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The talk is based on a join work with Adam Kwela and Paolo Leonetti J
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e w = N is the set of all natural numbers

e X will stand for an uncountable Polish space (i.e. separable completely
metrizable topological space) J

Rafat Filipéw (University of Gdarisk) The Borel complexity of sets of ideal limit points (Part I)



Ideals on w

A family Z C P(w) is an ideal on w if
Q@ 0ecTandw¢Z,

Q@ ACBeZT = A€,

Q@ ABel — AUBETZ,

© 7 contains all finite subsets of w.

Q@ Fin={ACw: Ais finite}

Q Iy, = {A Cw: > i< oo} — the summable ideal
neA

Q I;= {A Cw: lim M = O} — the density zero ideal

n— oo
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Convergent subsequences

Theorem (Bolzano-Weierstrass)

For every sequence (x,)new in [0, 1] there is an A ¢ Fin such that the
subsequence (x,)nea is convergent.

Theorem (Folklore)

For every sequence (X,)new in [0,1] there is an A ¢ 7, ,, such that the
subsequence (x,)nca is convergent.

Theorem (Fridy, 1993)

There exists a sequence (Xp)new in [0, 1] such that for every A ¢ 74 the
subsequence (x,)nea is not convergent.
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Finite Bolzano-Weierstrass property

Definition (F.-Mrozek-Rectaw-Szuca, 2007)

An ideal Z has finite Bolzano-Weierstrass property (FinBW property) if
for every sequence (X,)necw in [0,1] there is A ¢ T such that the
subsequence (x,)nca is convergent.

e Fin and Z;/, have the FinBW property
e 7, does not have the FinBW property

Theorem (F.-Mrozek-Rectaw-Szuca, 2007)

Every F, ideal has finite Bolzano-Weierstrass property.

Definition

An ideal Z is F, if the set {14 : A€ Z} is an F, subset of the Cantor
space 2¥ = {0,1}~.

The same for F,s, Borel, analytic, and other topological properties.
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Topologised finite Bolzano-Weierstrass property

Definition (Kwela, 2023)
For a fixed ideal Z,

FinBW (Z)

denote the class of all topological spaces X such that for every sequence
(Xn)new in X there is A ¢ T such that the subsequence (x,)nca is
convergent in X.

e [0,1] € FinBW(Fin) and [0,1] € FinBW(Zy,)
o [0,1] ¢ FinBW(Zy)

v

e
X € FinBW(Z) <%~ is sequentially compact ( <= X is compact)
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Topologised finite Bolzano-Weierstrass property

If X is not compact, then X ¢ FinBW(Z).

Theorem (Meza-Alcantara, 2009)
If X is compact, then X ¢ FinBW(Z) < conv <k T.

Kat&tov order (Kat&tov, 1968)

T <k J <= there exists f : w — w such that

VACw(AeTI = flAleJ).

The ideal conv
conv = {A C Q: A has at most finitely many limit points in R}
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Sets of limit and cluster points

Set of limit point of a sequence

A((in)ncs) = {p € X : 3A ¢ Fin (xn)nca = p)}
={peX :FA¢FinVYU>S pV>*ne A (x,€ U}

open

Set of cluster points of a sequence

M((%n)new) ={p € X :VYU > pJA & Fin Vn € A (x, € U)}.

open

Theorem (Folklore)
o A(x,) =T(xp)-
@ A(xp) and I'(x,) are closed.

@ For every nonempty closed set F there is a sequence (X;)new such
that

F =T (xp).
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Ideal sets of limit and cluster points

Ideal set of limit point of a sequence

Az((Xn)new) ={p € X : FAE T ((Xa)nea — P)}
={peX:FJAELIVUS pVne A (x,c U)}

open

Set of cluster points of a sequence

Fz((xn)new) ={p € X:VUD pIAZ I Vne A (x, € U)}.

open

Theorem (Kostyrko-Salat-Wilczyriski, 2001)

o Az(xp) C I'z(xn).
o NHGN/A04/ Tz (xn) Atfis closed.
o T.FAE.

o For every nonempty closed set F, there is a sequence (x»)ncw such
that F = T'(x»).
e There exists an infinite partition of w into sets which are not in Z.
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ideal limit set = ideal cluster set

° AI(Xn) - rI(Xn)- J

Theorem (Fridy, 1993)

There exists a sequence (Xp)necw in [0, 1] such that

AId (X" ) 7£ rId (X" ) :

Theorem (He-Zang-Zang, 2022)

T.F.AE.
o Az(xn) = 'z(x,) for every sequence (Xp)new-
@ Zisa PT ideal.
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P-like properties of ideals

Z € P if for every sequence A; D Ay O ... such that A, ¢ Z

JA¢ T Vn (A\ A, is finite).

Z € P~ if for every sequence A; D Ay D ... such that A, ¢ Z and
An\ Any1 € T for every n

JA ¢ Z Vn (A\ A, is finite).

T e Pl if for every sequence A; O Ay O ... such that A, ¢ Z and
An\ Any1 ¢ I for every n

JA ¢ T Vn (A\ A, is finite).

ZTePt «— TeP andZe Pl
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ideal limit set versus ideal cluster set

° Az(Xn) g FI(X,,).
o Az(xy) = T'z(xn) for each (x,) <= Zis a P ideal.

For A C X, we write
Al to denote the derived set of A i.e. the set of all limit points of A
A~ to denote the set of all isolated points of A

Theorem (F.-Kwela-Leonetti, 2023)

T.F.AE.
o Az(x,) D (IFz(xy,))! for every sequence (xn)ncw.
o Zis Pl

Theorem (F.-Kwela-Leonetti, 2023)

T.F.AE.
@ Az(x,) 2 (Fz(xn))~ for every sequence (xn)ncw-
e Zis P.
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Ideal limit set is not closed

Theorem (Kostyrko-Salat-Wilczyriski, 2001)

o NHBM /a0 T1(xn) Até is closed.

Theorem (Balcerzak-Leonetti, 2019)

If an ideal Z is F,, then Az(x,) is closed for every sequence (x;)ncw-

Theorem (Kostyrko-Mataj-Salat-Strauch, 2001)

@ For every nonempty F, set F C [0, 1] there exists a sequence
(Xn)new in [0,1] such that F = Az, (x,).

@ There exists a sequence (x,) such that Az, (x,) is not closed.

What properties of ideals characterize Borel complexity of Az sets?
You have to wait for Part Il.
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