Title. Mouse pairs and Suslin cardinals

Abstract. A mouse pair is a pair (P, Σ) such that P is a premouse and Σ is an iteration strategy for P having a certain condensation property. The basic theorems of inner model theory (e.g. the Comparison Lemma and the Dodd-Jensen Lemma) are best stated as theorems about mouse pairs.

One type of mouse pair can be used to analyze the HODs of models of $AD_{\mathbb{R}}$, leading to

Theorem 0.1 Assume $AD_{\mathbb{R}} + HPC$; then $HOD \models GCH$.

Here HPC stands for "hod pair capturing", a natural assumption concerning the existence of mouse pairs.

An analysis of optimal Suslin representations for mouse pairs leads to

Theorem 0.2 Assume $AD_{\mathbb{R}} + HPC$; then the following are equivalent:

- (a) δ is Woodin in HOD, and a cutpoint of the extender sequence of HOD,
- (b) $\delta = \theta_0$, or $\delta = \theta_{\alpha+1}$ for some α .

Here the θ_{α} 's are the *Solovay sequence*, that is, θ_0 is the sup of the lengths of the ordinal definable prewellorderings of \mathbb{R} , $\theta_{\alpha+1}$ is the sup of the lengths of prewellorderings of \mathbb{R} ordinal definable from some set of Wadge rank θ_{α} , and $\theta_{\lambda} = \sup_{\alpha < \lambda} \theta_{\alpha}$ for λ a limit.

Grigor Sargsyan introduced a refinement of the Solovay sequence in which ordinal definability from sets of reals is replaced by ordinal definability from countable sequences of ordinals. Calling these ordinals η_{α} , we have

Theorem 0.3 Assume $AD_{\mathbb{R}} + HPC$; then the following are equivalent

- (a) δ is a successor Woodin in HOD,
- (b) $\delta = \eta_0$, or $\delta = \eta_{\alpha+1}$ for some α .

This theorem was conjectured by Sargsyan.

Finally, we have the following conjecture

Conjecture. Assume $AD_{\mathbb{R}} + HPC$; then the following are equivalent

- (a) κ is a Suslin cardinal,
- (b) κ is a cardinal of V, and a cutpoint of the extender sequence of HOD.

We can prove (b) \Rightarrow (a). With Jackson and Sargsyan, we have shown that (a) \Rightarrow (b) holds whenever κ is a limit of Suslin cardinals, or the next Suslin after a limit of Suslin cardinals.