If I were a rich density

Rafał Filipów

Set-theoretic methods in topology and real functions theory – dedicated to 80th birthday of Lev Bukovsky Kosice, Slovakia (2019) The talk is based on a joint work with Jacek Tryba published in a paper "Densities for sets of natural numbers vanishing on a given family", J. of Number Theory 211 (2020), 371-382

Abstract upper density

Examples of upper densities

• Asymptotic density:
$$\overline{d}(A) = \limsup_{n \to \infty} \frac{|A \cap \{1, \dots, n\}|}{n}$$

- Logarithmic density: $\overline{\delta}(A) = \limsup_{n \to \infty} \frac{\sum_{k \in A \cap \{1, \dots, n\}} \frac{1}{k}}{\sum_{k \in n} \frac{1}{k}}$
- Uniform density (aka Banach density): $\overline{u}(A) = \limsup_{n \to \infty} \max_{k \in \mathbb{N}} \frac{|A \cap \{k+1,\dots,k+n\}|}{n}$

Definition

An abstract upper density on \mathbb{N} is a function $\delta : \mathcal{P}(\mathbb{N}) \to [0, 1]$ that satisfies the following properties:

1) $\delta(\mathbb{N})=1,$

- If $F \subseteq \mathbb{N}$ is finite then $\delta(F) = 0$,
- 3) if $A \subseteq B$ then $\delta(A) \leqslant \delta(B)$,

Abstract upper density

Examples of upper densities

• Asymptotic density:
$$\overline{d}(A) = \limsup_{n \to \infty} \frac{|A \cap \{1, \dots, n\}|}{n}$$

- Logarithmic density: $\overline{\delta}(A) = \limsup_{n \to \infty} \frac{\sum_{k \in A \cap \{1, \dots, n\}} \frac{1}{k}}{\sum_{k \in A} \frac{1}{k}}$
- Uniform density (aka Banach density): $\overline{u}(A) = \limsup_{n \to \infty} \max_{k \in \mathbb{N}} \frac{|A \cap \{k+1,\dots,k+n\}|}{n}$

Definition

An abstract upper density on \mathbb{N} is a function $\delta : \mathcal{P}(\mathbb{N}) \to [0, 1]$ that satisfies the following properties:

$$\bullet \ \delta(\mathbb{N}) = 1,$$

② if
$$F\subseteq \mathbb{N}$$
 is finite then $\delta(F)=$ 0,

3) if
$$A\subseteq B$$
 then $\delta(A)\leqslant\delta(B)$,

 $(A \cup B) \leq \delta(A) + \delta(B).$

If $\delta:\mathcal{P}(\mathbb{N})
ightarrow [0,1]$ is an abstract upper density, then

$$\mathcal{Z}_{\delta} = \{A \subseteq \mathbb{N} : \delta(A) = 0\}$$

- If $A, B \in \mathbb{Z}_{\delta}$ then $A \cup B \in \mathbb{Z}_{\delta}$,
- (2) if $A \subseteq B$ and $B \in \mathbb{Z}_{\delta}$ then $A \in \mathbb{Z}_{\delta}$,
- $\bigcirc \mathcal{Z}_{\delta}$ contains all finite subsets of \mathbb{N} ,

•
$$\mathbb{N} \notin \mathcal{Z}_{\delta}$$
.

If $\delta:\mathcal{P}(\mathbb{N})
ightarrow [0,1]$ is an abstract upper density, then

$$\mathcal{Z}_{\delta} = \{A \subseteq \mathbb{N} : \delta(A) = 0\}$$

- **1** if $A, B \in \mathcal{Z}_{\delta}$ then $A \cup B \in \mathcal{Z}_{\delta}$,
- (2) if $A \subseteq B$ and $B \in \mathcal{Z}_{\delta}$ then $A \in \mathcal{Z}_{\delta}$,
- **(a)** \mathcal{Z}_{δ} contains all finite subsets of \mathbb{N} ,
- $\mathbb{N} \notin \mathcal{Z}_{\delta}$.

If $\delta:\mathcal{P}(\mathbb{N})
ightarrow [0,1]$ is an abstract upper density, then

$$\mathcal{Z}_{\delta} = \{A \subseteq \mathbb{N} : \delta(A) = 0\}$$

- if $A, B \in \mathcal{Z}_{\delta}$ then $A \cup B \in \mathcal{Z}_{\delta}$,
- **2** if $A \subseteq B$ and $B \in \mathcal{Z}_{\delta}$ then $A \in \mathcal{Z}_{\delta}$,
- If \mathcal{Z}_{δ} contains all finite subsets of \mathbb{N} ,

If $\delta:\mathcal{P}(\mathbb{N})
ightarrow [0,1]$ is an abstract upper density, then

$$\mathcal{Z}_{\delta} = \{A \subseteq \mathbb{N} : \delta(A) = 0\}$$

- **1** if $A, B \in \mathcal{Z}_{\delta}$ then $A \cup B \in \mathcal{Z}_{\delta}$,
- **2** if $A \subseteq B$ and $B \in \mathcal{Z}_{\delta}$ then $A \in \mathcal{Z}_{\delta}$,
- **③** \mathcal{Z}_{δ} contains all finite subsets of \mathbb{N} ,

If $\delta:\mathcal{P}(\mathbb{N})
ightarrow [0,1]$ is an abstract upper density, then

$$\mathcal{Z}_{\delta} = \{A \subseteq \mathbb{N} : \delta(A) = 0\}$$

- **1** if $A, B \in \mathcal{Z}_{\delta}$ then $A \cup B \in \mathcal{Z}_{\delta}$,
- **2** if $A \subseteq B$ and $B \in \mathcal{Z}_{\delta}$ then $A \in \mathcal{Z}_{\delta}$,
- **③** \mathcal{Z}_{δ} contains all finite subsets of \mathbb{N} ,

Abstract upper densities and ideals

Proposition

Let \mathcal{I} be an ideal. The function $\delta:\mathcal{P}(\mathbb{N})
ightarrow [0,1]$ given by

$$\delta(A) = egin{cases} 0 & ext{if } A \in \mathcal{I}, \ 1 & ext{otherwise} \end{cases}$$

is an abstract upper density and $\mathcal{I} = \mathcal{Z}_{\delta}$.

Proof

Straightforward.

Question (G. Gerkos, 2013)

Let \mathcal{I} be an ideal. Does there is a "nice" abstract upper density δ such that $\mathcal{Z}_{\delta} = \mathcal{I}$, where "nice" would mean the properties of the familiar densities consider in number theory?

• 同 • < 三 •</p>

Abstract upper densities and ideals

Proposition

Let \mathcal{I} be an ideal. The function $\delta:\mathcal{P}(\mathbb{N})
ightarrow [0,1]$ given by

$$\delta(A) = egin{cases} 0 & ext{if } A \in \mathcal{I}, \ 1 & ext{otherwise} \end{cases}$$

is an abstract upper density and $\mathcal{I} = \mathcal{Z}_{\delta}$.

Proof

Straightforward.

Question (G. Gerkos, 2013)

Let \mathcal{I} be an ideal. Does there is a "nice" abstract upper density δ such that $\mathcal{Z}_{\delta} = \mathcal{I}$, where "nice" would mean the properties of the familiar densities consider in number theory?

Nice = translation invariance

Definition

• Translation invariant density: $\delta(A + k) = \delta(A)$ for all A and k

Translation invariant ideal: $A + k \in \mathcal{I}$ for all $A \in \mathcal{I}$ and k

Proposition

Let ${\mathcal I}$ be a translation invariant ideal. The function

$$\delta(A) = \begin{cases} 0 & \text{if } A \in \mathcal{I}, \\ 1 & \text{otherwise} \end{cases}$$

is a translation invariant abstract upper density and $\mathcal{I}=\mathcal{Z}_{\delta}.$

Proof

Straightforward.

Nice = translation invariance

Definition

- Translation invariant density: $\delta(A + k) = \delta(A)$ for all A and k
- Translation invariant ideal: $A + k \in \mathcal{I}$ for all $A \in \mathcal{I}$ and k

Proposition

Let ${\mathcal I}$ be a translation invariant ideal. The function

$$\delta(A) = \begin{cases} 0 & \text{if } A \in \mathcal{I}, \\ 1 & \text{otherwise} \end{cases}$$

is a translation invariant abstract upper density and $\mathcal{I}=\mathcal{Z}_{\delta}.$

Proof

Straightforward.

Nice = translation invariance

Definition

- Translation invariant density: $\delta(A + k) = \delta(A)$ for all A and k
- Translation invariant ideal: $A + k \in \mathcal{I}$ for all $A \in \mathcal{I}$ and k

Proposition

Let ${\mathcal I}$ be a translation invariant ideal. The function

$$\delta(A) = egin{cases} 0 & ext{if } A \in \mathcal{I}, \ 1 & ext{otherwise} \end{cases}$$

is a translation invariant abstract upper density and $\mathcal{I} = \mathcal{Z}_{\delta}$.

Proof

Straightforward.

Definition

Rich density: for every $r \in [0, 1]$ there is $A \subseteq \mathbb{N}$ with $\delta(A) = r$.

Theorem (M. Di Nasso–R. Jin, 2018)

If \mathcal{I} is a summable ideal then there is a rich abstract upper density δ with $\mathcal{I} = \mathcal{Z}_{\delta}$.

Definition of a summable ideal

There is $f:\mathbb{N}\to [0,\infty)$ such that

$$\mathcal{I} = \{A \subseteq \mathbb{N} : \sum_{n \in A} f(n) < \infty\}.$$

< 同 > < 国 > < 国 >

Fin = {A : A is finite} and $\mathcal{I}_{1/n} = \{A : \sum_{n \in A} \frac{1}{n} < \infty\}$ are summable ideals.

Definition

Rich density: for every
$$r \in [0, 1]$$
 there is $A \subseteq \mathbb{N}$ with $\delta(A) = r$.

Theorem (M. Di Nasso-R. Jin, 2018)

If \mathcal{I} is a summable ideal then there is a rich abstract upper density δ with $\mathcal{I} = \mathcal{Z}_{\delta}$.

Definition of a summable ideal

There is $f:\mathbb{N}\to [0,\infty)$ such that

$$\mathcal{I} = \{A \subseteq \mathbb{N} : \sum_{n \in A} f(n) < \infty\}.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Fin = {A : A is finite} and $\mathcal{I}_{1/n} = \{A : \sum_{n \in A} \frac{1}{n} < \infty\}$ are summable ideals.

(日)

э

Definition

 $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$ is \mathcal{I} almost disjoint family (\mathcal{I} -AD family) if $A \notin \mathcal{I}$ and $A \cap B \in \mathcal{I}$ for any distinct $A, B \in \mathcal{A}$.

Theorem

If there exists an \mathcal{I} -AD family of cardinality \mathfrak{c} , then there is a rich abstract upper density δ such that $\mathcal{Z}_{\delta} = \mathcal{I}$.

- Extend \mathcal{A} to a maximal \mathcal{I} -AD-family.
- Enumerate: $\mathcal{A} = \{A_{\alpha} : \alpha < \mathfrak{c}\}$ and $(0, 1) = \{r_{\alpha} : \alpha < \mathfrak{c}\}.$
- Define: $\delta(A) = \sup\{r_{\alpha} : A_{\alpha} \cap A \notin \mathcal{I}\}$
- δ is an abstract upper density
- δ is rich [use \mathcal{I} -almost disjointness of \mathcal{A}]
- $\mathcal{Z}_{\delta} = \mathcal{I}$ [use maximality of \mathcal{A}]

Definition

 $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$ is \mathcal{I} almost disjoint family (\mathcal{I} -AD family) if $A \notin \mathcal{I}$ and $A \cap B \in \mathcal{I}$ for any distinct $A, B \in \mathcal{A}$.

Theorem

If there exists an \mathcal{I} -AD family of cardinality \mathfrak{c} , then there is a rich abstract upper density δ such that $\mathcal{Z}_{\delta} = \mathcal{I}$.

- Extend \mathcal{A} to a maximal \mathcal{I} -AD-family.
- Enumerate: $\mathcal{A} = \{A_{\alpha} : \alpha < \mathfrak{c}\}$ and $(0, 1) = \{r_{\alpha} : \alpha < \mathfrak{c}\}.$
- Define: $\delta(A) = \sup\{r_{\alpha} : A_{\alpha} \cap A \notin \mathcal{I}\}$
- δ is an abstract upper density
- δ is rich [use \mathcal{I} -almost disjointness of \mathcal{A}]
- $\mathcal{Z}_{\delta} = \mathcal{I}$ [use maximality of \mathcal{A}]

Definition

 $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$ is \mathcal{I} almost disjoint family (\mathcal{I} -AD family) if $A \notin \mathcal{I}$ and $A \cap B \in \mathcal{I}$ for any distinct $A, B \in \mathcal{A}$.

Theorem

If there exists an \mathcal{I} -AD family of cardinality \mathfrak{c} , then there is a rich abstract upper density δ such that $\mathcal{Z}_{\delta} = \mathcal{I}$.

- \bullet Extend ${\mathcal A}$ to a maximal ${\mathcal I}\text{-}\mathsf{AD}\text{-}\mathsf{family}.$
- Enumerate: $\mathcal{A} = \{A_{\alpha} : \alpha < \mathfrak{c}\}$ and $(0, 1) = \{r_{\alpha} : \alpha < \mathfrak{c}\}.$
- Define: $\delta(A) = \sup\{r_{\alpha} : A_{\alpha} \cap A \notin \mathcal{I}\}$
- δ is an abstract upper density
- δ is rich [use \mathcal{I} -almost disjointness of \mathcal{A}]
- $\mathcal{Z}_{\delta} = \mathcal{I}$ [use maximality of \mathcal{A}]

Definition

 $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$ is \mathcal{I} almost disjoint family (\mathcal{I} -AD family) if $A \notin \mathcal{I}$ and $A \cap B \in \mathcal{I}$ for any distinct $A, B \in \mathcal{A}$.

Theorem

If there exists an \mathcal{I} -AD family of cardinality \mathfrak{c} , then there is a rich abstract upper density δ such that $\mathcal{Z}_{\delta} = \mathcal{I}$.

- \bullet Extend ${\mathcal A}$ to a maximal ${\mathcal I}\text{-}\mathsf{AD}\text{-}\mathsf{family}.$
- Enumerate: $\mathcal{A} = \{A_{\alpha} : \alpha < \mathfrak{c}\}$ and $(0, 1) = \{r_{\alpha} : \alpha < \mathfrak{c}\}.$
- Define: $\delta(A) = \sup\{r_{\alpha} : A_{\alpha} \cap A \notin \mathcal{I}\}$
- δ is an abstract upper density
- δ is rich [use \mathcal{I} -almost disjointness of \mathcal{A}]
- $\mathcal{Z}_{\delta} = \mathcal{I}$ [use maximality of \mathcal{A}]

Definition

 $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$ is \mathcal{I} almost disjoint family (\mathcal{I} -AD family) if $A \notin \mathcal{I}$ and $A \cap B \in \mathcal{I}$ for any distinct $A, B \in \mathcal{A}$.

Theorem

If there exists an \mathcal{I} -AD family of cardinality \mathfrak{c} , then there is a rich abstract upper density δ such that $\mathcal{Z}_{\delta} = \mathcal{I}$.

- \bullet Extend ${\mathcal A}$ to a maximal ${\mathcal I}\text{-}\mathsf{AD}\text{-}\mathsf{family}.$
- Enumerate: $\mathcal{A} = \{A_{\alpha} : \alpha < \mathfrak{c}\}$ and $(0, 1) = \{r_{\alpha} : \alpha < \mathfrak{c}\}.$
- Define: $\delta(A) = \sup\{r_{\alpha} : A_{\alpha} \cap A \notin \mathcal{I}\}$
- δ is an abstract upper density
- δ is rich [use \mathcal{I} -almost disjointness of \mathcal{A}]
- $\mathcal{Z}_{\delta} = \mathcal{I}$ [use maximality of \mathcal{A}]

Definition

 $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$ is \mathcal{I} almost disjoint family (\mathcal{I} -AD family) if $A \notin \mathcal{I}$ and $A \cap B \in \mathcal{I}$ for any distinct $A, B \in \mathcal{A}$.

Theorem

If there exists an \mathcal{I} -AD family of cardinality \mathfrak{c} , then there is a rich abstract upper density δ such that $\mathcal{Z}_{\delta} = \mathcal{I}$.

- Extend \mathcal{A} to a maximal \mathcal{I} -AD-family.
- Enumerate: $\mathcal{A} = \{A_{\alpha} : \alpha < \mathfrak{c}\}$ and $(0, 1) = \{r_{\alpha} : \alpha < \mathfrak{c}\}.$
- Define: $\delta(A) = \sup\{r_{\alpha} : A_{\alpha} \cap A \notin \mathcal{I}\}$
- δ is an abstract upper density
- δ is rich [use \mathcal{I} -almost disjointness of \mathcal{A}]
- $\mathcal{Z}_{\delta} = \mathcal{I}$ [use maximality of \mathcal{A}]

Definition

 $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$ is \mathcal{I} almost disjoint family (\mathcal{I} -AD family) if $A \notin \mathcal{I}$ and $A \cap B \in \mathcal{I}$ for any distinct $A, B \in \mathcal{A}$.

Theorem

If there exists an \mathcal{I} -AD family of cardinality \mathfrak{c} , then there is a rich abstract upper density δ such that $\mathcal{Z}_{\delta} = \mathcal{I}$.

- Extend \mathcal{A} to a maximal \mathcal{I} -AD-family.
- Enumerate: $\mathcal{A} = \{A_{\alpha} : \alpha < \mathfrak{c}\}$ and $(0, 1) = \{r_{\alpha} : \alpha < \mathfrak{c}\}.$
- Define: $\delta(A) = \sup\{r_{\alpha} : A_{\alpha} \cap A \notin \mathcal{I}\}$
- δ is an abstract upper density
- δ is rich [use \mathcal{I} -almost disjointness of \mathcal{A}]
- $\mathcal{Z}_{\delta} = \mathcal{I}$ [use maximality of \mathcal{A}]

Definition

 $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$ is \mathcal{I} almost disjoint family (\mathcal{I} -AD family) if $A \notin \mathcal{I}$ and $A \cap B \in \mathcal{I}$ for any distinct $A, B \in \mathcal{A}$.

Theorem

If there exists an \mathcal{I} -AD family of cardinality \mathfrak{c} , then there is a rich abstract upper density δ such that $\mathcal{Z}_{\delta} = \mathcal{I}$.

- \bullet Extend ${\mathcal A}$ to a maximal ${\mathcal I}\text{-}\mathsf{AD}\text{-}\mathsf{family}.$
- Enumerate: $\mathcal{A} = \{A_{\alpha} : \alpha < \mathfrak{c}\}$ and $(0, 1) = \{r_{\alpha} : \alpha < \mathfrak{c}\}.$
- Define: $\delta(A) = \sup\{r_{\alpha} : A_{\alpha} \cap A \notin \mathcal{I}\}$
- δ is an abstract upper density
- δ is rich [use \mathcal{I} -almost disjointness of \mathcal{A}]

•
$$\mathcal{Z}_{\delta} = \mathcal{I}$$
 [use maximality of \mathcal{A}]

Nice = richness; case of ideals with Baire property

Corollary

If \mathcal{I} has the Baire property, then there is a rich abstract upper density δ such that $\mathcal{Z}_{\delta} = \mathcal{I}$. In particular, summable ideals.

Sketch of the proof

- Talagrand: $\exists k_1 < k_2 < \dots (\exists_n^{\infty}[k_n, k_{n+1}) \subseteq A \implies A \notin \mathcal{I})$
- Let: $I_n = [k_n, k_{n+1})$
- Take: Fin-AD family $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$ of cardinality \mathfrak{c} .
- Define: $C_A = \bigcup_{n \in A} I_n$ for every $A \in A$
- Let: $C = \{C_A : A \in A\}$
- $\bullet \ \mathcal{C}$ is of cardinality \mathfrak{c} [because \mathcal{A} has cardinality $\mathfrak{c}]$
- $C_A \in \mathcal{I}^+$ for every $A \in \mathcal{A}$ [use Talagrand's characterization]

A (1) > A (2) > A

Corollary

If \mathcal{I} has the Baire property, then there is a rich abstract upper density δ such that $\mathcal{Z}_{\delta} = \mathcal{I}$. In particular, summable ideals.

Sketch of the proof

• Talagrand: $\exists k_1 < k_2 < \dots (\exists_n^{\infty}[k_n, k_{n+1}) \subseteq A \implies A \notin \mathcal{I})$

• Let:
$$I_n = [k_n, k_{n+1})$$

- Take: Fin-AD family $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$ of cardinality \mathfrak{c} .
- Define: $C_A = \bigcup_{n \in A} I_n$ for every $A \in A$
- Let: $C = \{C_A : A \in A\}$
- C is of cardinality \mathfrak{c} [because \mathcal{A} has cardinality \mathfrak{c}]
- $C_A \in \mathcal{I}^+$ for every $A \in \mathcal{A}$ [use Talagrand's characterization]

(日)

Corollary

If \mathcal{I} has the Baire property, then there is a rich abstract upper density δ such that $\mathcal{Z}_{\delta} = \mathcal{I}$. In particular, summable ideals.

Sketch of the proof

• Talagrand: $\exists k_1 < k_2 < \dots (\exists_n^{\infty}[k_n, k_{n+1}) \subseteq A \implies A \notin \mathcal{I})$

• Let:
$$I_n = [k_n, k_{n+1})$$

- Take: Fin-AD family $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$ of cardinality \mathfrak{c} .
- Define: $C_A = \bigcup_{n \in A} I_n$ for every $A \in \mathcal{A}$
- Let: $C = \{C_A : A \in A\}$
- C is of cardinality \mathfrak{c} [because \mathcal{A} has cardinality \mathfrak{c}]
- $C_A \in \mathcal{I}^+$ for every $A \in \mathcal{A}$ [use Talagrand's characterization]

(日)

Corollary

If \mathcal{I} has the Baire property, then there is a rich abstract upper density δ such that $\mathcal{Z}_{\delta} = \mathcal{I}$. In particular, summable ideals.

Sketch of the proof

- Talagrand: $\exists k_1 < k_2 < \dots (\exists_n^{\infty}[k_n, k_{n+1}) \subseteq A \implies A \notin \mathcal{I})$
- Let: $I_n = [k_n, k_{n+1})$
- $\bullet\,$ Take: Fin-AD family $\mathcal{A}\subseteq\mathcal{P}(\mathbb{N})$ of cardinality $\mathfrak{c}.$
- Define: $C_A = \bigcup_{n \in A} I_n$ for every $A \in \mathcal{A}$
- Let: $C = \{C_A : A \in A\}$
- $\bullet \ \mathcal{C}$ is of cardinality \mathfrak{c} [because \mathcal{A} has cardinality $\mathfrak{c}]$
- $C_A \in \mathcal{I}^+$ for every $A \in \mathcal{A}$ [use Talagrand's characterization]

< ロ > < 同 > < 三 > < 三
If \mathcal{I} has the Baire property, then there is a rich abstract upper density δ such that $\mathcal{Z}_{\delta} = \mathcal{I}$. In particular, summable ideals.

Sketch of the proof

- Talagrand: $\exists k_1 < k_2 < \dots (\exists_n^{\infty}[k_n, k_{n+1}) \subseteq A \implies A \notin \mathcal{I})$
- Let: $I_n = [k_n, k_{n+1})$
- Take: Fin-AD family $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$ of cardinality \mathfrak{c} .
- Define: $C_A = \bigcup_{n \in A} I_n$ for every $A \in \mathcal{A}$
- Let: $\mathcal{C} = \{ \mathcal{C}_A : A \in \mathcal{A} \}$
- $\bullet \ \mathcal{C}$ is of cardinality \mathfrak{c} [because \mathcal{A} has cardinality $\mathfrak{c}]$
- $C_A \in \mathcal{I}^+$ for every $A \in \mathcal{A}$ [use Talagrand's characterization]

< ロ > < 同 > < 三 > < 三

• \mathcal{C} is \mathcal{I} -AD family [use \mathcal{I} -almost disjointness of \mathcal{A}]

If \mathcal{I} has the Baire property, then there is a rich abstract upper density δ such that $\mathcal{Z}_{\delta} = \mathcal{I}$. In particular, summable ideals.

Sketch of the proof

- Talagrand: $\exists k_1 < k_2 < \dots (\exists_n^{\infty}[k_n, k_{n+1}) \subseteq A \implies A \notin \mathcal{I})$
- Let: $I_n = [k_n, k_{n+1})$
- Take: Fin-AD family $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$ of cardinality \mathfrak{c} .
- Define: $C_A = \bigcup_{n \in A} I_n$ for every $A \in \mathcal{A}$
- Let: $C = \{C_A : A \in A\}$
- C is of cardinality c [because A has cardinality c]
- $C_A \in \mathcal{I}^+$ for every $A \in \mathcal{A}$ [use Talagrand's characterization]

< ロ > < 同 > < 三 > < 三

• \mathcal{C} is \mathcal{I} -AD family [use \mathcal{I} -almost disjointness of \mathcal{A}]

If \mathcal{I} has the Baire property, then there is a rich abstract upper density δ such that $\mathcal{Z}_{\delta} = \mathcal{I}$. In particular, summable ideals.

Sketch of the proof

- Talagrand: $\exists k_1 < k_2 < \dots (\exists_n^{\infty}[k_n, k_{n+1}) \subseteq A \implies A \notin \mathcal{I})$
- Let: $I_n = [k_n, k_{n+1})$
- $\bullet\,$ Take: Fin-AD family $\mathcal{A}\subseteq\mathcal{P}(\mathbb{N})$ of cardinality $\mathfrak{c}.$
- Define: $C_A = \bigcup_{n \in A} I_n$ for every $A \in \mathcal{A}$
- Let: $C = \{C_A : A \in A\}$
- \mathcal{C} is of cardinality \mathfrak{c} [because \mathcal{A} has cardinality \mathfrak{c}]
- $C_A \in \mathcal{I}^+$ for every $A \in \mathcal{A}$ [use Talagrand's characterization]

< ロ > < 同 > < 三 > < 三 >

• C is \mathcal{I} -AD family [use \mathcal{I} -almost disjointness of \mathcal{A}]

If \mathcal{I} has the Baire property, then there is a rich abstract upper density δ such that $\mathcal{Z}_{\delta} = \mathcal{I}$. In particular, summable ideals.

Sketch of the proof

- Talagrand: $\exists k_1 < k_2 < \dots (\exists_n^{\infty}[k_n, k_{n+1}) \subseteq A \implies A \notin \mathcal{I})$
- Let: $I_n = [k_n, k_{n+1})$
- Take: Fin-AD family $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$ of cardinality \mathfrak{c} .
- Define: $C_A = \bigcup_{n \in A} I_n$ for every $A \in \mathcal{A}$
- Let: $C = \{C_A : A \in A\}$
- $\bullet \ \mathcal{C}$ is of cardinality \mathfrak{c} [because \mathcal{A} has cardinality $\mathfrak{c}]$
- $C_A \in \mathcal{I}^+$ for every $A \in \mathcal{A}$ [use Talagrand's characterization]

< ロ > < 同 > < 三 > < 三 >

• C is \mathcal{I} -AD family [use \mathcal{I} -almost disjointness of \mathcal{A}]

If \mathcal{I} has the Baire property, then there is a rich abstract upper density δ such that $\mathcal{Z}_{\delta} = \mathcal{I}$. In particular, summable ideals.

Sketch of the proof

- Talagrand: $\exists k_1 < k_2 < \dots (\exists_n^{\infty}[k_n, k_{n+1}) \subseteq A \implies A \notin \mathcal{I})$
- Let: $I_n = [k_n, k_{n+1})$
- Take: Fin-AD family $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$ of cardinality \mathfrak{c} .
- Define: $C_A = \bigcup_{n \in A} I_n$ for every $A \in \mathcal{A}$
- Let: $C = \{C_A : A \in A\}$
- $\bullet \ \mathcal{C}$ is of cardinality \mathfrak{c} [because \mathcal{A} has cardinality $\mathfrak{c}]$
- $C_A \in \mathcal{I}^+$ for every $A \in \mathcal{A}$ [use Talagrand's characterization]
- \mathcal{C} is \mathcal{I} -AD family [use \mathcal{I} -almost disjointness of \mathcal{A}]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Example • \mathcal{J} be a maximal ideal, • $\mathcal{I} = \{\emptyset\} \otimes \mathcal{J},$ • $\delta(A) = \sum_{A_n \notin \mathcal{J}} \frac{1}{2^n}.$ • \mathcal{I} is an ideal. • δ is an abstract upper density. • δ is rich [use binary expansion], • $\mathcal{Z}_{\delta} = \mathcal{I}$. • there is no \mathcal{I} -AD family of cardinality \mathfrak{c} (even uncountable)

Example

Let

- ${\mathcal J}$ be a maximal ideal,
- $\mathcal{I} = \{\emptyset\} \otimes \mathcal{J},$ • $\delta(A) = \sum_{A_n \notin \mathcal{J}} \frac{1}{2^n}.$

Then

- $\mathcal I$ is an ideal,
- $\bullet~\delta$ is an abstract upper density,
- δ is rich [use binary expansion],
- $\mathcal{Z}_{\delta} = \mathcal{I}$,
- there is no *I*-AD family of cardinality c (even uncountable) [use maximality of *J*].

Example

Let

- ${\mathcal J}$ be a maximal ideal,
- $\mathcal{I} = \{ \emptyset \} \otimes \mathcal{J}$,
- $\delta(A) = \sum_{A_n \notin \mathcal{J}} \frac{1}{2^n}.$

Then

- $\mathcal I$ is an ideal,
- $\bullet~\delta$ is an abstract upper density,
- δ is rich [use binary expansion],
- $\mathcal{Z}_{\delta} = \mathcal{I}$,
- there is no *I*-AD family of cardinality c (even uncountable) [use maximality of *J*].

Example

Let

• $\mathcal J$ be a maximal ideal,

•
$$\mathcal{I} = \{\emptyset\} \otimes \mathcal{J},$$

• $\delta(A) = \sum_{A_n \notin \mathcal{J}} \frac{1}{2^n}.$

Then

- $\mathcal I$ is an ideal,
- $\bullet~\delta$ is an abstract upper density,
- δ is rich [use binary expansion],
- $\mathcal{Z}_{\delta} = \mathcal{I}$,
- there is no *I*-AD family of cardinality c (even uncountable) [use maximality of *J*].

Example

Let

• $\mathcal J$ be a maximal ideal,

•
$$\mathcal{I} = \{\emptyset\} \otimes \mathcal{J},$$

• $\delta(A) = \sum_{A_n \notin \mathcal{J}} \frac{1}{2^n}.$

Then

- $\mathcal I$ is an ideal,
- δ is an abstract upper density,
- δ is rich [use binary expansion],
- $\mathcal{Z}_{\delta} = \mathcal{I}$,
- there is no *I*-AD family of cardinality c (even uncountable) [use maximality of *J*].

Example

Let

• $\mathcal J$ be a maximal ideal,

•
$$\mathcal{I} = \{\emptyset\} \otimes \mathcal{J},$$

• $\delta(A) = \sum_{A_n \notin \mathcal{J}} \frac{1}{2^n}.$

Then

- $\mathcal I$ is an ideal,
- δ is an abstract upper density,
- δ is rich [use binary expansion],
- $\mathcal{Z}_{\delta} = \mathcal{I}$,
- there is no *I*-AD family of cardinality c (even uncountable) [use maximality of *J*].

Example

Let

• $\mathcal J$ be a maximal ideal,

•
$$\mathcal{I} = \{\emptyset\} \otimes \mathcal{J},$$

• $\delta(A) = \sum_{A_n \notin \mathcal{J}} \frac{1}{2^n}.$

Then

- $\mathcal I$ is an ideal,
- δ is an abstract upper density,
- δ is rich [use binary expansion],
- $\mathcal{Z}_{\delta} = \mathcal{I}$,
- there is no *I*-AD family of cardinality c (even uncountable) [use maximality of *J*].

Example

Let

• $\mathcal J$ be a maximal ideal,

•
$$\mathcal{I} = \{\emptyset\} \otimes \mathcal{J},$$

• $\delta(A) = \sum_{A_n \notin \mathcal{J}} \frac{1}{2^n}.$

Then

- $\mathcal I$ is an ideal,
- δ is an abstract upper density,
- δ is rich [use binary expansion],
- $\mathcal{Z}_{\delta}=\mathcal{I}$,
- there is no *I*-AD family of cardinality c (even uncountable) [use maximality of *J*].

Example

Let

• $\mathcal J$ be a maximal ideal,

•
$$\mathcal{I} = \{\emptyset\} \otimes \mathcal{J},$$

• $\delta(A) = \sum_{A_n \notin \mathcal{J}} \frac{1}{2^n}.$

Then

- $\mathcal I$ is an ideal,
- δ is an abstract upper density,
- δ is rich [use binary expansion],
- $\mathcal{Z}_{\delta}=\mathcal{I}$,
- there is no *I*-AD family of cardinality c (even uncountable) [use maximality of *J*].

A (10) × (10) × (10)

Example • \mathcal{J} be a maximal ideal. • $\mathcal{I} = \operatorname{Fin} \otimes \mathcal{I}$. • \mathcal{I} is an ideal. • there is \mathcal{I} -AD family of cardinality \mathfrak{c} [use Fin-AD family of • \mathcal{I} does not have the Baire property [use maximality of \mathcal{J} and

Example

Let

- $\mathcal J$ be a maximal ideal,
- $\mathcal{I} = \operatorname{Fin} \otimes \mathcal{J}$.

- \mathcal{I} is an ideal,
- there is *I*-AD family of cardinality c [use Fin-AD family of cardinality c]
- \mathcal{I} does not have the Baire property [use maximality of \mathcal{J} and Plewik theorem saying that intersection of countably many maximal ideals does not have the Baire property]

Example

Let

- $\mathcal J$ be a maximal ideal,
- $\mathcal{I} = \operatorname{Fin} \otimes \mathcal{J}.$

- \mathcal{I} is an ideal,
- there is *I*-AD family of cardinality c [use Fin-AD family of cardinality c]
- \mathcal{I} does not have the Baire property [use maximality of \mathcal{J} and Plewik theorem saying that intersection of countably many maximal ideals does not have the Baire property]

Example

Let

- $\mathcal J$ be a maximal ideal,
- $\mathcal{I} = \operatorname{Fin} \otimes \mathcal{J}$.

- $\mathcal I$ is an ideal,
- there is *I*-AD family of cardinality c [use Fin-AD family of cardinality c]
- \mathcal{I} does not have the Baire property [use maximality of \mathcal{J} and Plewik theorem saying that intersection of countably many maximal ideals does not have the Baire property]

Example

Let

- $\mathcal J$ be a maximal ideal,
- $\mathcal{I} = \operatorname{Fin} \otimes \mathcal{J}$.

- $\mathcal I$ is an ideal,
- there is *I*-AD family of cardinality c [use Fin-AD family of cardinality c]
- \mathcal{I} does not have the Baire property [use maximality of \mathcal{J} and Plewik theorem saying that intersection of countably many maximal ideals does not have the Baire property]

Example

Let

- $\mathcal J$ be a maximal ideal,
- $\mathcal{I} = \operatorname{Fin} \otimes \mathcal{J}$.

- \mathcal{I} is an ideal,
- there is *I*-AD family of cardinality c [use Fin-AD family of cardinality c]
- \mathcal{I} does not have the Baire property [use maximality of \mathcal{J} and Plewik theorem saying that intersection of countably many maximal ideals does not have the Baire property]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Nice = richness; ideals without density

Theorem

If \mathcal{I} is a maximal ideal, then there is no rich abstract upper density δ with $\mathcal{Z}_{\delta} = \mathcal{I}$.

Proof

- If $A \in \mathcal{I}$ then $\delta(A) = 0$.
- If $A \notin \mathcal{I}$, then $\mathbb{N} \setminus A \in \mathcal{I}$ [use maximality]

• hence

 $1 = \delta(\mathbb{N}) \leqslant \delta(A) + \delta(\mathbb{N} \setminus A) = \delta(A) + 0 = \delta(A) \leqslant 1$

so δ(A) = 1.
Thus δ takes only 2 values, so it is not rich.

If \mathcal{I} is a maximal ideal, then there is no rich abstract upper density δ with $\mathcal{Z}_{\delta} = \mathcal{I}$.

Proof

- If $A \in \mathcal{I}$ then $\delta(A) = 0$.
- If $A \notin \mathcal{I}$, then $\mathbb{N} \setminus A \in \mathcal{I}$ [use maximality]

hence

 $1 = \delta(\mathbb{N}) \leqslant \delta(A) + \delta(\mathbb{N} \setminus A) = \delta(A) + 0 = \delta(A) \leqslant 1$

so δ(A) = 1.
Thus δ takes only 2 values, so it is not rich

If \mathcal{I} is a maximal ideal, then there is no rich abstract upper density δ with $\mathcal{Z}_{\delta} = \mathcal{I}$.

Proof

- If $A \in \mathcal{I}$ then $\delta(A) = 0$.
- If $A \notin \mathcal{I}$, then $\mathbb{N} \setminus A \in \mathcal{I}$ [use maximality]

hence

 $1 = \delta(\mathbb{N}) \leqslant \delta(A) + \delta(\mathbb{N} \setminus A) = \delta(A) + 0 = \delta(A) \leqslant 1$

so δ(A) = 1.
Thus δ takes only 2 values, so it is not rich

If \mathcal{I} is a maximal ideal, then there is no rich abstract upper density δ with $\mathcal{Z}_{\delta} = \mathcal{I}$.

Proof

- If $A \in \mathcal{I}$ then $\delta(A) = 0$.
- If $A \notin \mathcal{I}$, then $\mathbb{N} \setminus A \in \mathcal{I}$ [use maximality]

hence

 $1 = \delta(\mathbb{N}) \leqslant \delta(A) + \delta(\mathbb{N} \setminus A) = \delta(A) + 0 = \delta(A) \leqslant 1$

If \mathcal{I} is a maximal ideal, then there is no rich abstract upper density δ with $\mathcal{Z}_{\delta} = \mathcal{I}$.

Proof

- If $A \in \mathcal{I}$ then $\delta(A) = 0$.
- If $A \notin \mathcal{I}$, then $\mathbb{N} \setminus A \in \mathcal{I}$ [use maximality]

hence

 $1 = \delta(\mathbb{N}) \leqslant \delta(A) + \delta(\mathbb{N} \setminus A) = \delta(A) + 0 = \delta(A) \leqslant 1$

If \mathcal{I} is a maximal ideal, then there is no rich abstract upper density δ with $\mathcal{Z}_{\delta} = \mathcal{I}$.

Proof

- If $A \in \mathcal{I}$ then $\delta(A) = 0$.
- If $A \notin \mathcal{I}$, then $\mathbb{N} \setminus A \in \mathcal{I}$ [use maximality]

hence

 $1 = \delta(\mathbb{N}) \leqslant \delta(A) + \delta(\mathbb{N} \setminus A) = \delta(A) + 0 = \delta(A) \leqslant 1$

- so $\delta(A) = 1$.
- $\bullet\,$ Thus $\delta\,$ takes only 2 values, so it is not rich.

Example

Let

- $\mathcal{I}_1, \mathcal{I}_2$ be maximal ideals,
- $\mathcal{I} = \mathcal{I}_1 \oplus \mathcal{I}_2.$

Then

- $\bullet \ \mathcal{I}$ is an ideal
- \mathcal{I} is non-maximal [since $\mathcal{P}(\mathbb{N}) \oplus \mathcal{I}_2$ is a larger ideal]
- If $A \notin \mathcal{I}$, then $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$ or $A \cap (\{2\} \times \mathbb{N}) \notin \mathcal{I}_2$.
- Say $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$.
- Then $\delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N})$ [since \mathcal{I}_1 is maximal]

- Since $\delta(A) \ge \delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N}) \neq 0$, so
- $\operatorname{ran}(\delta) = \{0\} \cup [\delta(\{1\} \times \mathbb{N}), 1].$
- Thus δ is not rich.

Example

Let

- $\mathcal{I}_1, \mathcal{I}_2$ be maximal ideals,
- $\mathcal{I} = \mathcal{I}_1 \oplus \mathcal{I}_2$.

Then

- $\bullet \ \mathcal{I}$ is an ideal
- \mathcal{I} is non-maximal [since $\mathcal{P}(\mathbb{N}) \oplus \mathcal{I}_2$ is a larger ideal]
- If $A \notin \mathcal{I}$, then $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$ or $A \cap (\{2\} \times \mathbb{N}) \notin \mathcal{I}_2$.
- Say $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$.
- Then $\delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N})$ [since \mathcal{I}_1 is maximal]

- Since $\delta(A) \geqslant \delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N}) \neq 0$, so
- $\operatorname{ran}(\delta) = \{0\} \cup [\delta(\{1\} \times \mathbb{N}), 1].$
- Thus δ is not rich.

Example

Let

- $\mathcal{I}_1, \mathcal{I}_2$ be maximal ideals,
- $\mathcal{I} = \mathcal{I}_1 \oplus \mathcal{I}_2$.

Then

- $\bullet \ \mathcal{I}$ is an ideal
- \mathcal{I} is non-maximal [since $\mathcal{P}(\mathbb{N}) \oplus \mathcal{I}_2$ is a larger ideal]
- If $A \notin \mathcal{I}$, then $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$ or $A \cap (\{2\} \times \mathbb{N}) \notin \mathcal{I}_2$.
- Say $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$.
- Then $\delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N})$ [since \mathcal{I}_1 is maximal]

- Since $\delta(A) \ge \delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N}) \neq 0$, so
- $\operatorname{ran}(\delta) = \{0\} \cup [\delta(\{1\} \times \mathbb{N}), 1].$
- Thus δ is not rich.

Example

Let

- $\mathcal{I}_1, \mathcal{I}_2$ be maximal ideals,
- $\mathcal{I} = \mathcal{I}_1 \oplus \mathcal{I}_2$.

Then

- $ullet \, \mathcal{I}$ is an ideal
- \mathcal{I} is non-maximal [since $\mathcal{P}(\mathbb{N}) \oplus \mathcal{I}_2$ is a larger ideal]
- If $A \notin \mathcal{I}$, then $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$ or $A \cap (\{2\} \times \mathbb{N}) \notin \mathcal{I}_2$.
- Say $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$.
- Then $\delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N})$ [since \mathcal{I}_1 is maximal]

- Since $\delta(A) \geqslant \delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N}) \neq 0$, so
- $\operatorname{ran}(\delta) = \{0\} \cup [\delta(\{1\} \times \mathbb{N}), 1].$
- Thus δ is not rich.

Example

Let

- $\mathcal{I}_1, \mathcal{I}_2$ be maximal ideals,
- $\mathcal{I} = \mathcal{I}_1 \oplus \mathcal{I}_2$.

Then

- $ullet \ \mathcal{I}$ is an ideal
- \mathcal{I} is non-maximal [since $\mathcal{P}(\mathbb{N}) \oplus \mathcal{I}_2$ is a larger ideal]
- If $A \notin \mathcal{I}$, then $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$ or $A \cap (\{2\} \times \mathbb{N}) \notin \mathcal{I}_2$.
- Say $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$.
- Then $\delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N})$ [since \mathcal{I}_1 is maximal]

- Since $\delta(A) \geqslant \delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N}) \neq 0$, so
- $\operatorname{ran}(\delta) = \{0\} \cup [\delta(\{1\} \times \mathbb{N}), 1].$
- Thus δ is not rich.

Example

Let

- $\mathcal{I}_1, \mathcal{I}_2$ be maximal ideals,
- $\mathcal{I} = \mathcal{I}_1 \oplus \mathcal{I}_2$.

Then

- $ullet \ \mathcal{I}$ is an ideal
- \mathcal{I} is non-maximal [since $\mathcal{P}(\mathbb{N}) \oplus \mathcal{I}_2$ is a larger ideal]
- If $A \notin \mathcal{I}$, then $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$ or $A \cap (\{2\} \times \mathbb{N}) \notin \mathcal{I}_2$.

• Say $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$.

• Then $\delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N})$ [since \mathcal{I}_1 is maximal]

- Since $\delta(A) \geqslant \delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N}) \neq 0$, so
- $\operatorname{ran}(\delta) = \{0\} \cup [\delta(\{1\} \times \mathbb{N}), 1].$
- Thus δ is not rich.

Example

Let

- $\mathcal{I}_1, \mathcal{I}_2$ be maximal ideals,
- $\mathcal{I} = \mathcal{I}_1 \oplus \mathcal{I}_2$.

Then

- $ullet \ \mathcal{I}$ is an ideal
- \mathcal{I} is non-maximal [since $\mathcal{P}(\mathbb{N}) \oplus \mathcal{I}_2$ is a larger ideal]
- If $A \notin \mathcal{I}$, then $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$ or $A \cap (\{2\} \times \mathbb{N}) \notin \mathcal{I}_2$.
- Say $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$.
- Then $\delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N})$ [since \mathcal{I}_1 is maximal]

- Since $\delta(A) \geqslant \delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N}) \neq 0$, so
- $\operatorname{ran}(\delta) = \{0\} \cup [\delta(\{1\} \times \mathbb{N}), 1].$
- Thus δ is not rich.

Example

Let

- $\mathcal{I}_1, \mathcal{I}_2$ be maximal ideals,
- $\mathcal{I} = \mathcal{I}_1 \oplus \mathcal{I}_2$.

Then

- $ullet \ \mathcal{I}$ is an ideal
- \mathcal{I} is non-maximal [since $\mathcal{P}(\mathbb{N}) \oplus \mathcal{I}_2$ is a larger ideal]
- If $A \notin \mathcal{I}$, then $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$ or $A \cap (\{2\} \times \mathbb{N}) \notin \mathcal{I}_2$.
- Say $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$.
- Then $\delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N})$ [since \mathcal{I}_1 is maximal]

- Since $\delta(A) \geqslant \delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N}) \neq 0$, so
- ran $(\delta) = \{0\} \cup [\delta(\{1\} \times \mathbb{N}), 1].$
- Thus δ is not rich
Nice = richness; non-maximal ideals without density

Example

Let

- $\mathcal{I}_1, \mathcal{I}_2$ be maximal ideals,
- $\mathcal{I} = \mathcal{I}_1 \oplus \mathcal{I}_2$.

Then

- $ullet \ \mathcal{I}$ is an ideal
- \mathcal{I} is non-maximal [since $\mathcal{P}(\mathbb{N}) \oplus \mathcal{I}_2$ is a larger ideal]
- If $A \notin \mathcal{I}$, then $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$ or $A \cap (\{2\} \times \mathbb{N}) \notin \mathcal{I}_2$.
- Say $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$.
- Then $\delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N})$ [since \mathcal{I}_1 is maximal]

・ 同 ト ・ ヨ ト ・ ヨ ト

- Since $\delta(A) \geqslant \delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N}) \neq 0$, so
- ran $(\delta) = \{0\} \cup [\delta(\{1\} \times \mathbb{N}), 1].$
- Thus δ is not rich

Nice = richness; non-maximal ideals without density

Example

Let

- $\mathcal{I}_1, \mathcal{I}_2$ be maximal ideals,
- $\mathcal{I} = \mathcal{I}_1 \oplus \mathcal{I}_2$.

Then

- $ullet \ \mathcal{I}$ is an ideal
- \mathcal{I} is non-maximal [since $\mathcal{P}(\mathbb{N}) \oplus \mathcal{I}_2$ is a larger ideal]
- If $A \notin \mathcal{I}$, then $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$ or $A \cap (\{2\} \times \mathbb{N}) \notin \mathcal{I}_2$.
- Say $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$.
- Then $\delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N})$ [since \mathcal{I}_1 is maximal]

・ 同 ト ・ ヨ ト ・ ヨ ト

- Since $\delta(A) \geqslant \delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N}) \neq 0$, so
- $\operatorname{ran}(\delta) = \{0\} \cup [\delta(\{1\} \times \mathbb{N}), 1].$
- Thus δ is not rich.

Nice = richness; non-maximal ideals without density

Example

Let

- $\mathcal{I}_1, \mathcal{I}_2$ be maximal ideals,
- $\mathcal{I} = \mathcal{I}_1 \oplus \mathcal{I}_2$.

Then

- $ullet \ \mathcal{I}$ is an ideal
- \mathcal{I} is non-maximal [since $\mathcal{P}(\mathbb{N}) \oplus \mathcal{I}_2$ is a larger ideal]
- If $A \notin \mathcal{I}$, then $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$ or $A \cap (\{2\} \times \mathbb{N}) \notin \mathcal{I}_2$.
- Say $A \cap (\{1\} \times \mathbb{N}) \notin \mathcal{I}_1$.
- Then $\delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N})$ [since \mathcal{I}_1 is maximal]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Since $\delta(A) \geqslant \delta(A \cap (\{1\} \times \mathbb{N})) = \delta(\{1\} \times \mathbb{N}) \neq 0$, so
- $\operatorname{ran}(\delta) = \{0\} \cup [\delta(\{1\} \times \mathbb{N}), 1].$
- Thus δ is not rich.

→ < Ξ → <</p>

→ < ∃ →</p>

→ < ∃ →

• Let \mathcal{J} be a maximal ideal. • $\delta(A) = \mathcal{J} - \lim \frac{|A \cap \{1, \dots, n\}|}{n}$ • δ is well defined [since \mathcal{J} is maximal] • δ is an abstract upper density (it is finitely additive measure) • δ is translation invariant • δ is rich [since asymptotic density is so] • Let $\mathcal{I} = \mathcal{Z}_{\mathcal{S}}$.

• There is no $\mathcal{I}\text{-}\mathsf{AD}$ family of cardinality \mathfrak{c} [since finite measures satisfy ccc]

・ 同 ト ・ ヨ ト ・ ヨ ト

Example l et • Let \mathcal{J} be a maximal ideal. • $\delta(A) = \mathcal{J} - \lim \frac{|A \cap \{1, \dots, n\}|}{n}$ • δ is well defined [since \mathcal{J} is maximal] • δ is an abstract upper density (it is finitely additive measure) • δ is rich [since asymptotic density is so] • There is no \mathcal{I} -AD family of cardinality \mathfrak{c} [since finite measures

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example

Let

- $\bullet \ \mbox{Let} \ {\cal J}$ be a maximal ideal,
- $\delta(A) = \mathcal{J} \lim \frac{|A \cap \{1, \dots, n\}|}{n}$

Then

- δ is well defined [since $\mathcal J$ is maximal]
- δ is an abstract upper density (it is finitely additive measure)
- δ is translation invariant.
- δ is rich [since asymptotic density is so]
- Let $\mathcal{I} = \mathcal{Z}_{\delta}$.
- There is no *I*-AD family of cardinality c [since finite measures satisfy ccc]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example

Let

• Let ${\mathcal J}$ be a maximal ideal,

•
$$\delta(A) = \mathcal{J} - \lim \frac{|A \cap \{1, \dots, n\}}{n}$$

Then

- δ is well defined [since ${\mathcal J}$ is maximal]
- δ is an abstract upper density (it is finitely additive measure)
- δ is translation invariant.
- δ is rich [since asymptotic density is so]
- Let $\mathcal{I} = \mathcal{Z}_{\delta}$.
- There is no *I*-AD family of cardinality c [since finite measures satisfy ccc]

・ 一 マ ト ・ 日 ト ・

Example

Let

• Let ${\mathcal J}$ be a maximal ideal,

•
$$\delta(A) = \mathcal{J} - \lim \frac{|A \cap \{1, \dots, n\}}{n}$$

Then

- δ is well defined [since $\mathcal J$ is maximal]
- δ is an abstract upper density (it is finitely additive measure)
- δ is translation invariant.
- δ is rich [since asymptotic density is so]
- Let $\mathcal{I} = \mathcal{Z}_{\delta}$.
- There is no *I*-AD family of cardinality c [since finite measures satisfy ccc]

・ 一 マ ト ・ 日 ト ・

Example

Let

• Let ${\mathcal J}$ be a maximal ideal,

•
$$\delta(A) = \mathcal{J} - \lim \frac{|A \cap \{1, \dots, n\}}{n}$$

Then

- δ is well defined [since ${\mathcal J}$ is maximal]
- δ is an abstract upper density (it is finitely additive measure)
- δ is translation invariant.
- δ is rich [since asymptotic density is so]
- Let $\mathcal{I} = \mathcal{Z}_{\delta}$.
- There is no $\mathcal{I}\text{-}\mathsf{AD}$ family of cardinality \mathfrak{c} [since finite measures satisfy ccc]

・ 一 マ ト ・ 日 ト ・

Example

Let

• Let ${\mathcal J}$ be a maximal ideal,

•
$$\delta(A) = \mathcal{J} - \lim \frac{|A \cap \{1, \dots, n\}}{n}$$

Then

- δ is well defined [since $\mathcal J$ is maximal]
- δ is an abstract upper density (it is finitely additive measure)
- δ is translation invariant.
- δ is rich [since asymptotic density is so]
- Let $\mathcal{I} = \mathcal{Z}_{\delta}$.
- \bullet There is no $\mathcal{I}\text{-}\mathsf{AD}$ family of cardinality \mathfrak{c} [since finite measures satisfy ccc]

A ≥ ►

Example

Let

• Let ${\mathcal J}$ be a maximal ideal,

•
$$\delta(A) = \mathcal{J} - \lim \frac{|A \cap \{1, \dots, n\}}{n}$$

Then

- δ is well defined [since $\mathcal J$ is maximal]
- δ is an abstract upper density (it is finitely additive measure)
- δ is translation invariant.
- δ is rich [since asymptotic density is so]
- Let $\mathcal{I} = \mathcal{Z}_{\delta}$.
- There is no $\mathcal{I}\text{-}\mathsf{AD}$ family of cardinality \mathfrak{c} [since finite measures satisfy ccc]

Example

Let

• Let ${\mathcal J}$ be a maximal ideal,

•
$$\delta(A) = \mathcal{J} - \lim \frac{|A \cap \{1, \dots, n\}}{n}$$

Then

- δ is well defined [since $\mathcal J$ is maximal]
- δ is an abstract upper density (it is finitely additive measure)
- δ is translation invariant.
- δ is rich [since asymptotic density is so]
- Let $\mathcal{I} = \mathcal{Z}_{\delta}$.
- \bullet There is no $\mathcal{I}\text{-}\mathsf{AD}$ family of cardinality \mathfrak{c} [since finite measures satisfy ccc]

→ < ∃ →