
Simplicial Volume and Bounded Cohomology

1 Simplicial Volume

Simplicial volume is a topological invariant that was introduced by Gromov
in his proof of Mostow Rigidity theorem. In particular, there is a quite simple
proof that for closed orientable hyperbolic manifolds it is proportional to the
hyperbolic volume divided by the supremum to the volume of the geodesic
simplex. From that, we immediately see that the volume of a hyperbolic
manifold is topological invariant.

First step in toward the de�nition of simplicial volume is an ℓ1-norm a
space of singular chains. So, let X be a topological space and let k be a
non-negative integer. The real vector space of singular k-chains shall be
denoted Ck(X). Now, let c =

∑
i αiσi ∈ Ck(X) be an arbitrary element,

where αi ∈ R and σi are singular k-simplices. The norm shall be de�ned
∥c∥ :=

∑
i |αi|. This norm induces a semi-norm on the level of homology,

which can be interpreted as a distance of a homology class from the subspace
of boundaries. The precise formula is

∥α∥ = inf{∥z∥ | [z] = α},

where α ∈ Hk(X).

De�nition 1 Let M be a closed, orientable manifold. Then the simplicial
volume ∥M∥ is de�ned in the following way

∥M∥ = ∥[M ]∥,

where [M ] denotes a fundamental class of M .

The simplest manifold we can imagine is a circle S1. It is easy to see that
∥S1∥ = 0, simply consider simplices σk which wind arould the circle k times.

Moreover, the simplicial volume of a sphere or torus of any dimension is
zero. It is a conseqence of the following theorem
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Theorem 2 Let f : M1 → M2 be a continuous map between closed orientable
n-dimensional manifolds M1 and M2, then

∥M1∥ ≥ | deg f | · ∥M2∥

Proof. First, notice that the induced map f• : Cn(M1) → Cn(M2)
does not increase the norm. Now let z ∈ Cn(M1) be a cycle representing
a fundamental class of M1, we have ∥f•(z)∥ ≤ ∥z∥. Taking in�mum over
representatives of a fundamental class of M1 we get

inf{∥(deg f)−1f•(z)∥ | [z] = [M1]} ≤ | deg f |−1∥M1∥.

By noticing that (deg f)−1f•(z) represents a fundamental class of M2, we get
our result.

�

Moreover, the for the special case when f is a covering map, we have the
following theorem

Theorem 3 Let f : M1 → M2 be a covering map of a �nite degree d between
closed orientable n-dimensional manifolds M1 and M2, then

∥M1∥ = d · ∥M2∥

Proof. Inequality ∥M1∥ ≥ d · ∥M2∥ is true by the previous theorem.
To prove the other inequality, notice that thre is the transfer mapping g :
Cn(M2) → Cn(M1), that is de�ned on an arbitrary simplex σ with the for-
mula g(σ) =

∑
i σ̃i, where σ̃i : ∆

n → M1 denote lifts of simplex σ.
Let z ∈ Cn(M2) represent the fundamental class ofM2. Then, we see that

g(z) represents the fundamental class of M1. Indeed, suppose g(z) represents
α · [M1] for some α ∈ R. Then f(g(z)) represents d · α · [M2]. But, f ◦ g
equals d times the identity on M2, hence α = 1.

Moreover, we can see that for every c ∈ Cn(M2) we have ∥g(c)∥ = d · ∥c∥.
So if we take in�mum over representatives z ∈ Cn(M2) of the fundamental
class of M2, we get

inf{∥g(z)∥ | [z] = [M2]} = d · ∥M1∥.

But the left hand side in the above formula is greater than ∥M1∥, thus we
got our result.
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This de�nition can be a motivation to de�ne the simplicial volume for
nonorientable manifolds.

De�nition 4 Let M be a closed, nonorientable manifold and let M̃ → M
its orientable double cover. Then we de�ne

∥M∥ :=
1

2
∥M̃∥.

Simplicial volume of orientable closed surfaces can be calculated almost
explicitly. The case of a sphere and torus, as we mentioned above, is clear
by Theorem 2.

So consider the case of the surfaces Σg of genus g > 1. Each of these
surfaces can be equipped with a Riemannian metric of constant curvature
−1. Now, take a cycle z =

∑
i αiσi representing a fundamental class of Σg.

We can perform a process of straightening, described in a detail in [2, Chapter
6], substituting each σi with a geodesic simplex τi with the same vertices.
Let Ω be a volume form on Σg, we have the following inequality∣∣∣∣∣

∫
Σg

Ω

∣∣∣∣∣ =
∣∣∣∣∫

Σiαiτi

Ω

∣∣∣∣ ≤ ∑
i

|αi|
∣∣∣∣∫

τi

Ω

∣∣∣∣ ≤ π
∑
i

|αi|.

The last part of the above inequality is a consequence of the fact that volume
of a geodesic simplex is bouded by π. Moreover, by the Gauss-Bonnet theo-
rem the volume of Σg (which is the leftmost integral in the above inequality)
equals −2πχ(Σg). From that, we get

−2χ(Σg) ≤

∥∥∥∥∥∑
i

αiτi

∥∥∥∥∥ .
The straightening process is norm decreasing, so when calculating the sim-
plicial volume we can consider ony straight cycles. Thus, we get lower bound
for the simplicial volume

−2χ(Σg) ≤ ∥Σg∥.

This lower bound actually is the simplicial volume. To see this, we consider
Σg as a 4g-gon with an aproperiate gluing. Now, choose a vertex of this 4g-
gon and connect it to 4g−3 remainging vertices with a geodesic segment. This
gives us triangulation of Σg with 4g− 2 triangles. This triangulation de�nes
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a representative of the fundamental class of Σg � just take each triangle with
coe�ceient 1. Hence, we have the upper bound for the simplicial volume

∥Σg∥ ≤ 4g − 2 = −2χ(Σg) + 2.

Now, consider d-sheeted covering Σ → Σg. We know that χ(Σ) = d · χ(Σg),
and by Theorem 3 we have ∥Σ∥ = d · ∥Σg∥. Thus, applying the above
inequality to Σ we obtain

∥Σg∥ ≤ −2χ(Σg) + 2d−1.

Because d can be arbitrarily large, we get our result

∥Σg∥ = −2χ(Σg).

So we calculated the simplicial volume for every orientable closed surface.

2 Bounded Cohomology

Let X be a topological space. By C∗(X) we shall denote a chain-complex
of simplicial cochains. Let c ∈ C∗(X), we say that c is bounded there is
a constant C such that for every singular simplex σ ∈ C(∆k, X) we have
c(σ) < C. The group of bounded k-cochains shall be denoted by Ck

b (X).
We de�ne ℓ∞-norm for bounded cochains:

∥c∥∞ = sup
σ∈C(∆k,X)

|c(σ)|.

Notice that coboundary of a bounded chain is bounded. Indeed, let c ∈
Ck

b (X), then

|(δc)(σ)| =

∣∣∣∣∣
k∑

i=0

(−1)ic(∂iσ)

∣∣∣∣∣ ≤ (k + 1)∥c∥∞.

Thus C∗
b (X) with coboundary de�ned as a restriction of δ to bounded cochains

is a chain-complex. Bounded cohomology H∗
b (X) are de�ned as homology of

this chain-complex. It is equipped with a seminorm denoted also by ∥ · ∥∞
induced by the one on the level of cochains.

Moreover, let f : X → Y be a continuous map. Restriction of the in-
duced mapping to bounded cochains f ∗

b : H∗
b (Y ) → H∗

b (X) is a bounded
map. Indeed, take k-simplex σ, we have |(fk

b c)(σ)| = |c(fk
b σ)| ≤ ∥c∥∞ hence

∥fk
b c∥∞ ≤ ∥c∥∞ and thus ∥fk

b ∥∞ ≤ 1. Hence f ∗
b is bounded on the level of
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cochains. Finally, it is not hard to see that f ∗
b has to be bounded on the level

of cohomology, and its norm is less then one.
There is a canonical homomorphism H∗

b (X) → H∗(X;R) induced by the
inclusion of bounded cochains. There is a result by Thurston about this
homomorphism

Theorem 5 (Thurston) Let X be a closed manifold which admits negatively
curved Riemannian metric, then the canonical homomorphism H∗

b (X) →
H∗(X;R) is suriective.

2.1 Simplicial volume from the dual point of view

The simplicial volume can be calculated using the semi-norm on bouded
cohomology groups. This allows us to prove many interesting results. In
particluar, the fact that simplicial volume of manifolds with amenable fun-
damental groups vanish (cf. Section 2.2).

In this section we prove the following result

Theorem 6 Let X be a topological space. Take α ∈ Hk(X), where k is a
nonnegative integer. Then we have:

1. ∥α∥ = 0 if and only if for every ϕ ∈ Hk
b (X) we have ⟨ϕ, α⟩ = 0,

2. if ∥α∥ ≠ 0, then ∥α∥ = sup
{

1
∥ϕ∥∞ | ϕ ∈ Hk

b (X), ⟨ϕ, α⟩ = 1
}
.

Proof. Let us start with taking z ∈ Ck(X) that represents homology
class α. First, assume that z ∈ Bk(X) (here the overline denotes closure in
Gromov norm). It is equivalent to assuming ∥α∥ = 0.

Every cocycle equals zero on Bk(X). Moreover, bouded cocycles are
continuous with respect to ℓ1-norm on Ck(X). Thus, for every bounded
cocycle f we have ⟨f, z⟩ = 0, that equivalent to saying that for every ϕ ∈
Hk

b (X) we have ⟨ϕ, α⟩ = 0.

On the other hand, if z /∈ Bk(X), we can de�ne a functional g on Bk(X)⊕
⟨z⟩, such that ker g = Bk(X) and g(z) = 1. By the Hahn-Banach theorem
g has a bounded extension to Ck(X), we shall denote it by g also. From
that, we see that there exists a bounded cohomology class ϕ, represented by
g, such that ⟨ϕ, α⟩ ̸= 0. Hence, we proved that the norm of α equals zero if
and only if its product with every bounded cohomology class equals zero.

Now, let us consider the case when ∥α∥ ≠ 0. We shall use the functional
g that was de�ned before. There exists a sequence (bn)

∞
n=1 of elements of
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Bk(X) such that ∥z + bn∥ converges to ∥α∥. Thus, for every b ∈ Bk(X) we
have ∥z + bn∥ ≤ ∥z + b∥ if n is large enough. From that,

g

(
z + bn

∥z + bn∥

)
≥ g

(
z + b

∥z + b∥

)
,

if n is large enough. Moreover, every element of norm one in Bk(X) ⊕ ⟨z⟩
can be written as (z+ b′)/∥z+ b′∥ for some element b′ ∈ Bk(X). If we take a
sequence of elements in Bk(X)⊕ ⟨z⟩ approximating the norm of g, and then
use the above inequality in the limit we will get:

lim
n→∞

g

(
z + bn

∥z + bn∥

)
= lim

n→∞
∥z + bn∥−1 = ∥α∥−1 ≥ ∥g∥∞.

The norm of g in the above inequality was in fact calculated in the direct
sum Bk(X)⊕⟨z⟩, but knowing that g was extended to Ck(X) by using Hahn-
Banach theorem, we know that it is equal to ℓ∞-norm. Hence, we proved
that

∥α∥ ≤ sup

{
1

∥ϕ∥∞
| ϕ ∈ Hk

b (X), ⟨ϕ, α⟩ = 1

}
Now let us take an arbitrary bounded cocycle such that f(z) = 1. We see

that f(z/∥z∥) = 1/∥z∥, therefore the operator norm of 1/∥f∥∞ ≤ ∥z∥. From
that, we get 1/∥ϕ∥∞ ≤ ∥α∥, by taking �rst in�mum over representatives of
α and then in�mum over cocycles f that represent a bounded cohomology
class ϕ ∈ Hk

b (X) (here we use the fact that for an arbitrary coboundary δh
we have ⟨δh, z⟩ = 0). Now, taking supremum over ϕ we get:

∥α∥ ≥ sup

{
1

∥ϕ∥∞
| ϕ ∈ Hk

b (X), ⟨ϕ, α⟩ = 1

}
.

And this ends the proof of our theorem.

�

2.2 Bounded cohomology for amenable groups

A very important result is a criterion for amenability of groups. Bounded
cohomology for a group π is de�ned as a bounded cohomology of its K(π, 1).
Then we have a theorem

Theorem 7 (Hirsch-Thurston) If a group π is amenable, then

Hk
b (π) = 0, for k > 0
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This theorem is a consequence of

Theorem 8 (Trauber's vanishing theorem) Let f : Y → X be a regular
covering with amenable Galois group π. Then the induced map f ∗

b : H∗
b (X) →

H∗
b (Y ) is iniective and isometric.

Proof. Let µ : ℓ∞(π) → R denote the invariant mean that exists on
π by the assumption. On the level of cochains we de�ne a chain-maping
m∗ : C∗

b (Y ) → C∗
b (X) by the formula

(mkc)(σ) = µ{π ∋ γ 7→ c(γσ̃)}

where c ∈ C∗
b (Y ) and σ̃ is a lift of the simplex σ. The value of the right hand

side is indepentent on the lift since the mean µ is invariant. Moreover, we
can see that

|µ{π ∋ γ 7→ c(γσ̃)}| ≤ ∥µ∥∞∥{π ∋ γ 7→ c(γσ̃)}∥∞ ≤ ∥µ∥∞∥c∥∞

because µ has norm equal one by de�nition we see that ∥mk∥∞ ≤ 1.
The values of an induced mapping f ∗ : C∗

b (X) → C∗
b (Y ) are cochains

that assign to a simplex σ upstairs value of its projection downstairs. As
a consequence it is an invariant cochain in Y . Conversely, every invariant
cochain arises that way. From that, we see that the compositionm∗◦f ∗ equals
identity on H∗

b (X). Thus, f ∗ is an injection on the level of cohomology.
Moreover, we know that ∥mk∥∞ ≤ 1 and ∥fk∥∞ ≤ 1 and its composition

has norm one. Thus ∥fk∥∞ = 1.

�

Proof of Theorem 7. Consider the universal covering of K(π, 1), it is
a space homotopically equivalent to a point, and thus it has trivial bounded
cohomology groups. By Theorem 8 bounded cohomology groups of K(π, 1)
are subgroups of it, hence they are also trivial.

�
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