3. For any Uy, U, € B, there exists a U € B; such that U C U; N Us.

Thus, the family {B;}icx is sufficient to define the topology on X. We see
that although we started our construction of X with the space Y that is
embedded in the Euclidean plane, the space X is not metrizable. Let y; € I;
denote the endpoint of [;, for = 0, 1. We see that each basis neighbourhood
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of 1o contains all but finite number of points in N;. Moreover, each basis
neighbourhood of y; also contains infinitely many points in N;. Thus, our
space X does not satisfy the T, separability axiom. Axioms Ty and 77 are
however satisfied (each basis neighbourhood of y; does not contain the other
point).

Now, let T'= N U {yo, y1} with the topology induced from X.

Lemma 3.6. Every continuous map f :[0,1] — T is constant.

Proof. The lemma is true if £([0,1]) C N. So, suppose that f~*({yo, v1})
is not empty. First consider the case when f~'(N) is empty. Then [0,1] can
be decomposed into the disjoint union of closed sets: f~'({yo}) U f~1({w1}),
this contradicts connectivity of [0, 1]. Next, let f~'(N) be nonempty. Notice
that it is an open set because N is open in 1. Therefore, it must be a
countable disjoint union of open nonempty intervals. Now, take (a,b) to be
one of these intervals. By assumption, f(a) = y; for some i. Because (a,b) is
connected, f should be constant on it with a value, say, x € N. There exists

a neighbourhood of y; without x, therefore f is discontinuous at a.

Lemma 3.7. The points xo and x1 lie in different path-components.

Proof. Suppose that there is a path « : [0,1] — X connecting xy and
x1. Notice that there is a supremum ¢, of points ¢ such that a(t) = xy. From
the continuity of o we see «a(ty) = . Similarly, there exists an infimum ¢;
of points t > ty such that a(t) = z;. Now, we have that the points between
to and t; are mapped into X \ {x¢, x1}.

Take a point a € [tg, t1] close enough to ¢y so that a(a) € CN,y and take
a point b € [tg,t1] close enough to t; so that a(b) € CN;. We see that
the interval [a,b] is mapped into X \ {z¢,x1}, so we can construct a path
B:10,1] = X \ {zo, 1} connecting a point of C'Ny with a point of C'N;.

There is the obvious retraction r : X \ {xg, 21} — T that maps each point

to the end-point of its ray in the respective cone. By the above lemma the
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function r o f is constant, hence S maps the interval [0, 1] into a single ray of

one of the cones. Consequently, it cannot connect points in separate cones.
]

Now, we shall construct our measure v on C°(Al, X) satisfying the equa-
tion Ov = d,, —d4,. It will consist of two parts, one concentrated on simplices
in C'Ny and the other concentrated on simplices in C'N;. Their carriers shall
consist of singular simplices connecting the points of N with the respective
vertices.

To get a convenient description of the carriers of our measures we shall
still treat Y as a subset of R? (in the way described above). For z € Ny,
let of be the singular simplex such that o (t) = (fz(t),1 —t), where f,
is the unique affine function such that of (t) € Y and o3 (1) = x. In the
analogous way we define the simplex o2' for € N; (the direction is such
that 021(0) = z).

Now, our carriers shall be Sy = {0Z € C°(A", X) | z € Ny} and S; =
{o71 € C°(AY, X) | x € Ny}

Notice that each of S; is not compact, however if we add to S; the respec-
tive paths o; connecting x; with y; (parametrised in affine proper way) we
shall obtain compact sets of simplices and our measures shall have compact
carriers. Indeed, the topology of S; U {o;} is the same as a compactification
of N; with a point at infinity whose basis neighbourhoods contain almost all
points of N;. The fact that S; is homeomorphic to N; shall be shown later
(see Lemma 3.9) and the fact that each neighbourhood of o; contains al-
most all points of S; follows directly from the definition of the compact-open

topology.
Lemma 3.8. Sy and S, are Borel sets in CO(AY, X).

Proof. First, we will show that it is sufficient to prove that S; are Borel
subsets of C°(A',Y"). To do so we show that C°(A!,Y)) is a Borel subset of
C°(Al, X). It suffices to do so, since every Borel subset of a Borel subspace

is Borel with respect to the bigger space.
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Take 7 = 0,1, and let U’ denote a sequence of neighbourhoods of x; such
that N, U: = {x;}. Now, let ¥, = Y UU. UU,. We see that each Y, is
an open set in X and (), Y, = Y. By this fact and the definition of the
compact-open topology, C°(A!)Y},) is open in C°(A', X). The intersection
of C°(A')Y,,) is C°(Al)Y), so it is a Borel subset of C°(Al, X).

Now, we shall prove that the each of S; is closed in C°(A!,Y"). The space
C°(A')Y) is metrizable, thus it is enough to show that the both S; contain
limit points of all convergent sequences. Let o, be a sequence of singular
1-simplices in R? with affine parametrisation, say, 0, (t) = (@, +but, ¢, +d,t).
Such a sequence is convergent iff the sequences of coefficients a,, b,, etc. are
convergent.

Now, take a sequence of 1-simplices (0,,) C Sy C CO(A',Y) C C°(A',R?)
convergent in C°(A!,Y"). By the above observation a limit of such a sequence
is a l-simplex with affine parametrisation that connects xy with a point
of N. However, any such simplex is an element of Sy, hence Sj is closed.

Analogously, we prove that S closed.
O

Lemma 3.9. The mappings O;|s, : Si — N; are homeomorphisms, for each
1=0,1.

Proof. The topology of each S; is induced from C°(A',Y). But the
fact that Y is embedded in R? implies that C°(A!}Y") is metrizable with the
supremum metric.

We shall calculate distance between two arbitrary simplices o, , 0% € So:

d(ot,,0%) = sup di(ah,(s), 0% ()) = di(t, ),

xro? 7 xo ? Yo
s€[0,1]

where dg denotes the Euclidean metric. Hence, we see that dp|s, : So — No

is an isometry. The analogous argument works well for .5;.
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We preferred to state the following lemma in an abstract way. Its as-
sumptions are satisfied in our case. Namely, take Z = C°(Al, X), f; = dis;,
M; = S; (this yields R; = N;), and S; is homeomorphic to N;, for i =0, 1.

Lemma 3.10. Let Z be a topological space with disjoint Borel subsets M; C
Z, fori=0,1. Let f; : M; — [—1,1] be continuous functions such that the

following properties are satisfied:
e Every R; := fi(M;) is dense in [—1,1],
o Ry and Ry are disjoint
o Ry U Ry is a full-measure Borel set
e Fuvery Borel subset of R; has Lebesgque measure zero,
e fi is a homeomorphism of M; and R;.
Then

1. Every Borel set in M; has the form f;'(B) for some Borel subset of
[_17 1]7

2. The semi-algebra T; = {f; '(I) | I C R is a semi-closed interval } gen-

erates Borel subsets of M;,

3. The set functions v; = f;7*(I) = A N [~1,1]), where \ denotes the
Lebesgue measure and I is a semi-closed subinterval of [—1,1], can be

extended to a Borel measure v; on M;.

Proof. To prove the first statement take a Borel subset A of M;. Then
fi(A) is a Borel subset of R;. Notice, that every Borel subset of R; is an
intersection of Borel subset of [—1, 1] and R;, which proves the first statement.

To prove the second statement we need to notice that Z; = {f;'(I) | I C

-1

R is a semi-closed interval} is a semi-algebra such that Z; = f; " (Z), where

7 is a semi-algebra of semi-closed intervals in R. Then the first statement

and Lemma 1.18 give us our result.
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In order to prove the third statement it is sufficient to show that v; are
countably additive (see Corollary 1.16). So, let us take a pairwise disjoint
countable family {A4; = f;*(I;)}jes C f; '(Z), such that the union of this
family is A € f;7'(Z). Thus, the set A is of the form f; '(I) for some semi-
closed interval I.

Without loss of generality we can assume that I;’s and I are subsets of
[—1,1] (if not we can take intersection with this interval). We claim that
{1;} is a pairwise disjoint family. To the contrary, assume that two of these
sets, say, [; and I3, have the non-empty intersection [a,b), for some real
—1

numbers a < b. Consequently, A; N Ay = f;

~([a, b)) and is non-empty, since

R; is dense in [—1, 1]. However, our family of sets is disjoint, hence we got a
contradiction.

Moreover, we claim that I'\|J; I; is a Borel subset of [—1, 1]\ R;. Indeed,
from the fact that A is the union of A;, we get fl-_l(Uj I;) = f71(I). Next,
we see that [—1,1] \ R; = R, U ([-1,1] \ Ro U Ry) for k = 1 —i. Thus,
I'\U; I; can be decomposed into two parts. The first one is a Borel subset
of [-1,1] \ Ry U Ry and hence it is a null-set as a subset of a null-set. The
second one is a Borel subset of R, and every such subset is a null-set. As a
consequence I \ |J; I; is a null-set, which yields \(I) = >_; A(I;). This fact

proves that v;’s are countably additive.
O

Now, let v;’s be the measures on the Borel subsets of .5; that exists by

Assertion 3 of Lemma 3.10. We can extend the measures v; for ¢ = 0,1 to
the Borel o-algebra of C°(A!, X) with the formula

vi(A) = 1;(ANS;), for any Borel subset A of C°(A', X),

which is well-defined thanks to Lemma 3.8.

Now, let us put v = v; 4+ 149. Finally, we can prove our main result.

Theorem 3.11. The canonical homomorphism h : Hyo(X;R) — Ho(X) is

not a monomorhpism.
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Proof. The singular homology class of the cycle z = x1 — ¢ is nontrivial
in Hy(X;R), since xy and z; lie in different path components (see Lemma
3.7). The canonical homomorphism maps [z] to the Milnor-Thurston class
of the cycle d,, — 0., in Ho(X). We shall prove that it is trivial. In fact, we

will show that for the measure v defined above we have
OV =20z — Osy)- (3.4)

The crucial step of our proof is to show that every Borel subset of N is
of Ov-measure zero. So, let B C N C [—1,1] be a Borel set. Notice, that
v1(051(B)) = 0 because S; N 9;"(B) is empty. Similarly, (9, (B)) = 0.

As a consequence we see
(0)(B) = 10(9 " (B)) — n1(0r ' (B)).

Now, notice that if B = I N N where [ is an interval, then we have
(Ov)(B) = vo(0y (1)) — v1(97H(I)) = MI) — M(I) = 0. So the A-system of
Borel sets that satisfy (Ov)(B) = 0 contains a semi-algebra generating Borel
subsets of V. Every semi-algebra is a m-system, so by Theorem 1.12 we see
that (Ov)(B) = 0 for every Borel set B C N.

Next, let B C X \ (N U {x1}) be a Borel set containing the point .
Then, we see that 9, (B) N (S; U S;) and 9, '(B) NS, are empty, so

(Ov)(B) = —vo(01(B))

follows. Moreover, we have that 9;(B) N Sy = Sy = S N dy([~1,1]). From
that, we get v5(9;*(B)) = A([—1,1]) = 2. An analogous assertion is true for
sets B containing x;. There is no simplex in Sy or S; that has its endpoint in
B C X\ (NU{xo}U{z1}), thus we can restrict our attention to the Borel sets
containing some points from L := N U {zo} U {z1}. Finally, every such set
can be decomposed into a disjoint union three sets: the first one intersecting
L in x, the second one intersecting L in N and the last one intersecting L in
x1. Next, by additivity of the measure Ov, application of the facts we proved

above yields equation (3.4).
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