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Topics explored in the talk

Baire Category theorem
⇐⇒

Forcing axioms

Algebraic extensions of fields (Q 7→ Q[x]/x2 + 1 = 0)
⇐⇒

Bounded forcing axioms

Duality theorem (Hilbert’s nullstellensatz)
⇐⇒

Forcing axioms imply bounded forcing axioms (MM++ → (∗))
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Topics explored in the talk

Model companionship
⇐⇒

Algebraic maximality (algebraically closed fields)
⇐⇒

Bounded forcing axioms — Determinacy
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Section 1

Basics of Set Theory
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Universal axioms
• Extensionality: Two classes (or sets) are equal if they have

exactly the same elements.
• Comprehension (a): Every class (or set) is a subset of V

where
V = {X : X is a set} .
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Universal axioms
• Extensionality: Two classes (or sets) are equal if they have

exactly the same elements.
• Comprehension (a): Every class (or set) is a subset of V

where
V = {X : X is a set} .

• Foundation: There is no infinite sequence ⟨xn : n ∈ N⟩ such
that xn+1 ∈ xn for all n.

V is not a set, else xn = V for all n violates Foundation.
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Morse-Kelley Axioms of Set Theory MK

Basic construction principles:
• Union, Pair, Product: If X ,Y are sets so are X ∪ Y , {X ,Y },

X × Y .
• Separation: If P is a class and X is a set, P ∩ X is a set.
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Morse-Kelley Axioms of Set Theory MK

Strong construction principles:
• Comprehension (b): For every property ψ(x),

Pψ =
{
a ∈ V : ψ(a)

}
is a class.

• Replacement: If F is a class function and X ⊆ dom(F) is a
set, F [X ] is a set.
• Powerset: If X is a set so is P (X) = {Y : Y ⊆ X}.
• Global Choice: For all classes C = {Xi : i ∈ I} of non-empty

sets Xi ,
∏

i∈I Xi is non-empty.
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Given sets X ,Y

Cardinality
• |X | is the (proper) class {Y : ∃ f : X → Y bijection};
• |X | ≤ |Y | iff there is f : X → Y injection iff there is g : Y → X

surjection;
• |X | < |Y | iff |X | ≤ |Y | and |X | , |Y |.
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Cardinal arithmetic in a nutshell
• |X | ≤ |Y | and |Y | ≤ |X | iff |X | = |Y | (Cantor 1887, Bernstein

1897, Dedekind 1898).
• |[0; 1]| ≤ |(0; 1)| and |[0; 1]| ≥ |(0; 1)| witnessed by continuous

functions.
• f : [0; 1]→ (0; 1) bijection, f is not continuous.
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• |X | ≤ |Y | and |Y | ≤ |X | iff |X | = |Y | (Cantor 1887, Bernstein

1897, Dedekind 1898).
• |X | < |P (X) | (Cantor 1891).

If g : X → P (X), g is not a surjection as witnessed by

Yg =
{
x ∈ X : x < g(x)

}
.
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• |X | ≤ |Y | and |Y | ≤ |X | iff |X | = |Y | (Cantor 1887, Bernstein

1897, Dedekind 1898).
• |X | < |P (X) | (Cantor 1891).
• ≤ is a well-order on cardinals (Zermelo+. . .∼ 1904), i.e. it is a

linear order on cardinals such that for every class C , ∅ there
is min {|X | : X ∈ C}.
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Cardinality
• |X | is the (proper) class {Y : ∃ f : X → Y bijection};
• |X | ≤ |Y | iff there is f : X → Y injection iff there is g : Y → X

surjection;
• |X | < |Y | iff |X | ≤ |Y | and |X | , |Y |.

Cardinal arithmetic in a nutshell
• |X | ≤ |Y | and |Y | ≤ |X | iff |X | = |Y | (Cantor 1887, Bernstein

1897, Dedekind 1898).
• |X | < |P (X) | (Cantor 1891).
• ≤ is a well-order on cardinals (Zermelo+. . .∼ 1904).

Cardinals
• ℵ0 = |N|;
• ℵ1 = ℵ+0 = min {|Z | : |Z | > ℵ0};

• 2ℵ0 = |R| = |P (N) |.
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Continuum Hypothesis CH (Cantor 1878, Hilbert 1900)
• ℵ1 = 2ℵ0 , or equivalently
• if Z ⊆ R, either |Z | = |R| or |Z | ≤ |N|.

Counterexamples to CH?
• No closed subset of R is a counterexample to CH

(Cantor 1883).
• No Borel subset of R is a counterexample to CH

(Alexandroff 1916, Hausdorff 1917).
• No analytic subset of R is a counterexample to CH

(Suslin+Alexandroff 1917).
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Figure: Analytic and coanalytic sets
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The projective susets of Rn are those subsets of Rn which are Σ1
m

(or Π1
m) for some m.

Figure: Projective sets
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Counterexamples to CH? continued
Assume there is a proper class of Woodin cardinals. Then:
• No universally Baire subset of R is a counterexample to CH

(Feng-Magidor-Woodin 1992 + Steel-Martin 1989 + Davis
1964).
• Borel sets, analytic sets, projective sets,. . . are all universally

Baire
(Feng-Magidor-Woodin 1992 + Steel-Martin 1989).

Definition
U ⊆ R is universally Baire if f−1[U] has the Baire property in X for
any continuous f : X → R with (X , τ) compact Hausdorff.
• Analytic and coanalytic sets are universally Baire provably in

MK (without large cardinals).
• Games with payoff a universally Baire set are determined if

(and in a weak sense only if) there is a proper class of Woodin
cardinals.
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Independence of CH
CH is independent of the axioms of set theory:
• There is a model of the axioms of MK where CH holds (Gödel

1939).
• There is a model of the axioms of MK where CH fails (Cohen

1963).
• In the model of the axioms of MK where CH fails produced by

Cohen, this failure can be witnessed by a Σ1
2-set of reals.
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Section 2

Gödel’s program
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The American Matematical Monthly, 54(9), 1947
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On the undecidability of CH:
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On Large Cardinals:
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On success as a criterion to detect new axioms:
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Section 3

Large cardinals

13 / 49



Basics GP LC FA TopMax Forc AlgCl FormST AlgMax App

Large cardinal axioms

• Large cardinals formalize the idea that the universe of sets
is as tall as possible i.e. the well-ordering on the cardinals is
as long as possible.
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equivalent to:

There is a proper class of inaccessible cardinals.

Vopenka’s principle
For every proper class of directed graphs with no loops, there
are two members of the class with a homomorphism between
them.
Adamek-Rosicky, Locally presentable and accessible
categories, CUP, 1994.
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Vopenka’s principle VP
For every proper class of directed graphs with no loops, there are
two members of the class with a homomorphism between them.
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Vopenka’s principle VP
For every proper class of directed graphs with no loops, there are
two members of the class with a homomorphism between them.

Fact
Assume Vopenka’s principle. Then there is a proper class of
Woodin cardinals.
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Vopenka’s principle VP
For every proper class of directed graphs with no loops, there are
two members of the class with a homomorphism between them.

From nLab:

15 / 49
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Section 4

Forcing axioms
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Forcing axioms relative to a cardinal κ:
The powerset of X is “as thick as possible” for given X of size κ,

Forcing axioms for κ can be divided in two categories:
• topological maximality: strong forms of Baire’s category

theorem, generic points, MM++.
• algebraic maximality: closure of P (X) under a variety of set

theoretic operations for any fixed X of size κ, algebraically
closed structures, Woodin’s axiom (∗).
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Section 5

Topological maximality for set theory
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Baire’s category theorem
Let (X , τ) be a compact Hausdorff space and {Di : i ∈ N} be a
family of dense open subsets of X . Then

⋂
i∈N Di is dense in X .
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What about FAℵ1(X , τ)?

Example
Let Y be an uncountable set and (X , τ) be the Stone-Čech
compactification of the space YN with product topology induced by
the discrete topology on Y .
Then FAℵ1(X , τ) fails.
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Then FAℵ1(X , τ) fails.

SSP gives a necessary condition for FAℵ1(X , τ)!
Whether SSP is also a sufficient condition is independent of
MK+Vopenka’s principle.

Definition
Martin’s maximum MM ≡ FAℵ1(X , τ) holds for all compact
Hausdorff spaces (X , τ) which are SSP.
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MK decides FAℵ1(X , τ) fails if (X , τ) < SSP, but does not decide
whether all (X , τ) ∈ SSP satisfy FAℵ1(X , τ).
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MK + MM decides FAℵ1(X , τ) if and only if it is not impossible.
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MM
FAℵ1(X , τ) holds for all compact Hausdorff spaces (X , τ) for which
it is not impossible.

MM++

A natural (technical?) strengthening of MM.

Theorem (Foreman, Magidor, Shelah, 1988)
Assume Vopenka’s principle (and a supercompact). Then there is
a model of MK and Vopenka’s principle where MM++ holds.
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Some applications of MM++

Assume MM. Then:
• 2ℵ0 = ℵ2= ℵ

+
1 .

Foreman, Magidor, Shelah, 1988.
• Whitehead’s conjecture on free groups is false,

(i.e. there are uncountable Whitehead groups which are not
free).
Shelah, Israel Journal of Mathematics, 18(3), 1974.
• There are five uncountable linear orders such that any

uncountable linear order contains an isomorphic copy of one
of them.
J.T. Moore, Annals of Mathematics, 163(2), 2006.
• All automorphisms of the Calkin algebra are inner.

Farah, Annals of Mathematics, 173(2), 2011.

All the conclusions of these theorems are independent of
MK+Vopenka’s principle.
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Section 6

Forcing
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Forcing

Forcing resembles the passage from the field Q to the field

Q(
√

2) � Q(X)/X2−2.
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Forcing

Forcing resembles the passage from the field Q to the field

Q(
√

2) � Q(X)/X2−2.

We adjoin to the universe of sets V an ideal element G with some
constraints, and we form V [G].
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Forcing
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Section 7

Algebraic closure and model companionship
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Algebraic closure of structures for {+, ·, 0, 1}

Structures Axioms Example
Commutative ∀x, y (x · y = y · x)
semirings ∀x, y, z [(x · y) · z = x · (y · z)]
with no zero ∀x (x · 1 = x ∧ 1 · x = x)
divisors ∀x, y (x + y = y + x)

∀x, y, z [(x + y) + z = x + (y + z)]
∀y (x + 0 = x ∧ 0 + x = x) N

∀x, y, z [(x + y) · z = (x · y) + (x · z)]
∀x, y [x · y = 0→ (x = 0 ∨ y = 0)]

Integral
domains ∀x∃y (x + y = 0) Z

Fields ∀x [x , 0→ ∃y (x · y = 1)] Q

Algebraically for all n ≥ 1
closed fields ∀x0 . . . xn∃y

∑
xi · y i = 0 C
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Existentially closed structures and model companionship

⟨Z,+, ·, 0, 1⟩ ⊑ ⟨C,+, ·, 0, 1⟩ ⊑ ⟨C[X ],+, ·, 0, 1⟩
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⟨Z,+, ·, 0, 1⟩ ⊀1 ⟨C,+, ·, 0, 1⟩ ≺1 ⟨C[X ],+, ·, 0, 1⟩

∃x (x2 − 2 = 0)? ∃x (x3 + 2x + i = 0)?
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Given a vocabulary τ and τ-structuresM⊑N ,M≺1N if every
Σ1-formula with parameters inM and true in N is true also inM.
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Existentially closed structures and model companionship
• A τ-formula ϕ(x1, . . . , xn) is quantifier free if it is a boolean

combination of atomic formulae.

Example
In the vocabulary {+, ·, 0, 1}, the atomic formulae are diophantine
equations and the quantifier free formulae with parameters in a
ringM define the constructible sets (in the sense of algebraic
geometry) ofM:

l∨
j=1

 kj∧
i=1

pij(a
ij
1, . . . , a

ij
mij
, x1, . . . , xn) = 0 ∧

mj∧
d=1

¬qdj(b
dj
1 , . . . , b

dj
kd j , x1, . . . , xn) = 0


with each a ij

k , b
dj
k elements ofM and

pij(y1, . . . , ymij , x1, . . . , xn) = 0, qdj(z1, . . . , zkd j , x1, . . . , xn) = 0
diophantine equations (of degree 1 in the yl , zh-s).
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⟨Z,+, ·, 0, 1⟩ ⊀1 ⟨C,+, ·, 0, 1⟩ ≺1 ⟨C[X ],+, ·, 0, 1⟩

Definition
Given a vocabulary τ and τ-structuresM⊑N ,M≺1N if every
Σ1-formula with parameters inM and true in N is true also inM.

• A τ-formula ϕ(x1, . . . , xn) is quantifier free if it is a boolean
combination of atomic formulae.

• A τ-formula ψ(x0, . . . , xn) is a Σ1-formula if it is of the form
∃y0, . . . , ykϕ(y0, . . . , yk , x0, . . . , xn) with ϕ(y0, . . . , yk , x0, . . . , xn)
quantifier free.
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Existentially closed structures and model companionship

⟨Z,+, ·, 0, 1⟩ ⊀1 ⟨C,+, ·, 0, 1⟩ ≺1 ⟨C[X ],+, ·, 0, 1⟩

Definition
Given a vocabulary τ and τ-structuresM⊑N ,M≺1N if every
Σ1-formula with parameters inM and true in N is true also inM.

• A τ-formula ψ(x0, . . . , xn) is a Σ1-formula if it is of the form
∃y0, . . . , ykϕ(y0, . . . , yk , x0, . . . , xn) with ϕ(y0, . . . , yk , x0, . . . , xn)
quantifier free.

Definition
Given a τ-theory S, a τ-structureM is S-ec if:
• there is a model of S N⊒M,
• M≺1N for any N⊒M which models S.
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Definition
Given a τ-theory S, a τ-structureM is S-ec if:
• there is a model of S N⊒M,
• M≺1N for any N⊒M which models S.

Example
For S the {+, ·, 0, 1}-theory of integral domains the algebraically
closed fields are the S-ec models.

29 / 49



Basics GP LC FA TopMax Forc AlgCl FormST AlgMax App

Existentially closed structures and model companionship

⟨Z,+, ·, 0, 1⟩ ⊀1 ⟨C,+, ·, 0, 1⟩ ≺1 ⟨C[X ],+, ·, 0, 1⟩

Definition
Given a vocabulary τ and τ-structuresM⊑N ,M≺1N if every
Σ1-formula with parameters inM and true in N is true also inM.

Definition
Given a τ-theory S, a τ-structureM is S-ec if:
• there is a model of S N⊒M,
• M≺1N for any N⊒M which models S.

Example
For S the {+, ·, 0, 1}-theory of integral domains the algebraically
closed fields are the S-ec models.

29 / 49



Basics GP LC FA TopMax Forc AlgCl FormST AlgMax App

Existentially closed structures and model companionship

Definition
Given a τ-theory S, a τ-structureM is S-ec if:
• there is a model of S N⊒M,
• M≺1N for any N⊒M which models S.

Definition
Given a τ-theory S, a τ-theory T is the model companion of S if
TFAE for any τ-structureM:
• M is a model of T ,
• M is S-ec.
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Existentially closed structures and model companionship

Definition
Given a τ-theory S, a τ-structureM is S-ec if:
• there is a model of S N⊒M,
• M≺1N for any N⊒M which models S.

Definition
Given a τ-theory S, a τ-theory T is the model companion of S if
TFAE for any τ-structureM:
• M is a model of T ,
• M is S-ec.

Example
The {+, ·, 0, 1}-theory of integral domains has the {+, ·, 0, 1}-theory
of algebraically closed fields as its model companion.
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The right vocabulary for a mathematical theory

Every mathematical theory can be axiomatized in first order logic
by suitably choosing the vocabulary for its basic concepts.
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The right vocabulary for a mathematical theory

Every mathematical theory can be axiomatized in first order logic
by suitably choosing the vocabulary for its basic concepts.
Consider Group Theory
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The right vocabulary for a mathematical theory

Axioms of groups in {·, e}
∀x, y, z [(x · y) · z = x · (y · z)],

∀y (e · y = y ∧ y · e = y),

∀x∃y [x · y = e ∧ y · x = e].
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The right vocabulary for a mathematical theory

Axioms of groups in {·, e}
∀x, y, z [(x · y) · z = x · (y · z)],

∀y (e · y = y ∧ y · e = y),

∀x∃y [x · y = e ∧ y · x = e].

Axioms of groups in {R , e} with R a ternary relation symbol
∀x, y∃!z R(x, y, z),

∀x, y, z,w, t [((R(x, y,w) ∧ R(y, z, t))→ ∃u (R(x, t , u) ∧ R(w, z, u))],

∀y [R(e, y, y) ∧ R(y, e, y)],

∀x∃y [R(x, y, e) ∧ R(y, x, e)].
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The right vocabulary for a mathematical theory
Axioms of groups in {·, e}

∀x, y, z [(x · y) · z = x · (y · z)],

∀y (e · y = y ∧ y · e = y),

∀x∃y [x · y = e ∧ y · x = e].

Axioms of groups in {R , e} with R a ternary relation symbol
∀x, y∃!z R(x, y, z),

∀x, y, z,w, t [((R(x, y,w) ∧ R(y, z, t))→ ∃u (R(x, t , u) ∧ R(w, z, u))],

∀y [R(e, y, y) ∧ R(y, e, y)],

∀x∃y [R(x, y, e) ∧ R(y, x, e)].

The two axiomatizions are equivalent in the vocabulary {R , ·, e},
modulo the axiom

∀x, y, z (R(x, y, z)↔ x · y = z)
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The right vocabulary for set theory

Standard axiomatization of sets in textbooks is done in vocabulary
{∈}, eventually with extra symbol ⊆.
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Standard axiomatization of sets in textbooks is done in vocabulary
{∈}, eventually with extra symbol ⊆.

Formalizing in the {∈}-vocabulary the notion of ordered pair:
Kuratowski’s trick: ⟨y, z⟩ is coded in set theory by the set
{{y} , {y, z}}.
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The right vocabulary for set theory

Standard axiomatization of sets in textbooks is done in vocabulary
{∈}, eventually with extra symbol ⊆.

Formalizing in the {∈}-vocabulary the notion of ordered pair:
Kuratowski’s trick: ⟨y, z⟩ is coded in set theory by the set
{{y} , {y, z}}.
In set theory the standard ∈-formula expressing x = ⟨y, z⟩ is

∃t∃u [∀w (w ∈ x ↔ w = t ∨ w = u) ∧ ∀v (v ∈ t ↔ v = y) ∧ ∀v (v ∈ u ↔ v = y ∨ v = z)].

31 / 49



Basics GP LC FA TopMax Forc AlgCl FormST AlgMax App

The right vocabulary for set theory

The vocabulary ∈∆0 for set theory

• constants for ∅,N,
• relation symbols Rϕ for any lightface ∆0-property
ϕ(x1, . . . , xn),
• function symbols for a finite list of basic set theoretic

constructors.
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The right vocabulary for set theory

Lightface ∆0-properties
• {R ∈ V : R is an n-ary relation},
• {f ∈ V : f is a function},
•
{
⟨a, b⟩ ∈ V2 : a ⊆ b

}
,

• . . .
•
{
⟨a1, . . . , an⟩ ∈ Vn : (V , ∈) |= ϕ(a1, . . . , an)

}
for any ∈-formula

ϕ(x1, . . . , xn) where quantified variables are bounded to range
in a set.
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The right vocabulary for set theory

Lightface ∆0-properties
• {R ∈ V : R is an n-ary relation},
• {f ∈ V : f is a function},
•
{
⟨a, b⟩ ∈ V2 : a ⊆ b

}
,

• . . .
•
{
⟨a1, . . . , an⟩ ∈ Vn : (V , ∈) |= ϕ(a1, . . . , an)

}
for any ∈-formula

ϕ(x1, . . . , xn) where quantified variables are bounded to range
in a set (e.g. y ⊆ z ≡ ∀x (x ∈ y → x ∈ z) ≡ ∀x ∈ y (x ∈ z)).

The lightface ∆0-properties are those described in the last item
above and include all those listed in some of the above items.
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The right vocabulary for set theory
Lightface ∆0-properties
• {R ∈ V : R is an n-ary relation},
• {f ∈ V : f is a function},
•
{
⟨a, b⟩ ∈ V2 : a ⊆ b

}
,

• . . .
•
{
⟨a1, . . . , an⟩ ∈ Vn : (V , ∈) |= ϕ(a1, . . . , an)

}
for any ∈-formula

ϕ(x1, . . . , xn) where quantified variables are bounded to range
in a set.

Complicated set theoretic relations
•
{
⟨X ,Y⟩ ∈ V2 : |X | = |Y |

}
,

•
{
⟨X ,Y⟩ ∈ V2 : X = P (Y)

}
,

• . . .
• any relation which is not a ∆1-property
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The right vocabulary for set theory

Complicated set theoretic relations
•
{
⟨X ,Y⟩ ∈ V2 : |X | = |Y |

}
,

•
{
⟨X ,Y⟩ ∈ V2 : X = P (Y)

}
,

• . . .
• any relation which is not a ∆1-property (∆0 ⊆ ∆1).
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The right vocabulary for set theory

Basic set theoretic operations
• πn

j : ⟨a1, . . . , an⟩ 7→ aj ,
• ⟨X ,Y⟩ 7→ X × Y ,
• ⟨X ,Y⟩ 7→ {X ,Y },
• . . .
• Any provably total function whose graph is a lightface
∆0-property.
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The right vocabulary for set theory
Basic set theoretic operations
• πn

j : ⟨a1, . . . , an⟩ 7→ aj ,
• ⟨X ,Y⟩ 7→ X × Y ,
• ⟨X ,Y⟩ 7→ {X ,Y },
• . . .
• Any provably total function whose graph is a lightface
∆0-property.

Complicated set theoretic operations
• X 7→ P (X),
• X 7→ κ where κ is the least ordinal in |X |,
• . . .
• any operation whose graph is not expressible by a
∆1-property.
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The right vocabulary for set theory
The vocabulary ∈∆0 for set theory

• constants for ∅,N,
• relation symbols Rϕ for any lightface ∆0-property
ϕ(x1, . . . , xn),
• function symbols for a finite list of basic set theoretic

constructors.

Lightface ∆0-properties

{
⟨a1, . . . , an⟩ ∈ Vn : (V , ∈) |= ϕ(a1, . . . , an)

}
for any ∈-formula ϕ(x1, . . . , xn) where quantified variables are
bounded to range in a set.

Basic set theoretic operations
Any total function whose graph is a lightface ∆0-property.
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Section 8

Formalization of set theory
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Axioms of Set Theory in ∈∆0 ∪ {Set,V}

Notational convention: smallcase variables indicate sets,
uppercase variables indicate classes.

Universal axioms
• Extensionality: ∀X ,Y [(X ⊆ Y ∧ Y ⊆ X)↔ X = Y ].
• Comprehension: ∀X (Set(X)↔ X ∈ V) ∧ ∀X (X ⊆ V).
• Foundation:

∀F [(F is a function ∧dom(F) = N) → ∃n ∈ NF(n+1) < F(n)].
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Axioms of Set Theory in ∈∆0 ∪ {Set,V}

Existence Axioms:
• Emptyset: (∀x x < ∅) ∧ (∅ ∈ V),
• Infinity:

Set(N) ∧ ∀x [x ∈ N↔ (x is a finite Von Neumann ordinal)].
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Axioms of Set Theory in ∈∆0 ∪ {Set,V}

Basic construction principles:
• Union and Pair: ∀X ,Y ,w [w ∈ X ∪Y ↔ (w ∈ X ∨w ∈ Y)], . . .

• Separation: ∀P, x [(x ∈ V)→ (P ∩ x) ∈ V ].
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Axioms of Set Theory in ∈∆0 ∪ {Set,V}
Strong construction principles:

• Comprehension (b): For every ∈∆0 -formula ψ(x⃗, Y⃗)

∀Y⃗ ∃Z ∀x [x ∈ Z ↔ (x ∈ V ∧ ∃x0 , . . . , xn(x = ⟨x0 , . . . , xn⟩ ∧ ψ(x0 , . . . , xn , Y⃗)))].

• Replacement:

∀F , x [(F is a function ∧ (x ∈ V) ∧ (x ⊆ dom(F)))→ (F [x] ∈ V)].

• Powerset:

∀x [(x ∈ V)→ [∀z (z ∈ P (X)↔ z ⊆ x) ∧ P (x) ∈ V ]].

• Choice:

∀F[

F is a function ∧ ∀x (x ∈ dom(F)→ F(x) , ∅)

→

∃G (G is a function ∧ dom(G) = dom(F) ∧ ∀x (x ∈ dom(G)→ G(x) ∈ F(x))

].
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Section 9

Algebraic maximality for set theory
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The Hκs

A finite set may not be simple, for example to understand the
singleton {R} we need to know R.
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singleton {R} we need to know R.

Definition
A set X is hereditarily finite if it is finite and all its elements are
finite, and all the elements of its elements are finite,. . .
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The Hκs

A finite set may not be simple, for example to understand the
singleton {R} we need to know R.

Definition
A set X is hereditarily finite if it is finite and all its elements are
finite, and all the elements of its elements are finite,. . . ,
i.e. if letting
•
⋃0 X = X ,
•
⋃n+1 X =

⋃
(
⋃n X),

• trcl(X) =
⋃

n∈N(
⋃n X),

trcl(X) is finite.
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The Hκs

Definition
A set X is hereditarily finite if it is finite and all its elements are
finite, and all the elements of its elements are finite,. . . ,
i.e. if letting
•
⋃0 X = X ,
•
⋃n+1 X =

⋃
(
⋃n X),

• trcl(X) =
⋃

n∈N(
⋃n X),

trcl(X) is finite.

Example
• {R} is not hereditarily finite;
• each n ∈ N is hereditarily finite (recall that n = {0, . . . , n − 1}

for all n ∈ N);
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The Hκs

Definition
A set X is hereditarily finite if trcl(X) is finite.
Hℵ0 is the set of all hereditarily finite sets.
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The Hκs

Definition
A set X is hereditarily finite if trcl(X) is finite.
Hℵ0 is the set of all hereditarily finite sets.

Definition
A set X is hereditarily countable if trcl(X) is countable.
Hℵ+0 = Hℵ1 is the set of all hereditarily countable sets.
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The Hκs
Definition
A set X is hereditarily finite if trcl(X) is finite.
Hℵ0 is the set of all hereditarily finite sets.

Definition
A set X is hereditarily countable if trcl(X) is countable.
Hℵ+0 = Hℵ1 is the set of all hereditarily countable sets.

Remark
• {R} is not hereditarily countable;
• Any subset of N is hereditarily countable;
• Q and Z as defined in any textbook are hereditarily countable;
• R and P (N) are subsets of Hℵ1 (but not elements!);
• P (N) is definable by the atomic ∈∆0-formula (x ⊆ N) in the

structure ⟨Hℵ1 , ∈∆0⟩;
• similarly for R or for any Polish space.
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The Hκs

Definition
A set X is hereditarily finite if trcl(X) is finite.
Hℵ0 is the set of all hereditarily finite sets.

Definition
A set X is hereditarily countable if trcl(X) is countable.
Hℵ+0 = Hℵ1 is the set of all hereditarily countable sets.

Definition
Given a cardinal κ, a set X is hereditarily of size at most κ if trcl(X)
has size at most κ;
Hκ+ is the set of all sets which are hereditarily of size at most κ.
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The Hκs

Definition
A set X is hereditarily finite if trcl(X) is finite.
Hℵ0 is the set of all hereditarily finite sets.

Definition
A set X is hereditarily countable if trcl(X) is countable.
Hℵ+0 = Hℵ1 is the set of all hereditarily countable sets.

Definition
Hℵ+1 = Hℵ2 is the set of all sets which are hereditarily of size at
most ℵ1.
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The Hκs

Definition
A set X is hereditarily countable if trcl(X) is countable.
Hℵ+0 = Hℵ1 is the set of all hereditarily countable sets.

Definition
Hℵ+1 = Hℵ2 is the set of all sets which are hereditarily of size at
most ℵ1.

Remark
• P (ℵ1) is definable by the atomic ∈∆0-formula (x ⊆ ℵ1) in

parameter ℵ1 (the first uncountable ordinal) in the structure
⟨Hℵ2 , ∈∆0⟩,
• NS, the non-stationary ideal on ℵ1, is Σ1-definable in

parameter ℵ1 in the same structure.
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The Hκs
Definition
A set X is hereditarily countable if trcl(X) is countable.
Hℵ+0 = Hℵ1 is the set of all hereditarily countable sets.

Definition
Given a cardinal κ, a set X is hereditarily of size at most κ if trcl(X)
has size at most κ;
Hκ+ is the set of all sets which are hereditarily of size at most κ.

Definition
Hℵ+1 = Hℵ2 is the set of all sets which are hereditarily of size at
most ℵ1.

Hℵ0 ⊆ Hℵ1 ⊆ Hℵ2 ⊆ · · · ⊆ Hκ+ ⊆ . . .

V =
⋃
{Hκ+ : κ an infinite cardinal}
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Existentially closed structures for set theory

Theorem (Levy)
Let κ be an infinite cardinal.
Then

⟨Hκ+ , ∈∆0 ,A : A ⊆ P (κ)⟩ ≺1 ⟨V , ∈∆0 ,A : A ⊆ P (κ)⟩
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Algebraic maximality for P (N)

Theorem (Levy)
Let κ be an infinite cardinal.
Then

⟨Hκ+ , ∈∆0 ,A : A ⊆ P (κ)⟩≺1⟨V , ∈∆0 ,A : A ⊆ P (κ)⟩.
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Algebraic maximality for P (N)

Theorem (Levy)
Let κ be an infinite cardinal.
Then

⟨Hκ+ , ∈∆0 ,A : A ⊆ P (κ)⟩≺1⟨V , ∈∆0 ,A : A ⊆ P (κ)⟩.

Theorem (Shoenfield, 1961)
Let V [G] be a forcing extension of V. Then

⟨Hℵ1 , ∈∆0⟩≺1⟨V [G], ∈∆0⟩.
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Algebraic maximality for P (N)

• UBV denotes the family of universally Baire subsets of R
existing in V .
• (modulo a Borel isomorphism) R ≈ P (N) ≈ 2N and UB is a

family of subsets of P (N).
• Every univ. Baire set A of V can be naturally lifted to a univ.

Baire set AV [G] of V [G] for any forcing extension V [G] of V .
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Algebraic maximality for P (N)

• UBV denotes the family of universally Baire subsets of R
existing in V .
• (modulo a Borel isomorphism) R ≈ P (N) ≈ 2N and UB is a

family of subsets of P (N).
• Every univ. Baire set A of V can be naturally lifted to a univ.

Baire set AV [G] of V [G] for any forcing extension V [G] of V .

Theorem (Feng-Magidor-Woodin, 1992)
Let V [G] be a forcing extension of V. Then

⟨Hℵ1 , ∈∆0 ,A : A ∈ UBV ⟩≺1⟨V [G], ∈∆0 ,A
V [G] : A ∈ UBV ⟩.
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Let V [G] be a forcing extension of V. Then
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existing in V .
• (modulo a Borel isomorphism) R ≈ P (N) ≈ 2N and UB is a
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• Every univ. Baire set A of V can be naturally lifted to a univ.
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Algebraic maximality for P (N)
• UBV denotes the family of universally Baire subsets of R

existing in V .
• (modulo a Borel isomorphism) R ≈ P (N) ≈ 2N and UB is a

family of subsets of P (N).
• Every univ. Baire set A of V can be naturally lifted to a univ.

Baire set AV [G] of V [G] for any forcing extension V [G] of V .

Theorem (Woodin, 1985+Martin-Steel, 1989+ V.-Venturi,
2020)
Assume there is a proper class of Woodin’s cardinals. Then the
theory of

⟨Hℵ1 , ∈∆0 ,A : A ∈ UBV ⟩

is the model companion of the theory of

⟨V [G], ∈∆0 ,A
V [G] : A ∈ UBV ⟩

for any forcing extension V [G] of V.
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Algebraic maximality for P (N)

Theory degree of algebraic closure

⟨Hℵ1 , ∈∆0 ,A : A ∈ UBV ⟩

MK is Σ1-elementary in
⟨V [G], ∈∆0 ,A

V [G] : A ∈ UBV ⟩

for all generic extension V [G] of V

The theory of
MK+ ⟨Hℵ1 , ∈∆0 ,A : A ∈ UBV ⟩

large cardinal is the model companion of the theory of
axioms ⟨V [G], ∈∆0 ,A

V [G] : A ∈ UBV ⟩

for all generic extension V [G] of V
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⟨Hℵ1 , ∈∆0 ,A : A ∈ UBV ⟩

MK is Σ1-elementary in
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for all generic extension V [G] of V

The theory of
MK+ ⟨Hℵ1 , ∈∆0 ,A : A ∈ UBV ⟩

large cardinal is the model companion of the theory of
axioms ⟨V [G], ∈∆0 ,A

V [G] : A ∈ UBV ⟩

for all generic extension V [G] of V
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Algebraic maximality for P (ℵ1) part I

• NS ⊆ P (ℵ1) is the ideal of non-stationary subsets of ℵ1.
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Definition
Strong Bounded Martin’s maximum BMM++ holds if whenever
B is an SSP cba and V [G] is a forcing extension of V by B

⟨Hℵ2 , ∈∆0 ,NS⟩≺1⟨V [G], ∈∆0 ,NSV [G]⟩.

Theorem (Bagaria, Woodin)
MM++ implies BMM++.
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Applications of BMM++

Assume BMM++. Then:
• 2ℵ0 = ℵ2= ℵ

+
1 .

Todorčević, Mathematical Research Letters, 9(2), 2006.
• Whitehead’s conjecture on free groups is false,

(i.e. there are uncountable Whitehead groups which are not
free).
Shelah, Israel Journal of Mathematics, 18(3), 1974.
• THIS IS NOT KNOWN TO FOLLOW FROM BMM++:

There are five uncountable linear orders such that any
uncountable linear order contains an isomorphic copy of one
of them.
• THIS IS NOT KNOWN TO FOLLOW FROM BMM++:

All automorphisms of the Calkin algebra are inner.
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Algebraic maximality for P (ℵ1) part II

• UBV denotes the family of universally Baire subsets of R
existing in V .
• NS ⊆ P (ℵ1) is the ideal of non-stationary subsets of ℵ1.
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Theorem (Asperó-Schindler)
Assume there is a proper class of Woodin cardinals. Then
Woodin’s axiom (∗) holds if and only if whenever B is an SSP cba
and V [G] is a forcing extension of V by B

⟨Hℵ2 , ∈∆0 ,NS,A : A is in P (R)L(R)V
⟩

is Σ1-elementary in

⟨V [G], ∈∆0 ,NSV [G],AV [G] : A is in P (R)L(R)V
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Algebraic maximality for P (ℵ1) part III

Recall that ψ is a Π2-sentence if it is of the form ∀x⃗ ∃y⃗ϕ(x⃗, y⃗) with
ϕ(x⃗, y⃗) quantifier free.
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Recall that ψ is a Π2-sentence if it is of the form ∀x⃗ ∃y⃗ϕ(x⃗, y⃗) with
ϕ(x⃗, y⃗) quantifier free.

In signature ∈∆0 ¬CH can be formalized by the Π2-sentence in
parameter ℵ1 (the first uncountable ordinal/cardinal):

∀f [f is a function︸           ︷︷           ︸
∆0(f)

∧ dom(f) = ℵ1︸          ︷︷          ︸
∆0(f ,ℵ1)

)→ ∃r ( r ⊆ N︸︷︷︸
∆0(r ,N)

∧ r < ran(f)︸     ︷︷     ︸
∆0(r ,f)

]

Note that ℵ1 ∈ Hℵ2 .
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Recall that ψ is a Π2-sentence if it is of the form ∀x⃗ ∃y⃗ϕ(x⃗, y⃗) with
ϕ(x⃗, y⃗) quantifier free.

Theorem (Woodin)
Assume there are class many supercompacts, Sealing, and NS is
precipitous. TFAE:
• (∗)UB (or UB-BMM++).
• For any Π2-sentences ψ for ∈∆0 ∪ {ℵ1,NS} ∪

{
A : A ∈ UBV

}
⟨Hℵ2 , ∈∆0 ,ℵ1,NS,A : A ∈ UBV ⟩ |= ψ

if and only if
ψ is true in HV [G]

ℵ2
for some forcing extension V [G] of V.
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(among which ¬CH and a strong form of 2ℵ0 = ℵ2)
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for some forcing extension V [G] of V.

Sealing can be removed if one replaces UBV with P (R)L(OrdN) in
the formulation of BMM∗++ and in the relevant spots.
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Algebraic maximality for P (ℵ1) part III

Theorem (V.)
Assume there are class many supercompacts, Sealing, and NS is
precipitous. TFAE:
• (∗)UB (or UB-BMM++).
• The theory T of the structure

M = ⟨Hℵ2 , ∈∆0 ,ℵ1,NS,A : A ∈ UBV ⟩

is the model companion of the theory S of the structure

⟨V , ∈∆0 ,ℵ1,NS,A : A ∈ UBV ⟩.
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Algebraic maximality for P (ℵ1)
Theory degree of algebraic closure

⟨Hℵ2 , ∈∆0 ,NS,A : A ∈ UBV ⟩

MK is a substructure of
⟨V [G], ∈∆0 ,NSV [G],AV [G] : A ∈ UBV ⟩

for all generic extension V [G] of V by an SSP-forcing
⟨Hℵ2 , ∈∆0 ,NS,A : A ∈ UBV ⟩

MK+ is a Σ1-substructure of
forcing ⟨V [G], ∈∆0 ,NSV [G],AV [G] : A ∈ UBV ⟩

axioms for all generic extension V [G] of V by an SSP-forcing

MK+ for all generic extension V [G] of V the theories of
large cardinal ⟨V [G], ∈∆0 ,NSV [G],AV [G] : A ∈ UBV ⟩

axioms have the same model companion theory
for all generic extension V [G] of V the theories of

MK+ ⟨V [G], ∈∆0 ,NSV [G],AV [G] : A ∈ UBV ⟩

large cardinals + have as model companion the theory of
forcing ⟨HV

ℵ2
, ∈∆0 ,NSV ,AV : A ∈ UBV ⟩

axioms
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Section 10

Appendixes
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Appendix 1: Universally Baire sets
Definition
Let (X , τ) be a locally compact Polish space. A ⊆ X is universally
Baire if for all continuous f : Y → X with (Y , σ) compact Hausdorff,
f−1[A ] has the Baire property in (Y , σ).

Universal Baireness describes the absolutely regular sets of
reals:
Consider 2N as a closed subspace of [0; 1]. It is meager.
Now take a subset P of 2N which does not have the Baire property
in 2N.
Seen as a subset of [0; 1], P is meager, hence it has the Baire
property, but P is also the preimage under the inclusion map of 2N

inside [0; 1].
This map is continuous, and the preimage of P does not have the
Baire property in 2N.
Hence P ⊆ [0; 1] is not universally Baire, even if it has the Baire
property.
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This map is continuous, and the preimage of P does not have the
Baire property in 2N.
Hence P ⊆ [0; 1] is not universally Baire, even if it has the Baire
property.
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Appendix 2: Stationary sets and the non-stationary ideal
Definition
• C is a club subset of ℵ1 if sup(C) = ℵ1 and for all β < C there

is α < β such that [α, β] ∩ C is empty.
• S ⊆ ℵ1 is stationary if for all C club subset of ℵ1 S ∩ C is

non-empty.
• NS ⊆ P (ℵ1) is the ideal of non-stationary subsets of ℵ1 (i.e.

subsets disjoint from some club).
• NS is saturated if the boolean algebra P (ℵ1) /NS has only

partitions of size at most ℵ1.

Theorem
• Assume NS is saturated. Then it is precipitous.
• Assume MM. Then NS is saturated.
• NS is precipitous is consistent with CH.
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Appendix 3: Sealing

Definition (Woodin)
Given (D,W , ∈∆0) transitive model of MK, let NW be the set

P (Hℵ1)
L(UB)W

, where L(UB)W is the smallest transitive model of
ZF containing UBW .
Sealing holds in a model (C,V , ∈∆0) of MK if whenever V [G] is a
forcing extension of V and V [H] a forcing extension of V [G] we
have that

(NV [G],HV [G]
ℵ1

, ∈∆0) ≺ (NV [H],HV [H]
ℵ1

, ∈∆0).

Theorem (Woodin)
Assume V models κ is supercompact and there are class many
Woodin cardinals. Let V [H] be a generic extension of V where 2κ

is countable. Then sealing holds in V [H].
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Appendix 4: Some references
• J. Bagaria, Natural axioms on set theory and the continuum

problem, CRM Preprint, 591, 2004.

• P. Koellner, On the question of absolute undecidability, in Kurt
Gödel: essays for his centennial, Lect. Notes Log. 33, 2010.

• G. Venturi and M. Viale, What model companionship can say about
the Continuum problem, The Review of Symbolic Logic, pp. 1–40,
eprint: 2204.13756.

• M. Viale STRONG FORCING AXIOMS AND THE CONTINUUM
PROBLEM [after Asperó’s and Schindler’s proof that MM++ implies
Woodin’s Axiom (∗)], Séminaire BOURBAKI Avril 2023, 75e année,
2022–2023, no 1207, p. 1 à 34

• W. H. Woodin, The Continuum hypothesis Part I, Notices of AMS,
48(6), 2001.

• W. H. Woodin, The Continuum hypothesis Part II, Notices of AMS,
48(7), 2001.
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