If I were a rich density

Rafał Filipów

Set-theoretic methods in topology and real functions theory
– dedicated to 80th birthday of Lev Bukovsky
Kosice, Slovakia (2019)

The talk is based on a joint work with Jacek Tryba published in a paper "Densities for sets of natural numbers vanishing on a given family", J. of Number Theory 211 (2020), 371-382

Abstract upper density

Examples of upper densities

- Asymptotic density: $\overline{d}(A) = \limsup_{n \to \infty} \frac{|A \cap \{1, \dots, n\}|}{n}$
- Logarithmic density: $\overline{\delta}(A) = \limsup_{n \to \infty} \frac{\sum_{k \in A \cap \{1, \dots, n\}} \frac{1}{k}}{\sum_{k \leqslant n} \frac{1}{k}}$
- Uniform density (aka Banach density): $\overline{u}(A) = \limsup_{n \to \infty} \max_{k \in \mathbb{N}} \frac{|A \cap \{k+1,\dots,k+n\}|}{n}$

Definition

An abstract upper density on $\mathbb N$ is a function $\delta:\mathcal P(\mathbb N)\to [0,1]$ that satisfies the following properties:

- ② if $F \subseteq \mathbb{N}$ is finite then $\delta(F) = 0$,
- **3** if $A \subseteq B$ then $\delta(A) \leqslant \delta(B)$,

Abstract upper densities and ideals

Proposition

If $\delta:\mathcal{P}(\mathbb{N}) \to [0,1]$ is an abstract upper density, then

$$\mathcal{Z}_{\delta} = \{A \subseteq \mathbb{N} : \delta(A) = 0\}$$

is an ideal on N i.e.

- if $A, B \in \mathcal{Z}_{\delta}$ then $A \cup B \in \mathcal{Z}_{\delta}$,
- ② if $A \subseteq B$ and $B \in \mathcal{Z}_{\delta}$ then $A \in \mathcal{Z}_{\delta}$,
- **3** \mathcal{Z}_{δ} contains all finite subsets of \mathbb{N} ,
- \bullet $\mathbb{N} \notin \mathcal{Z}_{\delta}$.

Abstract upper densities and ideals

Proposition

Let $\mathcal I$ be an ideal. The function $\delta:\mathcal P(\mathbb N) \to [0,1]$ given by

$$\delta(A) = \begin{cases} 0 & \text{if } A \in \mathcal{I}, \\ 1 & \text{otherwise} \end{cases}$$

is an abstract upper density and $\mathcal{I} = \mathcal{Z}_{\delta}$.

Proof

Straightforward.

Question (G. Gerkos, 2013)

Let $\mathcal I$ be an ideal. Does there is a "nice" abstract upper density δ such that $\mathcal Z_\delta=\mathcal I$, where "nice" would mean the properties of the familiar densities consider in number theory?

Nice = translation invariance

Definition

- Translation invariant density: $\delta(A+k) = \delta(A)$ for all A and k
- Translation invariant ideal: $A + k \in \mathcal{I}$ for all $A \in \mathcal{I}$ and k

Proposition

Let \mathcal{I} be a translation invariant ideal. The function

$$\delta(A) = \begin{cases} 0 & \text{if } A \in \mathcal{I}, \\ 1 & \text{otherwise} \end{cases}$$

is a translation invariant abstract upper density and $\mathcal{I} = \mathcal{Z}_{\delta}$.

Proof

Straightforward.

Nice = richness

Definition

Rich density: for every $r \in [0,1]$ there is $A \subseteq \mathbb{N}$ with $\delta(A) = r$.

Theorem (M. Di Nasso–R. Jin, 2018)

If $\mathcal I$ is a summable ideal then there is a rich abstract upper density δ with $\mathcal I=\mathcal Z_\delta.$

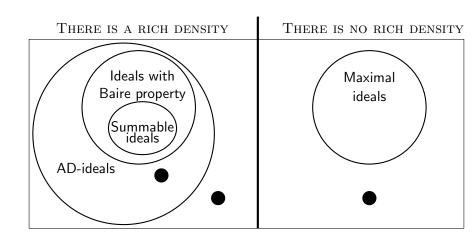
Definition of a summable ideal

There is $f: \mathbb{N} \to [0, \infty)$ such that

$$\mathcal{I} = \{ A \subseteq \mathbb{N} : \sum_{n \in A} f(n) < \infty \}.$$

Fin = $\{A : A \text{ is finite}\}\$ and $\mathcal{I}_{1/n} = \{A : \sum_{n \in A} \frac{1}{n} < \infty\}$ are summable ideals.

Nice = richness What we know



Nice = richness; case of AD-ideals

Definition

 $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$ is \mathcal{I} almost disjoint family (\mathcal{I} -AD family) if $A \notin \mathcal{I}$ and $A \cap B \in \mathcal{I}$ for any distinct $A, B \in \mathcal{A}$.

$\mathsf{Theorem}$

If there exists an \mathcal{I} -AD family of cardinality \mathfrak{c} , then there is a rich abstract upper density δ such that $\mathcal{Z}_{\delta} = \mathcal{I}$.

Sketch of the proof

- ullet Extend ${\mathcal A}$ to a maximal ${\mathcal I}$ -AD-family.
- Enumerate: $A = \{A_{\alpha} : \alpha < \mathfrak{c}\}$ and $(0,1) = \{r_{\alpha} : \alpha < \mathfrak{c}\}.$
- Define: $\delta(A) = \sup\{r_\alpha : A_\alpha \cap A \notin \mathcal{I}\}$
- ullet δ is an abstract upper density
- ullet δ is rich [use \mathcal{I} -almost disjointness of \mathcal{A}]
- ullet $\mathcal{Z}_{\delta} = \mathcal{I}$ [use maximality of \mathcal{A}]

Nice = richness; case of ideals with Baire property

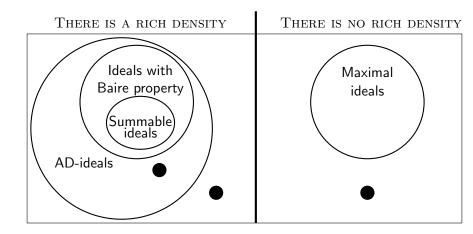
Corollary

If $\mathcal I$ has the Baire property, then there is a rich abstract upper density δ such that $\mathcal Z_\delta=\mathcal I$. In particular, summable ideals.

Sketch of the proof

- Talagrand: $\exists k_1 < k_2 < \dots (\exists_n^{\infty} [k_n, k_{n+1}) \subseteq A \implies A \notin \mathcal{I})$
- Let: $I_n = [k_n, k_{n+1})$
- Take: Fin-AD family $A \subseteq \mathcal{P}(\mathbb{N})$ of cardinality \mathfrak{c} .
- Define: $C_A = \bigcup_{n \in A} I_n$ for every $A \in A$
- Let: $C = \{C_A : A \in A\}$
- ullet C is of cardinality ${\mathfrak c}$ [because ${\mathcal A}$ has cardinality ${\mathfrak c}$]
- $C_A \in \mathcal{I}^+$ for every $A \in \mathcal{A}$ [use Talagrand's characterization]
- ullet C is \mathcal{I} -AD family [use \mathcal{I} -almost disjointness of \mathcal{A}]

Nice = richness: what we know



Nice = richness; density without AD family

Example

Let

- ullet ${\cal J}$ be a maximal ideal,
- $\mathcal{I} = \{\emptyset\} \otimes \mathcal{J}$,
- $\delta(A) = \sum_{A_n \notin \mathcal{J}} \frac{1}{2^n}.$

- \bullet \mathcal{I} is an ideal,
- ullet δ is an abstract upper density,
- δ is rich [use binary expansion],
- $\mathcal{Z}_{\delta} = \mathcal{I}$,
- there is no \mathcal{I} -AD family of cardinality \mathfrak{c} (even uncountable) [use maximality of \mathcal{J}].

Nice = richness; AD family but without Baire property

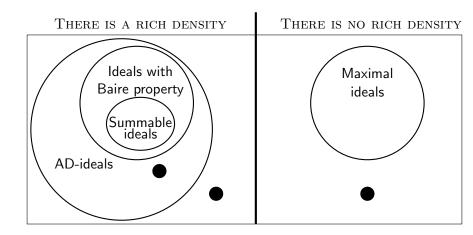
Example

Let

- \bullet \mathcal{J} be a maximal ideal,
- $\mathcal{I} = \operatorname{Fin} \otimes \mathcal{J}$.

- I is an ideal,
- there is *T*-AD family of cardinality c [use Fin-AD family of cardinality c]
- \mathcal{I} does not have the Baire property [use maximality of \mathcal{J} and Plewik theorem saying that intersection of countably many maximal ideals does not have the Baire property]

Nice = richness: what we know



Nice = richness; ideals without density

Theorem

If $\mathcal I$ is a maximal ideal, then there is no rich abstract upper density δ with $\mathcal Z_\delta=\mathcal I.$

Proof

- If $A \in \mathcal{I}$ then $\delta(A) = 0$.
- If $A \notin \mathcal{I}$, then $\mathbb{N} \setminus A \in \mathcal{I}$ [use maximality]
- hence

$$1 = \delta(\mathbb{N}) \leqslant \delta(A) + \delta(\mathbb{N} \setminus A) = \delta(A) + 0 = \delta(A) \leqslant 1$$

- so $\delta(A) = 1$.
- Thus δ takes only 2 values, so it is not rich.

Nice = richness; non-maximal ideals without density

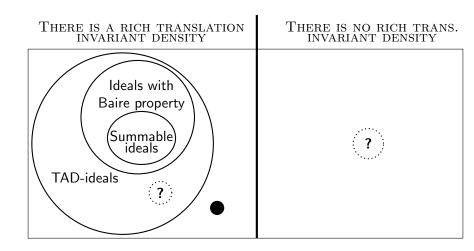
Example

Let

- $\mathcal{I}_1, \mathcal{I}_2$ be maximal ideals,
- $\bullet \ \mathcal{I}=\mathcal{I}_1\oplus \mathcal{I}_2.$

- ullet $\mathcal I$ is an ideal
- \mathcal{I} is non-maximal [since $\mathcal{P}(\mathbb{N}) \oplus \mathcal{I}_2$ is a larger ideal]
- If $A \notin \mathcal{I}$, then $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$ or $A \cap (\{2\} \times \mathbb{N}) \notin \mathcal{I}_2$.
- Say $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$.
- Then $\delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N})$ [since \mathcal{I}_1 is maximal]
- Since $\delta(A) \geqslant \delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N}) \neq 0$, so
- $\operatorname{ran}(\delta) = \{0\} \cup [\delta(\{1\} \times \mathbb{N}), 1].$
- Thus δ is not rich.

Nice = richness + translation invariance: what we (don't) know



Nice = richness + translation invariance: non TAD-ideal with density

Example

Let

- Let \mathcal{J} be a maximal ideal,
- $\delta(A) = \mathcal{J} \lim \frac{|A \cap \{1, \dots, n\}|}{n}$

- δ is well defined [since \mathcal{J} is maximal]
- ullet δ is an abstract upper density (it is finitely additive measure)
- \bullet δ is translation invariant.
- ullet δ is rich [since asymptotic density is so]
- Let $\mathcal{I} = \mathcal{Z}_{\delta}$.
- \bullet There is no $\mathcal{I}\text{-AD}$ family of cardinality \mathfrak{c} [since finite measures satisfy ccc]