KATĚTOV ORDER BETWEEN HINDMAN, RAMSEY, VAN DER WAERDEN AND SUMMABLE IDEALS

RAFAŁ FILIPÓW, KRZYSZTOF KOWITZ, AND ADAM KWELA

Abstract

A family \mathcal{I} of subsets of a set X is an ideal on X if it is closed under taking subsets and finite unions of its elements. An ideal \mathcal{I} on X is below an ideal \mathcal{J} on Y in the Katětov order if there is a function $f: Y \rightarrow X$ such that $f^{-1}[A] \in \mathcal{J}$ for every $A \in \mathcal{I}$. We show that the Hindman ideal, the Ramsey ideal and the summable ideal are pairwise incomparable in the Katětov order, where - the Ramsey ideal consists of those sets of pairs of natural numbers which do not contain a set of all pairs of any infinite set (equivalently do not contain, in a sense, any infinite complete subgraph), - the Hindman ideal consists of those sets of natural numbers which do not contain any infinite set together with all finite sums of its members (equivalently do not contain IP-sets that are considered in Ergodic Ramsey theory), - the summable ideal consists of those sets of natural numbers such that the series of the reciprocals of its members is convergent. Moreover, we show that in the Katětov order the above mentioned ideals are not below the van der Waerden ideal that consists of those sets of natural numbers which do not contain arithmetic progressions of arbitrary finite length.

Contents

1. Introduction 1
2. Preliminaries 3
3. Summable and van der Waerden ideals are not above Hindman and Ramsey ideals 3
4. Summable ideal is not below van der Waerden ideal 4
5. Summable ideal is not below Hindman ideal 5
6. Summable ideal is not below Ramsey ideal 6
7. Hindman ideal is not below Ramsey ideal 7
8. Ramsey ideal is not below Hindman ideal 8
References 15

1. Introduction

The Katětov order is an efficient tool for studying ideals over countable sets [19, 20, 21, 22, 35, 37]. Originally, the Katětov order (introduced by Katětov [24] in 1968) was used to study convergence in topological spaces, and our interest in Katětov order between the Hindman, Ramsey, van der Waerden and summable ideals stems from the study of sequentially compact spaces defined as, in a sense, topological counterparts of well-known combinatorial theorems: Ramsey's theorem

[^0]for coloring graphs, Hindman's finite sums theorem and van der Waerden's arithmetical progressions theorem $[3,4,25,26,27,28]$. It is known [11, 30] that an existence of a sequentially compact space which distinguishes the above mentioned classes of spaces is reducible to a question whether particular ideals are incomaparable in the Katětov order.

Beside our primary interest in the Katětov order described above we mention one more strength of this order. Using the Katětov order, we can classify non-definable objects (like ultrafilters or maximal almost disjoint families) using Borel ideals [20]. For instance, an ultrafilter \mathcal{U} is a P-point if and only if the dual ideal \mathcal{U}^{*} is not Katětov above Fin^{2} (equivalently \mathcal{U} is a Fin^{2}-ultrafilter as defined by Baumgartner [2]). It is known [10] that an existence of an ultrafilter which distinguishes between some classes of ultrafilters is reducible to a question whether particular ideals are incomaparable in the Katětov order.

Below we describe the results obtain in this paper and introduce a necessary notions and notations.

We write ω to denote the set of all natural numbers (with zero).
We write $[A]^{2}$ to denote the set of all unordered pairs of elements of $A,[A]^{<\omega}$ to denote the family of all finite subsets of A and $[A]^{\omega}$ to denote the family of all infinite countable subsets of A.

A family $\mathcal{I} \subseteq \mathcal{P}(X)$ of subsets of a set X is an ideal on X if it is closed under taking subsets and finite unions of its elements, $X \notin \mathcal{I}$ and \mathcal{I} contains all finite subsets of X. By $\operatorname{Fin}(X)$ we denote the family of all finite subsets of X and we write Fin instead of $\operatorname{Fin}(\omega)$.

For an ideal \mathcal{I} on X, we write $\mathcal{I}^{+}=\{A \subseteq X: A \notin \mathcal{I}\}$ and call it the coideal of \mathcal{I}, and we write $\mathcal{I}^{*}=\{X \backslash A: A \in \mathcal{I}\}$ and call it the filter dual to \mathcal{I}. It is easy to see that $\mathcal{I} \upharpoonright A=\{A \cap B: B \in \mathcal{I}\}$ is an ideal on A if and only if $A \in \mathcal{I}^{+}$.

For a set $B \subseteq \omega$, we write $F S(B)$ to denote the set of all finite (nonempty) sums of distinct elements of B i.e. $\operatorname{FS}(B)=\left\{\sum_{n \in F} n: F \in[B]^{<\omega} \backslash\{\emptyset\}\right\}$.

In this paper we are interested in the following four ideals:

- the Ramsey ideal

$$
\mathcal{R}=\left\{A \subseteq[\omega]^{2}: \forall B \in[\omega]^{\omega}\left([B]^{2} \nsubseteq A\right)\right\},
$$

- the Hindman ideal

$$
\mathcal{H}=\left\{A \subseteq \omega: \forall B \in[\omega]^{\omega} \mathrm{FS}(B) \nsubseteq A\right\}
$$

- the van der Waerden ideal

$$
\begin{gathered}
\mathcal{W}=\{A \subseteq \omega: A \text { does not contain arithmetic progressions } \\
\\
\text { of arbitrary finite length }\}
\end{gathered}
$$

- the summable ideal

$$
\mathcal{I}_{1 / n}=\left\{A \subseteq \omega: \sum_{n \in A} \frac{1}{n+1}<\infty\right\} .
$$

The Ramsey ideal was introduced by Meza-Alcántara and Hrušák [22] (the authors noted that if we identify a set $A \subseteq[\omega]^{2}$ with a graph $G_{A}=(\omega, A)$, the ideal \mathcal{R} can be seen as an ideal consisting of graphs without infinite complete subgraphs). Both the Hindman and van der Waerden ideals were introduced by Flaškova [14, p. 109]. The summable ideal is a particular instance of the so-called summable ideals which seem to be "ancient" compare to previously mentioned ideals as they were introduced in 1972 by Mathias [31, Example 3, p.206].

We say that an ideal \mathcal{I} on X is below an ideal \mathcal{J} on Y in the Katětov order [24] if there is a function $f: Y \rightarrow X$ such that $f^{-1}[A] \in \mathcal{J}$ for every $A \in \mathcal{I}$ (equivalently, $f[B] \notin \mathcal{I}$ for all $B \notin \mathcal{J}$). Note that the Katětov order has been
extensively examined (even in its own right) for many years so far $[1,2,5,6,7,16$, $17,18,19,20,21,22,34,35,36,37,39]$.

The aim of this paper is to prove the following

Theorem 1.1.

(1) The ideals \mathcal{R}, \mathcal{H} and $\mathcal{I}_{1 / n}$ are pairwise incomparable in the Katětov order.
(2) The ideals \mathcal{R}, \mathcal{H} and $\mathcal{I}_{1 / n}$ are not below the ideal \mathcal{W} in the Katětov order.

As far as we are concerned, the remaining three questions about these ideals are still open.
Question 1.2. Is the ideal \mathcal{W} below the ideal $\mathcal{R}\left(\mathcal{H}, \mathcal{I}_{1 / n}\right.$, resp.) in the Katětov order?

Note that in the case of the summable ideal, Question 1.2 is a weakening of the famous Erdős-Turán conjecture which says that $\mathcal{W} \subseteq \mathcal{I}_{1 / n}$.

2. Preliminaries

An ideal \mathcal{I} on X is tall [32, Definition 0.6] if for every infinite set $A \subseteq X$ there exists an infinite set $B \subseteq A$ such that $B \in \mathcal{I}$. It is not difficult to see that \mathcal{I} is not tall $\Longleftrightarrow \mathcal{I} \leq_{K} \mathcal{J}$ for every ideal $\mathcal{J} \Longleftrightarrow \mathcal{I} \leq_{K}$ Fin $\Longleftrightarrow \mathcal{I} \upharpoonright A=\operatorname{Fin}(A)$ for some $A \in \mathcal{I}^{+}$. It is easy to show the following
Proposition 2.1. The ideals $\mathcal{H}, \mathcal{R}, \mathcal{W}$ and $\mathcal{I}_{1 / n}$ are tall.
Ideals \mathcal{I} and \mathcal{J} on X and Y, respectively are isomorphic (in short: $\mathcal{I} \approx \mathcal{J}$) if there exists a bijection $\phi: X \rightarrow Y$ such that $A \in \mathcal{I} \Longleftrightarrow \phi[A] \in \mathcal{J}$ for each $A \subseteq X$. An ideal \mathcal{I} is homogeneous [29, Definition 1.3] if the ideals \mathcal{I} and $\mathcal{I} \upharpoonright A$ are isomorphic for every $A \in \mathcal{I}^{+}$.
Proposition 2.2 ([29, Examples 2.5 and 2.6]). The ideals \mathcal{H}, \mathcal{R} and \mathcal{W} are homogeneous.

By identifying subsets of X with their characteristic functions, we equip $\mathcal{P}(X)$ with the topology of the space 2^{X} (the product topology of countably many copies of the discrete topological space $\{0,1\}$) and therefore we can assign topological notions to ideals on X. In particular, an ideal \mathcal{I} is Borel (F_{σ}, resp.) if \mathcal{I} is a Borel (F_{σ}, resp.) subset of 2^{X}.

If $A \subseteq \omega$ and $n \in \omega$, we write $A+n=\{a+n: a \in A\}$ and $A-n=\{a-n: a \in$ $A, a \geq n\}$.

A set $D \subseteq \omega$ is sparse [25, p. 1598] if for each $x \in \operatorname{FS}(D)$ there exists the unique set $\alpha \subseteq D$ such that $x=\sum_{n \in \alpha} n$. This unique set will be denoted by $\alpha_{D}(x)$. For instance, the set $E=\left\{2^{n}: n \in \omega\right\}$ is sparse, and in the sequel, we write $\alpha(x)$ instead of $\alpha_{E}(x)$.

A set $D \subseteq \omega$ is very sparse [12, p. 894] if it is sparse and

$$
\forall x, y \in \operatorname{FS}(D)\left(\alpha_{D}(x) \cap \alpha_{D}(y) \neq \emptyset \Longrightarrow x+y \notin \mathrm{FS}(D)\right)
$$

In the sequel, we will use the following
Lemma 2.3 ([12, Lemma 2.2]). For every infinite set $D \subseteq \omega$ there is an infinite set $D^{\prime} \subseteq D$ which is very sparse.

3. Summable and van der Waerden ideals are not above Hindman and Ramsey ideals

To show that F_{σ} ideals are not above \mathcal{H} nor \mathcal{R} in the Katětov order one can use the following ideal on ω^{2} introduced by Katětov [23, Definition 5.1]:

$$
\operatorname{Fin}^{2}=\left\{C \subseteq \omega^{2}:\{n \in \omega:\{k \in \omega:(n, k) \in C\} \notin \operatorname{Fin}\} \in \operatorname{Fin}\right\} .
$$

The following lemma and proposition can be found in [11], but we decided to include proofs here for the sake of completeness.
Lemma 3.1 ([11, Proposition 7.2]).
(a) $\operatorname{Fin}^{2} \leq_{K} \mathcal{H}$.
(b) $\operatorname{Fin}^{2} \leq_{K} \mathcal{R}$.

Proof. (a): Let $A_{k}=\left\{2^{k}(2 n+1): n \in \omega\right\}$ for each $k \in \omega$. Let $f: \omega \rightarrow \omega^{2}$ be any injective function such that $f\left[A_{k}\right] \subseteq\{k\} \times \omega$ for all $k \in \omega$. In [12, item (2) in the proof of Proposition 1.1], the authors showed that $A_{k} \in \mathcal{H}$ for every $k \in \omega$ (so $f^{-1}[\{k\} \times \omega] \in \mathcal{H}$ for all $k \in \omega$), whereas in [12, item (1) in the proof of Proposition 1.1] it is shown that for every $B \notin \mathcal{H}$ there is $k \in \omega$ such that $B \cap A_{k}$ is infinite (so $f^{-1}[C] \in \mathcal{H}$ whenever $C \subseteq \omega^{2}$ is such that $C \cap(\{k\} \times \omega)$ is finite for all $k \in \omega$). Thus, the function f witnesses the fact that $\operatorname{Fin}^{2} \leq_{K} \mathcal{H}$.
(b): Let $A_{n}=\{\{k, i\}: i>k \geq n\}$ for every $n \in \omega$. Then $A_{n} \notin \mathcal{R}, A_{0}=[\omega]^{2}$, $\bigcap_{n \in \omega} A_{n}=\emptyset$ and $A_{n} \backslash A_{n+1}=\{\{n, i\}: i>n\} \in \mathcal{R}$. Let $f:[\omega]^{2} \rightarrow \omega^{2}$ be any injective function such that $f\left[A_{n} \backslash A_{n+1}\right] \subseteq\{n\} \times \omega$. Then $f^{-1}[\{n\} \times \omega] \in \mathcal{R}$ for all $n \in \omega$. Suppose, for sake of contradiction, that there is $C \subseteq \omega^{2}$ such that $C \cap(\{k\} \times \omega)$ is finite for all $k \in \omega$ (so $C \in \mathrm{Fin}^{2}$), but $B=f^{-1}[C] \notin \mathcal{R}$. Then $B \subseteq^{*} A_{n}$ for every $n \in \omega$. Let $H=\left\{h_{n}: n \in \omega\right\}$ be an infinite set such that $[H]^{2} \subseteq B$ and $h_{n}<h_{n+1}$ for every $n \in \omega$. Since $[H]^{2} \subseteq^{*} A_{h_{1}}$, there is a finite set F such that $[H]^{2} \backslash F \subseteq A_{h_{1}}$. Since F is finite, there is $k>0$ such that $\left\{h_{0}, h_{n}\right\} \notin F$ for every $n \geq k$. Then $\left\{\left\{h_{0}, h_{n}\right\}: n \geq k\right\} \subseteq[H]^{2} \backslash F$ and $\left\{\left\{h_{0}, h_{n}\right\}: n \geq k\right\} \cap A_{h_{1}}=\emptyset$, a contradiction.
Proposition 3.2 ([11, Theorem 7.7]).
(a) $\mathcal{H} \not \leq_{K} \mathcal{W}$.
(b) $\mathcal{R} \not \leq_{K} \mathcal{W}$.
(c) $\mathcal{H} \not \mathbb{Z}_{K} \mathcal{I}_{1 / n}$.
(d) $\mathcal{R} \not \mathbb{Z}_{K} \mathcal{I}_{1 / n}$.

Proof. (a): Suppose otherwise: $\mathcal{H} \leq_{K} \mathcal{W}$. Using Lemma 3.1 we get that $\mathrm{Fin}^{2} \leq_{K}$ \mathcal{H}, so $\operatorname{Fin}^{2} \leq_{K} \mathcal{W}$. However, since \mathcal{W} is F_{σ} (see [13, Example 4.12]), $\operatorname{Fin}^{2} \not \mathbb{Z}_{K} \mathcal{W}$ (by [8, Theorems 7.5 and 9.1] and [1, Example 4.1]). A contradiction.

The proofs of items (b), (c) and (d) are similar to the proof of item (a), since $\operatorname{Fin}^{2} \leq_{K} \mathcal{R}$ (by Lemma 3.1) and $\mathcal{I}_{1 / n}$ is F_{σ} (see [33, Example 1.5]).

4. Summable ideal is not below van der Waerden ideal

Proposition 4.1. $\mathcal{I}_{1 / n} \not \mathbb{Z}_{K} \mathcal{W}$.
Proof. Suppose for sake of contradiction that there is a function $\phi: \omega \rightarrow \omega$ such that $\phi^{-1}[B] \in \mathcal{W}$ for every $B \in \mathcal{I}_{1 / n}$. We construct a sequence $\left(F_{n}: n \in \omega\right)$ of finite subsets of ω such that for every $n \in \omega$ we have
(1) F_{n} is an arithmetic progression of length n,
(2) $\phi(x) \geq n 2^{n}$ for every $x \in F_{n}$.

Suppose that F_{i} are constructed for $i<n$. Since $B=\left\{i \in \omega: i<n 2^{n}\right\}$ is finite, $A=\phi^{-1}[B] \in \mathcal{W}$. Then $\omega \backslash A \notin \mathcal{W}$, so there is an arithmetic progression $F_{n} \subseteq \omega \backslash A$ of length n. This finishes the construction of F_{n}.

Let $A=\bigcup\left\{F_{n}: n \in \omega\right\}$. Then $A \notin \mathcal{W}$, but

$$
\sum_{y \in \phi[A]} \frac{1}{y+1} \leq \sum_{n \in \omega}\left(\sum_{x \in F_{n}} \frac{1}{\phi(x)+1}\right) \leq \sum_{n \in \omega}\left(\sum_{x \in F_{n}} \frac{1}{n 2^{n}+1}\right)=\sum_{n \in \omega} \frac{n}{n 2^{n}+1}<\infty
$$

so $\phi[A] \in \mathcal{I}_{1 / n}$, a contradiction.

5. Summable ideal is not below Hindman ideal

Theorem 5.1. $\mathcal{I}_{1 / n} \not \leq_{K} \mathcal{H}$.
Proof. This is proved in [12, Theorem 3.2], but below we provide a simpler proof.
Let $\phi: \omega \rightarrow \omega$ be an arbitrary function. We will show that ϕ is not a witness for $\mathcal{I}_{1 / n} \leq_{K} \mathcal{H}$ i.e. we will find an infinite set $D \subseteq \omega$ such that $\phi[\operatorname{FS}(D)] \in \mathcal{I}_{1 / n}$.

Using Canonical Hindman Theorem ([38, Theorem 2.1], see also [15, Theorem 5 at p. 133]), there is an infinite set $C=\left\{c_{n}: n \in \omega\right\} \subseteq \omega$ such that $\max \alpha\left(c_{n}\right)<$ $\min \alpha\left(c_{n+1}\right)$ for every $n \in \omega$ and one of the following five cases holds:
(1) $\forall x, y \in \operatorname{FS}(C)(\phi(x)=\phi(y))$,
(2) $\forall x, y \in \operatorname{FS}(C)(\phi(x)=\phi(y) \Longleftrightarrow \min \alpha(x)=\min \alpha(y))$,
(3) $\forall x, y \in \operatorname{FS}(C)(\phi(x)=\phi(y) \Longleftrightarrow \max \alpha(x)=\max \alpha(y))$,
(4) $\forall x, y \in \operatorname{FS}(C)(\phi(x)=\phi(y) \Longleftrightarrow(\min \alpha(x)=\min \alpha(y)$ and $\max \alpha(x)=$ $\max \alpha(y))$),
(5) $\forall x, y \in \mathrm{FS}(C)(\phi(x)=\phi(y) \Longleftrightarrow x=y)$.

Case 1. We take $D=C$ and see that the set $\phi[\mathrm{FS}(D)]$ has only one element, so it belongs to $\mathcal{I}_{1 / n}$.

Case 2. We construct a strictly increasing sequence $\left\{k_{n}: n \in \omega\right\}$ such that $\phi\left(c_{k_{n}}\right)>2^{n}$ for every $n \in \omega$.

Suppose that k_{i} are constructed for $i<n$. Since $\max \alpha\left(c_{k}\right)<\min \alpha\left(c_{k+1}\right)$ for every $k \in \omega, \min \alpha\left(c_{k}\right) \neq \min \alpha\left(c_{l}\right)$ for distinct $k, l \in \omega$. Consequently, $\phi \upharpoonright C$ is one-to-one, so we can find $k_{n}>k_{n-1}$ such that $\phi\left(c_{k_{n}}\right)>2^{n}$. That finishes the inductive construction of k_{n}.

Let $D=\left\{c_{k_{n}}: n \in \omega\right\}$. If we show that $\phi[\operatorname{FS}(D)] \in \mathcal{I}_{1 / n}$, the proof of this case will be finished. Using the properties of $c_{k_{n}}$'s we can see that $\phi\left[c_{k_{n}}+\operatorname{FS}\left(\left\{c_{k_{i}}: i>\right.\right.\right.$ $n\})]=\left\{\phi\left(c_{k_{n}}\right)\right\}$, for every $n \in \omega$, so

$$
\begin{aligned}
\sum_{y \in \phi[\operatorname{FS}(D)]} \frac{1}{y+1} & =\sum_{n \in \omega}\left(\sum_{y \in\left\{\phi\left(c_{k_{n}}\right)\right\} \cup \phi\left[c_{k_{n}}+\mathrm{FS}\left(\left\{c_{k_{i}}: i>n\right\}\right)\right]} \frac{1}{y+1}\right) \\
& =\sum_{n \in \omega} \frac{1}{\phi\left(c_{k_{n}}\right)+1} \leq \sum_{n \in \omega} \frac{1}{2^{n}+1}<\infty .
\end{aligned}
$$

Case 3. We construct a strictly increasing sequence $\left\{k_{n}: n \in \omega\right\}$ such that $\phi\left(c_{k_{n}}\right)>2^{n}$ for every $n \in \omega$.

Suppose that k_{i} are constructed for $i<n$. Since $\max \alpha\left(c_{k}\right)<\min \alpha\left(c_{k+1}\right)$ for every $k \in \omega$, $\max \alpha\left(c_{k}\right) \neq \max \alpha\left(c_{l}\right)$ for distinct $k, l \in \omega$. Consequently, $\phi \upharpoonright C$ is one-to-one, so we can find $k_{n}>k_{n-1}$ such that $\phi\left(c_{k_{n}}\right)>2^{n}$. That finishes the inductive construction of k_{n}.

Let $D=\left\{c_{k_{n}}: n \in \omega\right\}$. If we show that $\phi[\operatorname{FS}(D)] \in \mathcal{I}_{1 / n}$, the proof of this case will be finished. Using the properties of $c_{k_{n}}$'s we can see that $\phi\left[c_{k_{n}}+\operatorname{FS}\left(\left\{c_{k_{i}}: i<\right.\right.\right.$ $n\})]=\left\{\phi\left(c_{k_{n}}\right)\right\}$, for every $n \in \omega$, so

$$
\begin{aligned}
\sum_{y \in \phi[\mathrm{FS}(D)]} \frac{1}{y+1} & =\sum_{n \in \omega}\left(\sum_{y \in\left\{\phi\left(c_{k_{n}}\right)\right\} \cup \phi\left[c_{k_{n}}+\mathrm{FS}\left(\left\{c_{k_{i}}: i<n\right\}\right)\right]} \frac{1}{y+1}\right) \\
& =\sum_{n \in \omega} \frac{1}{\phi\left(c_{k_{n}}\right)+1} \leq \sum_{n \in \omega} \frac{1}{2^{n}+1}<\infty .
\end{aligned}
$$

Case 4. We construct a strictly increasing sequence $\left\{k_{n}: n \in \omega\right\}$ such that

$$
\forall n \in \omega \forall i<n\left(\phi\left(c_{k_{n}}\right)>n 2^{n} \wedge \phi\left(c_{k_{n}}+c_{k_{i}}\right)>n 2^{n}\right) .
$$

Suppose that k_{i} are constructed for $i<n$. Since $\max \alpha\left(c_{k}\right)<\min \alpha\left(c_{k+1}\right)$ for every $k \in \omega$, we obtain that $\min \alpha\left(c_{k}+c_{k_{i}}\right) \neq \min \alpha\left(c_{k}+c_{k_{j}}\right)$ and $\min \alpha\left(c_{k}\right) \neq$
$\min \alpha\left(c_{k}+c_{k_{i}}\right)$ for every $k>k_{n-1}$ and $i<j \leq n-1$. Consequently, the function $\phi \upharpoonright\left(\left\{c_{k}+c_{k_{i}}: k>k_{n-1}, i<n\right\} \cup\left\{c_{k}: k>k_{n-1}\right\}\right)$ is one-to-one, so using pigeonhole principle we can find $k_{n}>k_{n-1}$ such that $\phi\left(c_{k_{n}}\right)>n 2^{n}$ and $\phi\left(c_{k_{n}}+c_{k_{i}}\right)>n 2^{n}$ for every $i<n$. That finishes the inductive construction of k_{n}.

Let $D=\left\{c_{k_{n}}: n \in \omega\right\}$. If we show that $\phi[\operatorname{FS}(D)] \in \mathcal{I}_{1 / n}$, the proof of this case will be finished. Using the properties of $c_{k_{n}}$'s we can see that $\phi\left[c_{k_{m}}+\operatorname{FS}\left(\left\{c_{k_{i}}\right.\right.\right.$: $\left.m<i<n\})+c_{k_{n}}\right]=\left\{\phi\left(c_{k_{m}}+c_{k_{n}}\right)\right\}$ for every $m<n, m, n \in \omega$, so

$$
\begin{aligned}
\sum_{y \in \phi[\mathrm{FS}(D)]} \frac{1}{y+1} & =\sum_{n \in \omega} \frac{1}{\phi\left(c_{k_{n}}\right)+1} \\
& +\sum_{n \in \omega} \sum_{m<n}\left(\sum_{y \in\left\{\phi\left(c_{k_{m}}+c_{k_{n}}\right)\right\} \cup \phi\left[c_{k_{m}}+\mathrm{FS}\left(\left\{c_{k_{i}}: m<i<n\right\}\right)+c_{k_{n}}\right]} \frac{1}{y+1}\right) \\
& =\sum_{n \in \omega} \frac{1}{\phi\left(c_{k_{n}}\right)+1}+\sum_{n \in \omega} \sum_{m<n} \frac{1}{\phi\left(c_{k_{m}}+c_{k_{n}}\right)+1} \\
& \leq \sum_{n \in \omega} \frac{1}{n 2^{n}+1}+\sum_{n \in \omega} \sum_{m<n} \frac{1}{n 2^{n}+1}<\infty .
\end{aligned}
$$

Case 5. We construct inductively a strictly increasing sequence $\left\{k_{n}: n \in \omega\right\}$ such that

$$
\forall n \in \omega \forall x \in \operatorname{FS}\left(\left\{c_{k_{i}}: i<n\right\}\right)\left(\phi\left(c_{k_{n}}\right)>2^{2 n} \wedge \phi\left(c_{k_{n}}+x\right)>2^{2 n}\right)
$$

Suppose that k_{i} are constructed for $i<n$. Let $m \in \omega$ be such that $m>2^{2 n}$ and $m>\phi(x)$ for every $x \in \operatorname{FS}\left(\left\{c_{k_{i}}: i<n\right\}\right)$. Since $\phi \upharpoonright \operatorname{FS}(C)$ is one-to-one, the set $F=\phi^{-1}[\{0,1, \ldots, m\}]$ is finite. Let $k_{n} \in \omega$ be such that $c_{k_{n}}>\max F$. Since $c_{k_{n}}>\max F$, we obtain that $c_{k_{n}} \notin F$ and consequently $\phi\left(c_{k_{n}}\right)>m>2^{2 n}$. Similarly, for every $x \in \operatorname{FS}\left(\left\{c_{k_{i}}: i<n\right\}\right)$ we have $c_{k_{n}}+x>c_{k_{n}}>\max F$, so $\phi\left(c_{k_{n}}+x\right)>m>2^{2 n}$. That finishes the inductive construction of k_{n}.

Let $D=\left\{c_{k_{n}}: n \in \omega\right\}$. If we show that $\phi[\operatorname{FS}(D)] \in \mathcal{I}_{1 / n}$, the proof of this case will be finished. Using the properties of $c_{k_{n}}$'s we can see that:

$$
\begin{aligned}
\sum_{y \in \phi[\mathrm{FS}(D)]} \frac{1}{y+1} & =\sum_{n \in \omega}\left(\frac{1}{\phi\left(c_{k_{n}}\right)+1}+\sum_{x \in \mathrm{FS}\left(\left\{c_{k_{i}}: i<n\right\}\right)} \frac{1}{\phi\left(c_{k_{n}}+x\right)+1}\right) \\
& \leq \sum_{n \in \omega}\left(\frac{1}{2^{2 n}+1}+\sum_{x \in \mathrm{FS}\left(\left\{c_{k_{i}}: i<n\right\}\right)} \frac{1}{2^{2 n}+1}\right) \\
& \leq \sum_{n \in \omega}\left(\frac{1}{2^{2 n}+1}+\left(2^{n}-1\right) \cdot \frac{1}{2^{2 n}+1}\right)<\infty .
\end{aligned}
$$

6. Summable ideal is not below Ramsey ideal

Theorem 6.1. $\mathcal{I}_{1 / n} \not \mathbb{L}_{K} \mathcal{R}$.
Proof. Let $\phi:[\omega]^{2} \rightarrow \omega$ be an arbitrary function. We will show that ϕ is not a witness for $\mathcal{I}_{1 / n} \leq_{K} \mathcal{R}$ i.e. we will find an infinite set $H \subseteq \omega$ such that $\phi\left[[H]^{2}\right] \in$ $\mathcal{I}_{1 / n}$. Using Canonical Ramsey Theorem ([9, Theorem II], see also [15, Theorem 2 at p. 129]), there is an infinite set $T \subseteq \omega$ such that one of the following four cases holds:
(1) $\forall x, y \in[T]^{2}(\phi(x)=\phi(y))$,
(2) $\forall x, y \in[T]^{2}(\phi(x)=\phi(y) \Longleftrightarrow \min x=\min y)$,
(3) $\forall x, y \in[T]^{2}(\phi(x)=\phi(y) \Longleftrightarrow \max x=\max y)$,
(4) $\forall x, y \in[T]^{2}(\phi(x)=\phi(y) \Longleftrightarrow x=y)$.

Case 1. We take $H=T$ and see that the set $\phi\left[[H]^{2}\right]$ has only one element, so it belongs to $\mathcal{I}_{1 / n}$.

Case 2. In this case, for every $t \in T$ the restriction $\phi \upharpoonright\{\{t, s\}: s \in T, s>t\}$ is constant with distinct values for distinct t. Thus, for every $t \in T$ there is k_{t} such that $\left\{k_{t}\right\}=\phi[\{\{t, s\}: s \in T, s>t\}]$.

Since $k_{t_{n}}$ are pairwise distinct, we can find a one-to-one sequence $\left\{t_{n}: n \in \omega\right\} \subseteq$ T such that $k_{t_{n}}>2^{n}$ for every $n \in \omega$.

Now, we take $H=\left\{t_{n}: n \in \omega\right\}$ and notice that

$$
\sum_{k \in \phi\left[[H]^{2}\right]} \frac{1}{k+1}=\sum_{n=0}^{\infty}\left(\sum_{k \in \phi\left[\left\{\left\{t_{n}, t_{i}\right\}: i>n\right\}\right]} \frac{1}{k+1}\right)=\sum_{n=0}^{\infty} \frac{1}{k_{t_{n}}+1} \leq \sum_{n=0}^{\infty} \frac{1}{2^{n}}<\infty,
$$

so $\phi\left[[H]^{2}\right] \in \mathcal{I}_{1 / n}$.
Case 3. In this case, for every $t \in T$ the restriction $\phi \upharpoonright\{\{s, t\}: s \in T, s<t\}$ is constant with distinct values for distinct t. Thus, for every $t \in T$ there is k_{t} such that $\left\{k_{t}\right\}=\phi[\{\{t, s\}: s \in T, s<t\}]$.

Since $k_{t_{n}}$ are pairwise distinct, we can find a one-to-one sequence $\left\{t_{n}: n \in \omega\right\} \subseteq$ T such that $k_{t_{n}}>2^{n}$ for every $n \in \omega$.

Now, we take $H=\left\{t_{n}: n \in \omega\right\}$ and notice that

$$
\sum_{k \in \phi\left[[H]^{2}\right]} \frac{1}{k+1}=\sum_{n=0}^{\infty}\left(\sum_{k \in \phi\left[\left\{\left\{t_{i}, t_{n}\right\}:: i<n\right\}\right]} \frac{1}{k+1}\right)=\sum_{n=0}^{\infty} \frac{1}{k_{t_{n}}+1} \leq \sum_{n=0}^{\infty} \frac{1}{2^{n}}<\infty
$$

so $\phi\left[[H]^{2}\right] \in \mathcal{I}_{1 / n}$.
Case 4. We construct inductively a one-to-one sequence $\left\{t_{n}: n \in \omega\right\} \subseteq T$ such that $\phi\left(\left\{t_{i}, t_{n}\right\}\right)>n \cdot 2^{n}$ for every $n \in \omega$ and every $i<n$.

Suppose that t_{i} are constructed for $i<n$. Since there are only finitely many numbers below $n \cdot 2^{n}$ and the function ϕ is one-to-one on $[T]^{2}$ there is $t_{n} \in T \backslash\left\{t_{i}\right.$: $i<n\}$ such that $\phi\left(\left\{t, t_{n}\right\}\right)>n \cdot 2^{n}$ for every $t \in T$. That finishes the inductive construction of t_{n}.

Now, we take $H=\left\{t_{n}: n \in \omega\right\}$ and notice that

$$
\sum_{k \in \phi\left[[H]^{2}\right]} \frac{1}{k+1}=\sum_{n=0}^{\infty} \sum_{i<n} \frac{1}{\phi\left(\left\{t_{i}, t_{n}\right\}\right)+1} \leq \sum_{n=0}^{\infty} \sum_{i<n} \frac{1}{n \cdot 2^{n}+1} \leq \sum_{n=0}^{\infty} \frac{1}{2^{n}}<\infty
$$

so $\phi\left[[H]^{2}\right] \in \mathcal{I}_{1 / n}$.

7. Hindman ideal is not below Ramsey ideal

Lemma 7.1. If D is very sparse, then $\left\{x \in \operatorname{FS}(D): \alpha_{D}(x) \cap \alpha_{D}(y) \neq \emptyset\right\} \in \mathcal{H}$ for every $y \in \mathrm{FS}(D)$.

Proof. Let $\left(d_{n}\right)_{n \in \omega}$ be the increasing enumeration of all elements of D and $\alpha_{D}(y)=$ $\left\{k_{0}, \ldots, k_{n}\right\}$. Since

$$
\left\{x \in \operatorname{FS}(D): \alpha_{D}(x) \cap \alpha_{D}(y) \neq \emptyset\right\}=\bigcup_{i \leq n}\left\{x \in \mathrm{FS}(D): k_{i} \in \alpha_{D}(x)\right\}
$$

we only need to show that $\left\{x \in \operatorname{FS}(D): k_{i} \in \alpha_{D}(x)\right\} \in \mathcal{H}$ for every $i \leq n$.
If $y, z \in\left\{x \in \operatorname{FS}(D): k_{i} \in \alpha_{D}(x)\right\}$, then $k_{i} \in \alpha_{D}(y) \cap \alpha_{D}(z) \neq \emptyset$, so $y+z \notin$ $\mathrm{FS}(D)$ (since D is very sparse). Thus, there is no infinite (even two-element) set C such that $\mathrm{FS}(C) \subseteq\left\{x \in \mathrm{FS}(D): k_{i} \in \alpha_{D}(x)\right\}$.

Theorem 7.2. $\mathcal{H} \not \leq_{K} \mathcal{R}$.

Proof. Let $D \subseteq \omega$ be a very sparse set (which exists by Lemma 2.3). Since the ideal \mathcal{H} is homogeneous (see Proposition 2.2), it suffices to show that $\mathcal{H} \upharpoonright \operatorname{FS}(D) \not Z_{K} \mathcal{R}$.

Assume to the contrary that there exists $f:[\omega]^{2} \rightarrow \operatorname{FS}(D)$ which witnesses $\mathcal{H} \upharpoonright \operatorname{FS}(D) \leq_{K} \mathcal{R}$.

We will recursively define infinite sets $B_{n} \subseteq \omega$ and pairwise distinct elements $b_{n} \in \omega$ such that for all $n \in \omega$ the following conditions are satisfied:
(a) $b_{n} \in B_{n}, b_{n+1}>b_{n}$,
(b) $B_{n+1} \subseteq B_{n}, B_{0}=\omega$,
(c) for each $y \in f\left[\left[\left\{b_{i}: i<n\right\}\right]^{2}\right]$ we have

$$
f\left[\left[B_{n}\right]^{2}\right] \cap\left\{x \in \operatorname{FS}(D): \alpha_{D}(x) \cap \alpha_{D}(y) \neq \emptyset\right\}=\emptyset,
$$

(d) for each $y \in f\left[\left[\left\{b_{i}: i<n\right\}\right]^{2}\right]$ and $i<n$ we have

$$
f\left[\left\{\left\{b_{i}, b\right\}: b \in B_{n}\right\}\right]-y \in \mathcal{H}
$$

Let $b_{0}=0$ and $B_{0}=\omega$. Then b_{0} and B_{0} are as required. Assume that b_{i} and B_{i} have been constructed for $i<n$ and satisfy items (b)-(d).

Since $\left\{x \in \operatorname{FS}(D): \alpha_{D}(x) \cap \alpha_{D}(y) \neq \emptyset\right\} \in \mathcal{H}$ for every $y \in f\left[\left[\left\{b_{i}: i<n\right\}\right]^{2}\right] \subseteq$ $\operatorname{FS}(D)$ (by Lemma 7.1), $\left[B_{n-1}\right]^{2} \in \mathcal{R}^{+}$and we assumed that f witnesses $\mathcal{H} \upharpoonright$ $\mathrm{FS}(D) \leq_{K} \mathcal{R}$, there exists an infinite set $B \subseteq \omega$ such that

$$
[B]^{2} \subseteq\left[B_{n-1}\right]^{2} \backslash \bigcup_{\left.y \in f\left[\left\{b_{i}: i<n\right\}\right]^{2}\right]} f^{-1}\left[\left\{x \in \mathrm{FS}(D): \alpha_{D}(x) \cap \alpha_{D}(y) \neq \emptyset\right\}\right]
$$

Observe that for each infinite set $E \subseteq \omega$ and $b, y \in \omega$ there exists an infinite set $C \subseteq E$ such that $f[\{\{b, c\}: c \in C\}]-y \in \mathcal{H}$. Indeed, let $g: E \backslash\{b\} \rightarrow \omega$ be given by $g(x)=f(\{b, x\})-y$. Since \mathcal{H} is a tall ideal (Proposition 2.1), $\mathcal{H} \not Z_{K} \operatorname{Fin}(E \backslash\{b\})$. Thus, there is $C \notin \operatorname{Fin}(E \backslash\{b\})$ such that $C \subseteq E \backslash\{b\}$ and $g[C]=f[\{\{b, c\}: c \in$ $C\}]-y \in \mathcal{H}$.

Now, using recursively the above observation we can find an infinite set $C \subseteq B$ such that $f\left[\left\{\left\{b_{i}, c\right\}: c \in C\right\}\right]-y \in \mathcal{H}$ for every $i<n$ and $y \in f\left[\left[\left\{b_{i}: i<n\right\}\right]^{2}\right]$.

We put $B_{n}=C$ and pick any $b_{n} \in B_{n}$ with $b_{n}>b_{n-1}$.
The construction of the sequences $\left(B_{n}\right)_{n \in \omega}$ and $\left(b_{n}\right)_{n \in \omega}$ is finished.
Let $B=\left\{b_{n}: n \in \omega\right\}$. Since B is infinite, $[B]^{2} \in \mathcal{R}^{+}$. Since we assumed that f witnesses $\mathcal{H} \upharpoonright \mathrm{FS}(D) \leq_{K} \mathcal{R}, f\left[[B]^{2}\right] \in \mathcal{H}^{+} \upharpoonright \mathrm{FS}(D)$, and consequently there exists an infinite set $C \subseteq \omega$ such that $\mathrm{FS}(C) \subseteq f\left[[B]^{2}\right]$.

Pick any $c \in C$ and let $j, n \in \omega$ be such that $c=f\left(\left\{b_{j}, b_{n}\right\}\right)$ and $j<n$.
Since $X=\left[\left\{b_{i}: i \leq n\right\}\right]^{2}$ is finite, $f[X]-c \in \mathcal{H}$.
Let $\left.Y=\left\{\left\{b_{i}, b_{k}\right\}: i \leq n<k\right\}\right\}$. Since $\left\{b_{k}: k>n\right\} \subseteq B_{n+1}$ and B_{n+1} satisfies item (d) applied to $y=c$, we have $f[Y]-c \in \mathcal{H}$.

Let $Z=\left[\left\{b_{i}: i>n\right\}\right]^{2}$. We claim that $\mathrm{FS}(C \backslash\{c\}) \cap(f[Z]-c)=\emptyset$. Suppose to the contrary that there exists $a \in \mathrm{FS}(C \backslash\{c\}) \cap(f[Z]-c)$. Then $a+c \in$ $\mathrm{FS}(C) \cap f[Z] \subseteq \mathrm{FS}(D) \cap f\left[\left[B_{n+1}\right]^{2}\right]$, so by item (c) applied to $y=c, \alpha_{D}(c) \cap$ $\alpha_{D}(a+c)=\emptyset$. On the other hand, $a, c \in \operatorname{FS}(D), D$ is very sparse and $a+c \in$ $\mathrm{FS}(D)$, so $\alpha_{D}(a) \cap \alpha_{D}(c)=\emptyset$. Consequently, $\alpha_{D}(a+c)=\alpha_{D}(a) \cup \alpha_{D}(c)$, so $\alpha_{D}(c) \cap \alpha_{D}(a+c)=\alpha_{D}(c) \neq \emptyset$, a contradiction.

Since $[B]^{2}=X \cup Y \cup Z$ and $\operatorname{FS}(C \backslash\{c\}) \subseteq \operatorname{FS}(C)-c \subseteq f\left[[B]^{2}\right]-c$, we have

$$
\begin{aligned}
\mathrm{FS}(C \backslash\{c\}) & \subseteq(f[X]-c) \cup(f[Y]-c) \cup((f[Z]-c) \cap \mathrm{FS}(C \backslash\{c\})) \\
& =(f[X]-c) \cup(f[Y]-c) \cup \emptyset \in \mathcal{H}
\end{aligned}
$$

a contradiction.
8. Ramsey ideal is not below Hindman ideal

Theorem 8.1. $\mathcal{R} \not \leq_{K} \mathcal{H}$.

Proof. By Γ we will denote the set $\Gamma=\left\{\left(z_{0}, z_{1}\right) \in \omega^{2}: z_{0}>z_{1}\right\}$. In this proof we will view \mathcal{R} as an ideal on Γ consisting of those $A \subseteq \Gamma$ that do not contain any $B^{2} \cap \Gamma$, for infinite $B \subseteq \omega$.

By Lemma 2.3, there is a very sparse $X \in[\omega]^{\omega}$. The ideal \mathcal{H} is homogeneous (see Proposition 2.2), so it suffices to show that $\mathcal{R} \not \mathbb{Z}_{K} \mathcal{H} \upharpoonright \operatorname{FS}(X)$. Fix any $f: \mathrm{FS}(X) \rightarrow \Gamma$ and assume to the contrary that it witnesses $\mathcal{R} \leq_{K} \mathcal{H}$. There are two possible cases.

Case 1. There are $k \in \omega$ and very sparse $D \in[\omega]^{\omega}, \mathrm{FS}(D) \subseteq \mathrm{FS}(X)$, such that for all $n>k$ and $x \in \mathrm{FS}(D)$ we have: $\left(f^{-1}[(\omega \times\{n\}) \cap \Gamma] \cap\left\{y \in F S(D): \alpha_{D}(x) \subseteq\right.\right.$ $\left.\left.\alpha_{D}(y)\right\}\right)-x \in \mathcal{H} \upharpoonright \operatorname{FS}(X)$.

In this case we recursively pick $\left\{x_{n}: n \in \omega\right\} \subseteq \operatorname{FS}(D)$ and $\left\{D_{n}: n \in \omega \cup\{-1\}\right\} \subseteq$ $[\omega]^{\omega}$ such that $D_{-1}=D$ and for all $n \in \omega$ we have:
(a) $x_{n} \in \operatorname{FS}\left(D_{n-1}\right) \backslash\left(\left\{x_{i}: i<n\right\} \cup \bigcup_{i<n} \bigcup_{j<n}\left\{y \in \operatorname{FS}\left(D_{j}\right): \alpha_{D_{j}}(y) \cap\right.\right.$ $\left.\alpha_{D_{j}}\left(x_{i}\right) \neq \emptyset\right\}$) (here we put $\alpha_{D_{j}}\left(x_{i}\right)=\emptyset$ whenever $\left.x_{i} \notin D_{j}\right)$;
(b) D_{n} is very sparse;
(c) $\operatorname{FS}\left(\left\{x_{0}, \ldots, x_{n}\right\}\right) \subseteq \operatorname{FS}(D)$;
(d) $\mathrm{FS}\left(D_{n}\right) \subseteq \mathrm{FS}\left(D_{n-1}\right) \subseteq \mathrm{FS}(D)$;
(e) $\left(f^{-1}[(\omega \times\{k+i\}) \cap \Gamma]-x\right) \cap \mathrm{FS}\left(D_{n}\right)=\emptyset$ for every $x \in \operatorname{FS}\left(\left\{x_{0}, \ldots, x_{n}\right\}\right)$ and $1 \leq i \leq n+1$;
(f) $f^{-1}[(\omega \times\{k+i\}) \cap \Gamma] \cap \operatorname{FS}\left(D_{n}\right)=\emptyset$ for all $1 \leq i \leq n+1$.

The initial step of the construction is given by the requirement $D_{-1}=D$. Suppose now that x_{i} and D_{i} for all $i<n$ are defined.

Find $x_{n} \in \operatorname{FS}\left(D_{n-1}\right)$ such that $\operatorname{FS}\left(\left\{x_{0}, \ldots, x_{n}\right\}\right) \subseteq \operatorname{FS}(D)$ and $x_{n} \neq x_{i}$ for all $i<n$. This is possible since it suffices to pick any point from the set

$$
\mathrm{FS}\left(D_{n-1}\right) \backslash \bigcup_{i<n} \bigcup_{j<n}\left\{y \in \mathrm{FS}\left(D_{j}\right): \alpha_{D_{j}}(y) \cap \alpha_{D_{j}}\left(x_{i}\right) \neq \emptyset\right\},
$$

which is nonempty as $\operatorname{FS}\left(D_{n-1}\right) \notin \mathcal{H} \upharpoonright \mathrm{FS}(X)$ and

$$
\bigcup_{i<n} \bigcup_{j<n}\left\{y \in \operatorname{FS}\left(D_{j}\right): \alpha_{D_{j}}(y) \cap \alpha_{D_{j}}\left(x_{i}\right) \neq \emptyset\right\} \in \mathcal{H} \upharpoonright \operatorname{FS}(X)
$$

by Lemma 7.1 and item (b) for all $j<n$ (here we put $\alpha_{D_{j}}\left(x_{i}\right)=\emptyset$ whenever $\left.x_{i} \notin D_{j}\right)$.

Enumerate $\operatorname{FS}\left(\left\{x_{0}, \ldots, x_{n}\right\}\right)=\left\{c_{0}, c_{1}, \ldots, c_{2^{n+1}-2}\right\}$. We will define sets $E_{t} \in$ $[\omega]^{\omega}$ for $-1 \leq t \leq n$ such that $E_{-1}=D_{n-1}$ and for all $0 \leq t \leq n$:

- $\operatorname{FS}\left(E_{t}\right) \subseteq \mathrm{FS}\left(E_{t-1}\right) \subseteq \mathrm{FS}\left(D_{n-1}\right)$,
- $\left(\bigcup_{1 \leq i \leq n+1} f^{-1}[(\omega \times\{k+i\}) \cap \Gamma]-c_{l}\right) \cap \operatorname{FS}\left(E_{t}\right)=\emptyset$ for every $0 \leq l \leq$ $2^{n+1}-2$.

Such construction is possible. Indeed, since we are on Case 1 and each $c_{l} \in$ $\mathrm{FS}\left(\left\{x_{0}, \ldots, x_{n}\right\}\right) \subseteq \mathrm{FS}(D)$, we know that:

$$
\begin{aligned}
& \left(\bigcup_{1 \leq i \leq n+1} f^{-1}[(\omega \times\{k+i\}) \cap \Gamma]-c_{l}\right) \cap\left(\left\{y \in \mathrm{FS}(D): \alpha_{D}\left(c_{l}\right) \subseteq \alpha_{D}(y)\right\}-c_{l}\right) \\
= & \left(\bigcup_{1 \leq i \leq n+1} f^{-1}[(\omega \times\{k+i\}) \cap \Gamma] \cap\left\{y \in \operatorname{FS}(D): \alpha_{D}\left(c_{l}\right) \subseteq \alpha_{D}(y)\right\}\right)-c_{l} \in \mathcal{H} \upharpoonright \operatorname{FS}(D) .
\end{aligned}
$$

On the other hand, we get:

$$
\begin{aligned}
& \operatorname{FS}\left(E_{t-1}\right) \cap\left(\left\{y \in \mathrm{FS}(D): \alpha_{D}\left(c_{l}\right) \subseteq \alpha_{D}(y)\right\}-c_{l}\right) \\
\supseteq & \mathrm{FS}\left(E_{t-1}\right) \cap\left(\mathrm{FS}(D) \backslash\left\{y \in \mathrm{FS}(D): \alpha_{D}\left(c_{l}\right) \cap \alpha_{D}(y) \neq \emptyset\right\}\right) \\
\supseteq & \mathrm{FS}\left(E_{t-1}\right) \backslash\left\{y \in \mathrm{FS}(D): \alpha_{D}\left(c_{l}\right) \cap \alpha_{D}(y) \neq \emptyset\right\} \notin \mathcal{H} \upharpoonright \operatorname{FS}(D),
\end{aligned}
$$

as $\left\{y \in \operatorname{FS}(D): \alpha_{D}\left(c_{l}\right) \cap \alpha_{D}(y) \neq \emptyset\right\} \in \mathcal{H} \upharpoonright \operatorname{FS}(D)$ (by Lemma 7.1). Then

$$
\begin{aligned}
& \mathrm{FS}\left(E_{t-1}\right) \backslash\left(\bigcup_{1 \leq i \leq n+1} f^{-1}[(\omega \times\{k+i\}) \cap \Gamma]-c_{l}\right) \\
\supseteq & \left(\mathrm{FS}\left(E_{t-1}\right) \cap\left(\left\{y \in \mathrm{FS}(D): \alpha_{D}\left(c_{l}\right) \subseteq \alpha_{D}(y)\right\}-c_{l}\right)\right) \\
& \backslash\left(\left(\bigcup_{1 \leq i \leq n+1} f^{-1}[(\omega \times\{k+i\}) \cap \Gamma]-c_{l}\right)\right. \\
& \left.\cap\left(\left\{y \in \operatorname{FS}(D): \alpha_{D}\left(c_{l}\right) \subseteq \alpha_{D}(y)\right\}-c_{l}\right)\right) \notin \mathcal{H} \upharpoonright \operatorname{FS}(D) .
\end{aligned}
$$

Thus, there is $E_{t} \in[\omega]^{\omega}$ as needed.
Once all E_{t} are defined, observe that

$$
\bigcup_{1 \leq i \leq n+1}(\omega \times\{k+i\}) \cap \Gamma \in \mathcal{R}
$$

Since we assumed that f witnesses $\mathcal{R} \leq{ }_{K} \mathcal{H}$,

$$
\mathrm{FS}\left(E_{n}\right) \backslash \bigcup_{1 \leq i \leq n+1} f^{-1}[(\omega \times\{k+i\}) \cap \Gamma] \notin \mathcal{H}
$$

Hence, there is a very sparse $D_{n} \in[\omega]^{\omega}$ such that

$$
\mathrm{FS}\left(D_{n}\right) \subseteq \mathrm{FS}\left(E_{n}\right) \backslash \bigcup_{1 \leq i \leq n+1} f^{-1}[(\omega \times\{k+i\}) \cap \Gamma]
$$

(by Lemma 2.3). Note that $\operatorname{FS}\left(D_{n}\right) \subseteq \operatorname{FS}\left(E_{n}\right) \subseteq \operatorname{FS}\left(D_{n-1}\right) \subseteq \operatorname{FS}(D)$ and

$$
\bigcup_{1 \leq i \leq n+1}\left(f^{-1}[(\omega \times\{k+i\}) \cap \Gamma]-x\right) \cap \mathrm{FS}\left(D_{n}\right)=\emptyset
$$

for all $x \in \operatorname{FS}\left(\left\{x_{0}, \ldots, x_{n}\right\}\right)$.
This finishes the construction of $\left\{x_{n}: n \in \omega\right\} \subseteq \operatorname{FS}(D)$ and $\left\{D_{n}: n \in \omega \cup\right.$ $\{-1\}\} \subseteq[\omega]^{\omega}$.

Define $B=\mathrm{FS}\left(\left\{x_{n}: n \in \omega\right\}\right)$. Obviously, $B \notin \mathcal{H} \upharpoonright \mathrm{FS}(X)$ as $\mathrm{FS}\left(\left\{x_{0}, \ldots, x_{n}\right\}\right) \subseteq$ $\mathrm{FS}(D) \subseteq \mathrm{FS}(X)$ for all $n \in \omega$. We will show that $f[B] \cap(\omega \times\{n\}) \cap \Gamma$ is finite for all $n>k$. This will finish the proof in this case as $\bigcup_{n \leq k}(\omega \times\{n\}) \cap \Gamma \in \mathcal{R}$ and any set finite on each $(\omega \times\{n\}) \cap \Gamma$ belongs to \mathcal{R}.

Assume that $f(x) \in(\omega \times\{k+m+1\}) \cap \Gamma$ for some $m \in \omega$ and $x=x_{n_{0}}+\ldots+x_{n_{t}} \in$ B, where $n_{0}<\ldots<n_{t}$. If $n_{0}>m$, then $x \in \operatorname{FS}\left(\left\{x_{n}: n>m\right\}\right) \subseteq \operatorname{FS}\left(D_{m}\right)$ which contradicts $f(x) \in(\omega \times\{k+m+1\}) \cap \Gamma$ (by item (f)). If $n_{0} \leq m$ but $J=\left\{j \leq t: n_{j}>m\right\} \neq \emptyset$, then let $j=\min J$ and note that $x \in \sum_{i<j} x_{n_{i}}+\mathrm{FS}\left(D_{m}\right)$. As $\sum_{i<j} x_{n_{i}} \in \operatorname{FS}\left(\left\{x_{0}, \ldots, x_{m}\right\}\right)$, item (e) gives us a contradiction with $f(x) \in$ $(\omega \times\{k+m+1\}) \cap \Gamma$. Hence, the only possibility is that $n_{j} \leq m$ for all $j \leq t$. Thus, $f[B] \cap(\omega \times\{k+m+1\}) \cap \Gamma \subseteq f\left[\operatorname{FS}\left(\left\{x_{0}, \ldots, x_{m}\right\}\right)\right]$, which is a finite set.
Case 2. For every $k \in \omega$ and very sparse $D \in[\omega]^{\omega}, \operatorname{FS}(D) \subseteq \operatorname{FS}(X)$, there are $n>k$ and $x \in \mathrm{FS}(D)$ such that:

$$
\left(f^{-1}[(\omega \times\{n\}) \cap \Gamma] \cap\left\{y \in \operatorname{FS}(D): \alpha_{D}(x) \subseteq \alpha_{D}(y)\right\}\right)-x \notin \mathcal{H} \upharpoonright \operatorname{FS}(X)
$$

In this case we will pick $\left\{n_{i}: i \in \omega\right\} \subseteq \omega,\left\{j_{i}: i \in \omega\right\} \subseteq\{0,1\},\left\{x_{i}: i \in \omega\right\} \subseteq$ $\operatorname{FS}(D),\left\{D_{i}: i \in \omega \cup\{-1\}\right\} \subseteq[\omega]^{\omega},\left\{k_{i}: i \in \omega\right\} \subseteq \omega \cup\{-1\}$ and $\left\{F_{i}: i \in \omega\right\} \subseteq$ Fin such that $D_{-1}=X$ and for each $i \in \omega$:
(a) (a1) $n_{i}>n_{i-1}$ (here we put $n_{-1}=-1$);
(a2) $n_{i}>\min \left\{a \in \omega: f\left[\operatorname{FS}\left(\left\{x_{j}: j<i\right\}\right)\right] \subseteq\{0,1, \ldots, a\}^{2} \cap \Gamma\right\}$;
(b) (b1) $\mathrm{FS}\left(D_{i}\right) \subseteq \mathrm{FS}\left(D_{i-1}\right) \subseteq \mathrm{FS}(X)$;
(b2) D_{i} is very sparse;
(c) if $j_{i}=0$, then:
(c1) $k_{i}=-1$;
(c2) $F_{i}=\emptyset$;
(c3) $x_{i} \in \operatorname{FS}\left(D_{i-1}\right) \cap f^{-1}\left[\left(\omega \times\left\{n_{i}\right\}\right) \cap \Gamma\right]$;
(c4) $x_{i}+\mathrm{FS}\left(D_{i}\right) \subseteq f^{-1}\left[\left(\omega \times\left\{n_{i}\right\}\right) \cap \Gamma\right]$;
(d) if $j_{i}=1$, then:
(d1) $k_{i} \in\left\{0 \leq u<i: u \notin \bigcup_{q<i} F_{q}, j_{u}=0\right\}$;
(d2) $F_{i}=\left\{k_{i}, k_{i}+1, \ldots, i-1\right\}$;
(d3) (d3a) $x_{i} \in f^{-1}\left[\left\{\left(n_{i}, n_{k_{i}}\right)\right\}\right]$;
(d3b) $x_{i} \in x_{k_{i}}+\left(\{0\} \cup \mathrm{FS}\left(\left\{x_{r}: k_{i}<r<i, r \notin \bigcup_{q<i} F_{q}\right\}\right)\right)+\mathrm{FS}\left(D_{i-1}\right)$;
(d4) $x_{i}+\mathrm{FS}\left(D_{i}\right) \subseteq f^{-1}\left[\left\{\left(n_{i}, n_{k_{i}}\right)\right\}\right]$;
(e) if $x=\sum_{b \leq a} x_{t_{b}}$ for some $0 \leq t_{0}<\ldots<t_{a}<i, t_{b} \notin \bigcup_{q \leq i} F_{q}$ (so $x \in$ $\left.\operatorname{FS}\left(\left\{x_{t}: t<i, t \notin \bigcup_{q \leq i} F_{q}\right\}\right)\right)$, then:
(e1) $\left(x+x_{i}+\operatorname{FS}\left(D_{i}\right)\right) \cap f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]=\emptyset$;
(e2) $\left(x+\operatorname{FS}\left(D_{i}\right)\right) \cap f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]=\emptyset$;
(e3) $\left(x+x_{i}\right) \cap f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]=\emptyset$;
(f) $\operatorname{FS}\left(D_{i}\right) \cap\left\{y \in \operatorname{FS}\left(D_{t}\right): \alpha_{D_{t}}(y) \cap \alpha_{D_{t}}\left(x_{u}\right) \neq \emptyset\right\}=\emptyset$ for all $-1 \leq t<i$ and $0 \leq u \leq i$ such that $x_{u} \in \operatorname{FS}\left(D_{t}\right)$;
(g) (g1) $\mathrm{FS}\left(\left\{x_{t}: t \leq i, t \notin \bigcup_{q \leq i} F_{q}\right\}\right) \subseteq \mathrm{FS}(X)$;
(g2) $\sum_{b \leq a} x_{t_{b}} \in x_{t_{0}}+\mathrm{FS}\left(D_{t_{0}}\right)$ for every $a>0,0 \leq t_{0}<\ldots<t_{a} \leq i$, $t_{b} \notin \bigcup_{q \leq i} F_{q} ;$
At first step, since we are in Case 2, for $k=0$ and $D=X$ there are $n_{0}>k$ (note that (a) is satisfied) and $x_{0}^{\prime} \in \operatorname{FS}(X)$ such that: $\left(f^{-1}\left[\left(\omega \times\left\{n_{0}\right\}\right) \cap \Gamma\right] \cap\{y \in\right.$ $\left.\left.\mathrm{FS}(X): \alpha_{X}\left(x_{0}^{\prime}\right) \subseteq \alpha_{X}(y)\right\}\right)-x_{0}^{\prime} \notin \mathcal{H} \upharpoonright \operatorname{FS}(X)$. Hence, there is $D_{0}^{\prime} \in[\omega]^{\omega}$ such that: $x_{0}^{\prime}+\mathrm{FS}\left(D_{0}^{\prime}\right) \subseteq f^{-1}\left[\left(\omega \times\left\{n_{0}\right\}\right) \cap \Gamma\right] \cap\left\{y \in \mathrm{FS}(X): \alpha_{X}\left(x_{0}^{\prime}\right) \subseteq \alpha_{X}(y)\right\} \subseteq$ $\mathrm{FS}(X)$. Put $j_{0}=0, k_{0}=-1$ and $F_{0}=\emptyset$ (note that (c1) and (c2) are satisfied). Moreover, define $x_{0}=x_{0}^{\prime}+\min \left(D_{0}^{\prime}\right)$ (note that (c3) and (g1) are satisfied, because $x_{0} \in x_{0}^{\prime}+\mathrm{FS}\left(D_{0}^{\prime}\right) \subseteq \mathrm{FS}(X)$ and $\left.x_{0}^{\prime}+\mathrm{FS}\left(D_{0}^{\prime}\right) \subseteq f^{-1}\left[\left(\omega \times\left\{n_{0}\right\}\right) \cap \Gamma\right]\right)$ and using Lemma 2.3 find a very sparse $D_{0} \in[\omega]^{\omega}$ such that

$$
\operatorname{FS}\left(D_{0}\right) \subseteq \operatorname{FS}\left(D_{0}^{\prime} \backslash\left\{\min \left(D_{0}^{\prime}\right)\right\}\right) \backslash\left\{y \in \mathrm{FS}(X): \alpha_{X}(y) \cap \alpha_{X}\left(x_{0}\right) \neq \emptyset\right\}
$$

which is possible as $\left\{y \in \operatorname{FS}(X): \alpha_{X}(y) \cap \alpha_{X}\left(x_{0}\right) \neq \emptyset\right\} \in \mathcal{H} \upharpoonright \operatorname{FS}(X)$ by Lemma 7.1 (note that (c4), (f) and (b) are satisfied, because $x_{0}+\mathrm{FS}\left(D_{0}\right) \subseteq x_{0}^{\prime}+\mathrm{FS}\left(D_{0}^{\prime}\right) \subseteq$ $f^{-1}\left[\left(\omega \times\left\{n_{0}\right\}\right) \cap \Gamma\right]$ and $\operatorname{FS}\left(D_{0}\right) \subseteq \mathrm{FS}\left(D_{0}^{\prime}\right) \subseteq\left\{y \in \mathrm{FS}(X): \alpha_{X}\left(x_{0}^{\prime}\right) \subseteq \alpha_{X}(y)\right\}-$ $\left.x_{0}^{\prime} \subseteq \mathrm{FS}(X)\right)$. In conditions (e) and (g2) there is nothing to check. Thus, all the requirements are met.

At i th step, where $i>0$, since we are in Case 2, if $k=\max \left\{n_{i-1}, \min \{a \in \omega\right.$: $\left.\left.f\left[\operatorname{FS}\left(\left\{x_{j}: j<i\right\}\right)\right] \subseteq\{0,1, \ldots, a\}^{2} \cap \Gamma\right\}\right\}$ and $D=D_{i-1}$, then there are $n_{i}>k$ (so (a) is satisfied) and $x_{i}^{\prime} \in \operatorname{FS}\left(D_{i-1}\right)$ such that
$\left(f^{-1}\left[\left(\omega \times\left\{n_{i}\right\}\right) \cap \Gamma\right] \cap\left\{y \in \operatorname{FS}\left(D_{i-1}\right): \alpha_{D_{i-1}}\left(x_{i}^{\prime}\right) \subseteq \alpha_{D_{i-1}}(y)\right\}\right)-x_{i}^{\prime} \notin \mathcal{H} \upharpoonright \operatorname{FS}(X)$.
Hence, there is $D_{i}^{\prime} \in[\omega]^{\omega}$ such that: $x_{i}^{\prime}+\operatorname{FS}\left(D_{i}^{\prime}\right) \subseteq f^{-1}\left[\left(\omega \times\left\{n_{i}\right\}\right) \cap \Gamma\right] \cap\{y \in$ $\left.\operatorname{FS}\left(D_{i-1}\right): \alpha_{D_{i-1}}\left(x_{i}^{\prime}\right) \subseteq \alpha_{D_{i-1}}(y)\right\}$. In particular, $\operatorname{FS}\left(D_{i}^{\prime}\right) \subseteq\left\{y \in \operatorname{FS}\left(D_{i-1}\right):\right.$ $\left.\alpha_{D_{i-1}}\left(x_{i}^{\prime}\right) \subseteq \alpha_{D_{i-1}}(y)\right\}-x_{i}^{\prime}=\left\{y \in \operatorname{FS}\left(D_{i-1}\right): \alpha_{D_{i-1}}\left(x_{i}^{\prime}\right) \cap \alpha_{D_{i-1}}(y)=\emptyset\right\} \subseteq$ $\mathrm{FS}\left(D_{i-1}\right)$. There are two possibilities.

Assume first that there is $x=\sum_{b \leq a} x_{t_{b}}$ for some $t_{0}<\ldots<t_{a}<i, t_{b} \notin \bigcup_{q<i} F_{q}$ such that either $x+x_{i}^{\prime}+\mathrm{FS}\left(\bar{D}_{i}\right) \subseteq f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]$ or $x+\mathrm{FS}\left(\bar{D}_{i}\right) \subseteq f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]$ for some $\bar{D}_{i} \in[\omega]^{\omega}$ such that $\operatorname{FS}\left(\bar{D}_{i}\right) \subseteq \operatorname{FS}\left(D_{i}^{\prime}\right)$. Define $j_{i}=1$ and let k_{i} be minimal such that there is (one or more) x as above with $k_{i}=t_{0}$.

Notice that $k_{i} \in\left\{0 \leq u<i: u \notin \bigcup_{q<i} F_{q}\right\}$. We will show that $j_{k_{i}}=0$ (i.e., (d1) is satisfied). Suppose that $j_{k_{i}}=j_{t_{0}}=1$. Observe that $x_{i}^{\prime}+\operatorname{FS}\left(\bar{D}_{i}\right) \subseteq \operatorname{FS}\left(D_{i-1}\right)$ (by $\operatorname{FS}\left(\bar{D}_{i}\right) \cap\left\{y \in \operatorname{FS}\left(D_{i-1}\right): \alpha_{D_{i-1}}(y) \cap \alpha_{D_{i-1}}\left(x_{i}^{\prime}\right) \neq \emptyset\right\}=\emptyset$) and consequently $x_{i}^{\prime}+\operatorname{FS}\left(\bar{D}_{i}\right) \subseteq \operatorname{FS}\left(D_{t_{0}}\right)$ (by item (b1)). Then items (b1), (f) and (g2) give us:

- $x+x_{i}^{\prime}+\mathrm{FS}\left(\bar{D}_{i}\right) \subseteq x_{t_{0}}+\mathrm{FS}\left(D_{t_{0}}\right)$,
- $x+\operatorname{FS}\left(\bar{D}_{i}\right) \subseteq x_{t_{0}}+\operatorname{FS}\left(D_{t_{0}}\right)$.

Then from (d4) we have:

- $f\left[x+x_{i}^{\prime}+\mathrm{FS}\left(\bar{D}_{i}\right)\right] \subseteq\left\{\left(n_{t_{0}}, n_{k_{t_{0}}}\right)\right\}$,
- $f\left[x+\operatorname{FS}\left(\bar{D}_{i}\right)\right] \subseteq\left\{\left(n_{t_{0}}, n_{k_{t_{0}}}\right)\right\}$.

This contradicts $x+x_{i}^{\prime}+\mathrm{FS}\left(\bar{D}_{i}\right) \subseteq f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]$ or $x+\mathrm{FS}\left(\bar{D}_{i}\right) \subseteq f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]$, because $n_{t_{0}}<n_{i}$ (by $t_{0}<i$ and item (a1)).

Define $F_{i}=\left\{k_{i}, k_{i}+1, \ldots, i-1\right\}$ (so (d2) is satisfied) and $\bar{x}_{i}=x+x_{i}^{\prime}$ (or $\bar{x}_{i}=x$ if $\left.x+\operatorname{FS}\left(\bar{D}_{i}\right) \subseteq f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]\right)$.

To define D_{i} and x_{i}, note that by the choice of k_{i}, for each $y=\sum_{b \leq a} x_{t_{b}}$, $t_{0}<\ldots<t_{a}<i, t_{b} \notin \bigcup_{q \leq i} F_{q}$ (so in fact $t_{a}<k_{i}$) we know that $\left(y+\bar{x}_{i}+\mathrm{FS}(E)\right) \nsubseteq$ $f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]$ and $(y+\mathrm{FS}(E)) \nsubseteq f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]$ for every $E \in[\omega]^{\omega}$ such that $\mathrm{FS}(E) \subseteq \mathrm{FS}\left(D_{i}^{\prime}\right)$. In other words, $f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]-\left(y+\bar{x}_{i}\right) \in \mathcal{H} \upharpoonright \operatorname{FS}\left(D_{i}^{\prime}\right)$ and $f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]-y \in \mathcal{H} \upharpoonright \operatorname{FS}\left(D_{i}^{\prime}\right)$, for every such y. Thus, we can find $\tilde{D}_{i} \in[\omega]^{\omega}$ such that:

- $\operatorname{FS}\left(\tilde{D}_{i}\right) \subseteq \operatorname{FS}\left(\bar{D}_{i}\right) ;$
- $\left(y+\bar{x}_{i}+\operatorname{FS}\left(\tilde{D}_{i}\right)\right) \cap f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]=\emptyset$ and $\left(y+\operatorname{FS}\left(\tilde{D}_{i}\right)\right) \cap f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]=$ \emptyset for every $y=\sum_{b \leq a} x_{t_{b}}$, where $t_{0}<\ldots<t_{a}<i, t_{b} \notin \bigcup_{q \leq i} F_{q}$;
- $\operatorname{FS}\left(\tilde{D}_{i}\right) \cap\left\{y \in \operatorname{FS}\left(D_{i-1}\right): \alpha_{D_{i-1}}(y) \cap \alpha_{D_{i-1}}\left(x_{i}^{\prime}\right) \neq \emptyset\right\}=\emptyset ;$
(the last item is trivial, as $\operatorname{FS}\left(\tilde{D}_{i}\right) \subseteq \operatorname{FS}\left(\bar{D}_{i}\right) \subseteq \operatorname{FS}\left(D_{i}^{\prime}\right)$ and $\operatorname{FS}\left(D_{i}^{\prime}\right) \subseteq\{y \in$ $\left.\left.\operatorname{FS}\left(D_{i-1}\right): \alpha_{D_{i-1}}\left(x_{i}^{\prime}\right) \cap \alpha_{D_{i-1}}(y)=\emptyset\right\}\right)$.

Define $x_{i}=\bar{x}_{i}+\min \left(\tilde{D}_{i}\right)$ and let $D_{i} \in[\omega]^{\omega}$ be very sparse such that $\operatorname{FS}\left(D_{i}\right) \subseteq$ $\operatorname{FS}\left(\tilde{D}_{i} \backslash\left\{\min \left(\tilde{D}_{i}\right)\right\}\right)$ and D_{i} satisfies item (f). It is possible using Lemma 2.3, as $\left\{y \in \operatorname{FS}\left(D_{t}\right): \alpha_{D_{t}}(y) \cap \alpha_{D_{t}}\left(x_{u}\right) \neq \emptyset\right\} \in \mathcal{H} \upharpoonright \mathrm{FS}(X)$ by Lemma 7.1 and item (b2) for all $-1 \leq t<i$. Then (b2) is satisfied. Observe that other conditions are met:
(b1) $\mathrm{FS}\left(D_{i}\right) \subseteq \mathrm{FS}\left(\tilde{D}_{i}\right) \subseteq \mathrm{FS}\left(\bar{D}_{i}\right) \subseteq \mathrm{FS}\left(D_{\tilde{i}}^{\prime}\right) \subseteq \mathrm{FS}\left(D_{i-1}\right) \subseteq \mathrm{FS}(X)$;
(d3b) if $\bar{x}_{i}=x+x_{i}^{\prime}$, then $x_{i}=\bar{x}_{i}+\min \left(\tilde{D}_{i}\right)=x_{k_{i}}+\left(x-x_{k_{i}}\right)+x_{i}^{\prime}+\min \left(\tilde{D}_{i}\right) \in$ $x_{k_{i}}+\left(\{0\} \cup \operatorname{FS}\left(\left\{x_{r}: k_{i}<r<i, r \notin \bigcup_{q<i} F_{q}\right\}\right)\right)+\operatorname{FS}\left(D_{i-1}\right)$ by the fact that $\operatorname{FS}\left(\tilde{D}_{i}\right) \cap\left\{y \in \operatorname{FS}\left(D_{i-1}\right): \alpha_{D_{i-1}}(y) \cap \alpha_{D_{i-1}}\left(x_{i}^{\prime}\right) \neq \emptyset\right\}=\emptyset$ (if $\bar{x}_{i}=x$ this is even easier to show);
(d3a) if $\bar{x}_{i}=x+x_{i}^{\prime}$, then $x_{i} \in x+x_{i}^{\prime}+\operatorname{FS}\left(\bar{D}_{i}\right) \subseteq f^{-1}\left[\left\{\left(n_{i}, n_{k_{i}}\right)\right\}\right]$ (if $\bar{x}_{i}=x$ this is also true);
(d4) if $\bar{x}_{i}=x+x_{i}^{\prime}$, then $x_{i}+\mathrm{FS}\left(D_{i}\right) \subseteq x+x_{i}^{\prime}+\mathrm{FS}\left(\bar{D}_{i}\right) \subseteq f^{-1}\left[\left\{\left(n_{i}, n_{k_{i}}\right)\right\}\right]$ (if $\bar{x}_{i}=x$ this is also true);
(e) for (e3), if $y=\sum_{b \leq a} x_{t_{b}}, t_{0}<\ldots<t_{a}<i, t_{b} \notin \bigcup_{q \leq i} F_{q}$, then note that $y+x_{i}=y+\bar{x}_{i}+\min \left(\tilde{D}_{i}\right) \in y+\bar{x}_{i}+\operatorname{FS}\left(\tilde{D}_{i}\right)$ and recall that $\left(y+\bar{x}_{i}+\right.$ $\left.\operatorname{FS}\left(\tilde{D}_{i}\right)\right) \cap f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]=\emptyset$, thus $y+x_{i} \notin f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]((\mathrm{e} 1)$ and (e2) are similar);
(g1) $\mathrm{FS}\left(\left\{x_{t}: t \leq i, t \notin \bigcup_{q \leq i} F_{q}\right\}\right) \subseteq \mathrm{FS}\left(\left\{x_{t}: t<i, t \notin \bigcup_{q<i} F_{q}\right\}\right) \cup\left(x_{i}+\mathrm{FS}\left(\left\{x_{t}:\right.\right.\right.$ $\left.\left.t<i, t \notin \bigcup_{q<i} F_{q}\right\}\right) \subseteq \mathrm{FS}(X)$ by items (f) and (g1) applied to $i-1$ and item (d3b) applied to i;
(g2) if $a>0, t_{0}<\ldots<t_{a} \leq i, t_{b} \notin \bigcup_{q \leq i} F_{q}$ then either $t_{a}<i$ and $\sum_{b \leq a} x_{t_{b}} \in$ $x_{t_{0}}+\mathrm{FS}\left(D_{t_{0}}\right.$) (by (g2) applied to $i-1$) or $t_{a}=i$ and $\sum_{b \leq a} x_{t_{b}}=\sum_{b<a} x_{t_{b}}+$ $x_{i} \in x_{t_{0}}+\left(\{0\} \cup \mathrm{FS}\left(\left\{x_{r}: t_{0}<r<k_{i}, r \notin \bigcup_{q<i} F_{q}\right\}\right)\right)+\bar{x}_{k_{i}}+\left(\{0\} \cup \mathrm{FS}\left(\left\{x_{r}:\right.\right.\right.$ $\left.\left.\left.k_{i}<r<i, r \notin \bigcup_{q<i} F_{q}\right\}\right)\right)+\mathrm{FS}\left(D_{i-1}\right) \subseteq x_{t_{0}}+\mathrm{FS}\left(D_{t_{0}}\right)$ by items (b1), (d3b), (f) and (g2) for $i-1$.

Hence, all the requirements are met. This finishes the case of $j_{i}=1$.
Assume now that for all $x=\sum_{b \leq a} x_{t_{b}}, t_{0}<\ldots<t_{a}<i, t_{b} \notin \bigcup_{q<i} F_{q}$ we have $x+x_{i}^{\prime}+\mathrm{FS}(E) \nsubseteq f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]$ and $x+\mathrm{FS}(E) \nsubseteq f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]$ for all $E \in[\omega]^{\omega}$ such that $\mathrm{FS}(E) \subseteq \mathrm{FS}\left(D_{i}^{\prime}\right)$. Put $j_{i}=0, k_{i}=-1$ and $F_{i}=\emptyset$ (note that (c1) and (c2) are satisfied).

Similarly as above (in the construction of \tilde{D}_{i}), we can find $\tilde{D}_{i} \in[\omega]^{\omega}$ such that:

- $\operatorname{FS}\left(\tilde{D}_{i}\right) \subseteq \operatorname{FS}\left(D_{i}^{\prime}\right)$;
- $\left(x+x_{i}^{\prime}+\operatorname{FS}\left(\tilde{D}_{i}\right)\right) \cap f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]=\emptyset$ and $\left(x+\mathrm{FS}\left(\tilde{D}_{i}\right)\right) \cap f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]=$ \emptyset for every $x=\sum_{b \leq a} x_{t_{b}}, t_{0}<\ldots<t_{a}<i, t_{b} \notin \bigcup_{q \leq i} F_{q}$;
- $\operatorname{FS}\left(\tilde{D}_{i}\right) \cap\left\{y \in \operatorname{FS}\left(D_{i-1}\right): \alpha_{D_{i-1}}(y) \cap \alpha_{D_{i-1}}\left(x_{i}^{\prime}\right) \neq \emptyset\right\}=\emptyset$.

Define $x_{i}=x_{i}^{\prime}+\min \left(\tilde{D}_{i}\right)$ and let $D_{i} \in[\omega]^{\omega}$ be very sparse such that $\operatorname{FS}\left(D_{i}\right) \subseteq$ $\operatorname{FS}\left(\tilde{D}_{i} \backslash\left\{\min \left(\tilde{D}_{i}\right)\right\}\right)$ and D_{i} satisfies item (f) (which is possible by Lemmas 2.3 and 7.1 and (b2) applied to all $-1 \leq t<i$). Note that (b2) is satisfied. Observe that other conditions are met:
(b1) $\mathrm{FS}\left(D_{i}\right) \subseteq \mathrm{FS}\left(\tilde{D}_{i}\right) \subseteq \mathrm{FS}\left(D_{i}^{\prime}\right) \subseteq \mathrm{FS}\left(D_{i-1}\right) \subseteq \mathrm{FS}(X)$;
(c3) $x_{i} \in \operatorname{FS}\left(D_{i-1}\right)$ as $\operatorname{FS}\left(\tilde{D}_{i}\right) \cap\left\{y \in \operatorname{FS}\left(D_{i-1}\right): \alpha_{D_{i-1}}(y) \cap \alpha_{D_{i-1}}\left(x_{i}^{\prime}\right) \neq \emptyset\right\}=\emptyset$, $x_{i} \in x_{i}^{\prime}+\mathrm{FS}\left(D_{i}^{\prime}\right) \subseteq f^{-1}\left[\left(\omega \times\left\{n_{i}\right\}\right) \cap \Gamma\right] ;$
(c4) $x_{i}+\mathrm{FS}\left(D_{i}\right) \subseteq x_{i}^{\prime}+\mathrm{FS}\left(D_{i}^{\prime}\right) \subseteq f^{-1}\left[\left(\omega \times\left\{n_{i}\right\}\right) \cap \Gamma\right]$;
(e) for (e3), if $x=\sum_{b \leq a} x_{t_{b}}, t_{0}<\ldots<t_{a}<i, t_{b} \notin \bigcup_{q \leq i} F_{q}$, then note that $x+x_{i}=x+x_{i}^{\prime}+\min \left(\tilde{D}_{i}\right) \in x+x_{i}^{\prime}+\operatorname{FS}\left(\tilde{D}_{i}\right)$ and recall that $\left(x+x_{i}^{\prime}+\right.$ $\left.\operatorname{FS}\left(\tilde{D}_{i}\right)\right) \cap f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]=\emptyset$, thus $x+x_{i} \notin f^{-1}\left[\left\{\left(n_{i}, n_{t_{0}}\right)\right\}\right]((\mathrm{e} 1)$ and (e2) are similar);
(g1) by items (f) and (g1) applied to $i-1$ and item (c3) applied to $i, \operatorname{FS}\left(\left\{x_{t}\right.\right.$: $\left.\left.t \leq i, t \notin \bigcup_{q \leq i} F_{q}\right\}\right)=\mathrm{FS}\left(\left\{x_{t}: t<i, t \notin \bigcup_{q<i} F_{q}\right\}\right) \cup\left(x_{i}+\operatorname{FS}\left(\left\{x_{t}: t<\right.\right.\right.$ $\left.\left.\left.i, t \notin \bigcup_{q<i} F_{q}\right\}\right)\right) \subseteq \mathrm{FS}(X) ;$
(g2) if $a>0, t_{0}<\ldots<t_{a} \leq i$ and $t_{b} \notin \bigcup_{q \leq i} F_{q}$, then either $t_{a}<i$ and $\sum_{b \leq a} x_{t_{b}} \in x_{t_{0}}+\operatorname{FS}\left(D_{t_{0}}\right)$ (by item (g2) applied to $i-1$) or $t_{a}=i$ and $\sum_{b \leq a} x_{t_{b}} \in x_{t_{0}}+\mathrm{FS}\left(D_{t_{0}}\right)$ as $\sum_{b<a} x_{t_{b}} \in x_{t_{0}}+\mathrm{FS}\left(D_{t_{0}}\right)$ and $x_{i} \in \mathrm{FS}\left(D_{i-1}\right) \subseteq$ $\operatorname{FS}\left(D_{t_{0}}\right) \backslash\left\{y \in \operatorname{FS}\left(D_{t_{0}}\right): \exists_{j<i} \alpha_{D_{t_{0}}}(y) \cap \alpha_{D_{t_{0}}}\left(x_{j}\right) \neq \emptyset\right\}$ by item (c3) for i and items (b1), (f) and (g2) for $i-1$.
Hence, all the requirements are met. This finishes the case of $j_{i}=0$.
Note that $x_{i} \neq x_{j}$ for $i \neq j$ (it follows from items (a2), (c3) and (d3a)). Once the whole recursive construction is completed, define $A=\left\{x_{i}: i \notin \bigcup_{q \in \omega} F_{q}\right\}$. We need to show two facts:
(i) A is infinite;
(ii) $f[\mathrm{FS}(A)] \in \mathcal{R}$.

Note that this will finish the proof as item (i) together with $\operatorname{FS}(A) \subseteq \operatorname{FS}(X)$ (by item (g1)) guarantee that $\mathrm{FS}(A) \notin \mathcal{H} \upharpoonright \mathrm{FS}(X)$.
(i): Since $x_{i} \neq x_{j}$ for $i \neq j$, we only need to show that there are infinitely many $t \in \omega$ such that $x_{t} \in A$. Assume to the contrary that there is $p \in \omega$ such that $x_{t} \notin A$ for all $t \geq p$. Without loss of generality we may assume that p is minimal with that property. Since $x_{p} \notin A$, we have that $p \in \bigcup_{q \in \omega} F_{q}$, hence there is q such that $p \in F_{q}$. By items (c2) and (d2), we know that $j_{q}=1, q>p$ and, by minimality of $p, F_{q}=\{p, p+1, \ldots q-1\}$. Again, as $x_{q} \notin A$ (because $q>p$), there
should be r such that $q \in F_{r}=\left\{k_{r}, k_{r}+1, \ldots, r-1\right\}$ (so $k_{r} \leq q<r$) and $k_{r} \geq p$ (by minimality of p). However, this is impossible as item (d1) gives us:

$$
\begin{gathered}
k_{r} \in\left\{u<r: u \notin \bigcup_{w<r} F_{w}, j_{u}=0\right\} \cap\{0,1, \ldots, q\} \subseteq \\
\subseteq\left\{u \leq q: u \notin F_{q}\right\} \cap\left\{u \leq q: j_{u}=0\right\}= \\
=(\{0,1, \ldots, p-1\} \cup\{q\}) \cap\left\{u \leq q: j_{u}=0\right\} \subseteq\{0,1, \ldots, p-1\}
\end{gathered}
$$

(here, if $p=0$ then $\{0,1, \ldots, p-1\}=\emptyset$).
(ii): We have:

$$
\begin{aligned}
\mathrm{FS}(A)= & \bigcup_{i \in B}\left(\left\{x_{i}\right\} \cup\left(x_{i}+\operatorname{FS}\left(A \backslash\left\{0,1, \ldots, x_{i}\right\}\right)\right)\right) \\
& \cup \bigcup_{i \in C}\left(\left\{x_{i}\right\} \cup\left(x_{i}+\operatorname{FS}\left(A \backslash\left\{0,1, \ldots, x_{i}\right\}\right)\right)\right)
\end{aligned}
$$

where $B=\left\{i \in \omega: i \notin \bigcup_{q \in \omega} F_{q}, j_{i}=0\right\}$ and $C=\left\{i \in \omega: i \notin \bigcup_{q \in \omega} F_{q}, j_{i}=1\right\}$.
At first we will show that $f\left[\bigcup_{i \in C}\left(\left\{x_{i}\right\} \cup\left(x_{i}+\operatorname{FS}\left(A \backslash\left\{0,1, \ldots, x_{i}\right\}\right)\right)\right)\right] \in \mathcal{R}$. Note that $f\left(x_{i}\right)=\left(n_{i}, n_{k_{i}}\right)$ (by item (d3a)) and $f\left[x_{i}+\operatorname{FS}\left(A \backslash\left\{0,1, \ldots, x_{i}\right\}\right)\right] \subseteq$ $f\left[x_{i}+\operatorname{FS}\left(D_{i}\right)\right]=\left\{\left(n_{i}, n_{k_{i}}\right)\right\}$ for each $i \in C$ (by items (d4) and (g2)). Moreover, the sequence $\left(n_{i}\right)_{i \in \omega}$ is injective (by item (a1)). Hence, $f\left[\bigcup_{i \in C}\left(\left\{x_{i}\right\} \cup\left(x_{i}+\mathrm{FS}(A \backslash\right.\right.\right.$ $\left.\left.\left.\left.\left\{0,1, \ldots, x_{i}\right\}\right)\right)\right)\right] \in \mathcal{R}$, as any set intersecting each $(\{n\} \times \omega) \cap \Gamma$ on at most one point belongs to \mathcal{R}.

Now we will show that $f\left[\bigcup_{i \in B}\left(\left\{x_{i}\right\} \cup\left(x_{i}+\mathrm{FS}\left(A \backslash\left\{0,1, \ldots, x_{i}\right\}\right)\right)\right)\right] \in \mathcal{R}$. By items (c3), (c4) and (g2), $f\left[\left\{x_{i}\right\} \cup\left(x_{i}+\mathrm{FS}\left(A \backslash\left\{0,1, \ldots, x_{i}\right\}\right)\right)\right] \subseteq f\left[\left\{x_{i}\right\} \cup\left(x_{i}+\mathrm{FS}\left(D_{i}\right)\right)\right] \subseteq$ $\left(\omega \times\left\{n_{i}\right\}\right) \cap \Gamma$ for all $i \in B$. Note that $\bigcup_{i \in B} f\left[\left\{x_{i}\right\}\right] \in \mathcal{R}$ (from (a1), as each set intersecting each $(\omega \times\{n\}) \cap \Gamma$ on at most one point belongs to $\mathcal{R})$. Suppose that $Z^{2} \cap \Gamma \subseteq \bigcup_{i \in B} f\left[x_{i}+\mathrm{FS}\left(A \backslash\left\{0,1, \ldots, x_{i}\right\}\right)\right]$ for some $Z \in[\omega]^{\omega}$.

Firstly, we will show that $\left|Z \backslash\left\{n_{i}: i \in B\right\}\right| \leq 1$. Suppose that there are $z, w \in Z \backslash\left\{n_{i}: i \in B\right\}$ such that $z>w$. Then there is $i \in B$ such that $(z, w) \in$ $f\left[x_{i}+\mathrm{FS}\left(A \backslash\left\{0,1, \ldots, x_{i}\right\}\right)\right]$, hence $x_{i}+\mathrm{FS}\left(A \backslash\left\{0,1, \ldots, x_{i}\right\}\right) \subseteq f^{-1}[\{(z, w)\}]$. But by (c4) and (g2) we have $x_{i}+\mathrm{FS}\left(A \backslash\left\{0,1, \ldots, x_{i}\right\}\right) \subseteq x_{i}+\mathrm{FS}\left(D_{i}\right) \subseteq f^{-1}\left[\left(\omega \times\left\{n_{i}\right\}\right) \cap \Gamma\right]$. So $(z, w) \in\left(\omega \times\left\{n_{i}\right\}\right) \cap \Gamma$, i.e., $w=n_{i}$. A contradiction.

By the previous paragraph, since Z is infinite, there are $i, j \in B$ such that $j<i$ and $n_{i}, n_{j} \in Z$. We will show that $\left(n_{i}, n_{j}\right) \notin \bigcup_{k \in B} f\left[x_{k}+\mathrm{FS}\left(A \backslash\left\{0,1, \ldots, x_{k}\right\}\right)\right]$. This will contradict $Z^{2} \cap \Gamma \subseteq \bigcup_{k \in B} f\left[x_{k}+\mathrm{FS}\left(A \backslash\left\{0,1, \ldots, x_{k}\right\}\right)\right]$ and finish the proof.

Suppose that $\left(n_{i}, n_{j}\right) \in \bigcup_{k \in B} f\left[x_{k}+\mathrm{FS}\left(A \backslash\left\{0,1, \ldots, x_{k}\right\}\right)\right]$. From (c4) and (g2), for every $k \neq j, k \in B$ we have $f\left[x_{k}+\operatorname{FS}\left(A \backslash\left\{0,1, \ldots, x_{k}\right\}\right)\right] \subseteq f\left[x_{k}+\right.$ $\left.\mathrm{FS}\left(D_{k}\right)\right] \subseteq\left(\omega \times\left\{n_{k}\right\}\right) \cap \Gamma$, so $\left(n_{i}, n_{j}\right) \notin f\left[x_{k}+\mathrm{FS}\left(A \backslash\left\{0,1, \ldots, x_{k}\right\}\right)\right]$. Hence, $\left(n_{i}, n_{j}\right) \in f\left[x_{j}+\mathrm{FS}\left(A \backslash\left\{0,1, \ldots, x_{j}\right\}\right)\right]$. Let $y \in x_{j}+\mathrm{FS}\left(A \backslash\left\{0,1, \ldots, x_{j}\right\}\right)$ be such that $f(y)=\left(n_{i}, n_{j}\right)$. Then $y=x_{j}+x_{s_{0}}+\ldots+x_{s_{p}}$ for some $j<s_{0}<\ldots<s_{p}$. We have five cases:

- If $s_{p}<i$, then from item (a2) we have $f(y) \in\left[\left\{0, \ldots, n_{i}-1\right\}\right]^{2}$. A contradiction.
- If $s_{p}=i$, then $y=\left(x_{j}+\ldots+x_{s_{p-1}}\right)+x_{i}$ and from item (e3) (applied to $\left.x=\left(x_{j}+\ldots+x_{s_{p-1}}\right)\right)$ we get $f(y) \neq\left(n_{i}, n_{j}\right)$, a contradiction.
- If there exists $k<p$ such that $s_{k}=i$, then $y=\left(x_{j}+\ldots+x_{s_{k-1}}\right)+x_{i}+$ $\left(x_{s_{k+1}}+\ldots+x_{s_{p}}\right) \in\left(x_{j}+\ldots+x_{s_{k-1}}\right)+x_{i}+\mathrm{FS}\left(D_{i}\right)$ by item (g2) and from item (e1) (applied to $x=\left(x_{j}+\ldots+x_{s_{k-1}}\right)$) we get a contradiction.
- If there exists $k \leq p$ such that $s_{k-1}<i<s_{k}$, then $y=\left(x_{j}+\ldots+x_{s_{k-1}}\right)+$ $\left(x_{s_{k}}+\ldots+x_{s_{p}}\right) \in\left(x_{j}+\ldots+x_{s_{k-1}}\right)+\mathrm{FS}\left(D_{i}\right)$ by item (g2) and from item (e2) we get a contradiction.
- If $i<s_{0}$, then $y=x_{j}+\left(x_{s_{0}}+\ldots+x_{s_{p}}\right) \in x_{j}+\operatorname{FS}\left(D_{i}\right)$ by item (g2) and from item (e2) we get a contradiction.
Thus, $f[\operatorname{FS}(A)] \in \mathcal{R}$ and the proof is finished.

References

1. Paweł Barbarski, Rafał Filipów, Nikodem Mrożek, and Piotr Szuca, When does the Katětov order imply that one ideal extends the other?, Colloq. Math. 130 (2013), no. 1, 91-102. MR 3034318
2. James E. Baumgartner, Ultrafilters on ω, J. Symbolic Logic 60 (1995), no. 2, 624-639. MR 1335140
3. Vitaly Bergelson and Rigoberto Zelada, Strongly mixing systems are almost strongly mixing of all orders, https://doi.org/10.48550/arXiv. 2010.06146 (2021), 1-39.
4. Mikołaj Bojańczyk, Eryk Kopczyński, and Szymon Toruńczyk, Ramsey's theorem for colors from a metric space, Semigroup Forum 85 (2012), no. 1, 182-184. MR 2948679
5. Jörg Brendle and Jana Flašková, Generic existence of ultrafilters on the natural numbers, Fund. Math. 236 (2017), no. 3, 201-245. MR 3600759
6. J. Cancino-Manríquez, Every maximal ideal may be Katětov above of all F_{σ} ideals, Trans. Amer. Math. Soc. 375 (2022), no. 3, 1861-1881. MR 4378082
7. Pratulananda Das, Rafał Filipów, Szymon Głạb, and Jacek Tryba, On the structure of Borel ideals in-between the ideals $\mathcal{E D}$ and $\mathrm{Fin} \otimes \mathrm{Fin}$ in the Katětov order, Ann. Pure Appl. Logic 172 (2021), no. 8, Paper No. 102976, 17. MR 4247792
8. Gabriel Debs and Jean Saint Raymond, Filter descriptive classes of Borel functions, Fund. Math. 204 (2009), no. 3, 189-213. MR 2520152
9. P. Erdős and R. Rado, A combinatorial theorem, J. London Math. Soc. 25 (1950), 249-255. MR 37886
10. Rafał Filipów, Krzysztof Kowitz, and Adam Kwela, Characterizing existence of certain ultrafilters, Ann. Pure Appl. Logic 173 (2022), no. 9, Paper No. 103157, 31. MR 4448270
11. \qquad , A unified approach to Hindman, Ramsey and van der Waerden spaces, Manuscript available at https://arxiv.org (2023), 1-48.
12. Rafał Filipów, Krzysztof Kowitz, Adam Kwela, and Jacek Tryba, New Hindman spaces, Proc. Amer. Math. Soc. 150 (2022), no. 2, 891-902. MR 4356195
13. Rafał Filipów, Adam Kwela, and Jacek Tryba, The ideal test for the divergence of a series, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 117 (2023), no. 3, Paper No. 98, 25. MR 4572258
14. Jana Flašková, Ideals and sequentially compact spaces, Topology Proc. 33 (2009), 107-121. MR 2471564
15. Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer, Ramsey theory, second ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley \& Sons, Inc., New York, 1990, A Wiley-Interscience Publication. MR 1044995
16. Jan Grebík and Michael Hrušák, No minimal tall Borel ideal in the Katětov order, Fund. Math. 248 (2020), no. 2, 135-145. MR 4036731
17. Osvaldo Guzmán-González and David Meza-Alcántara, Some structural aspects of the Katětov order on Borel ideals, Order 33 (2016), no. 2, 189-194. MR 3513296
18. M. Hrušák, D. Meza-Alcántara, E. Thümmel, and C. Uzcátegui, Ramsey type properties of ideals, Ann. Pure Appl. Logic 168 (2017), no. 11, 2022-2049. MR 3692233
19. Michael Hrušák, Combinatorics of filters and ideals, Set theory and its applications, Contemp. Math., vol. 533, Amer. Math. Soc., Providence, RI, 2011, pp. 29-69. MR 2777744
20. _ Katětov order on Borel ideals, Arch. Math. Logic 56 (2017), no. 7-8, 831-847. MR 3696069
21. Michael Hrušák and Salvador García Ferreira, Ordering MAD families a la Katétov, J. Symbolic Logic 68 (2003), no. 4, 1337-1353. MR 2017358
22. Michael Hrušák and David Meza-Alcántara, Katětov order, Fubini property and Hausdorff ultrafilters, Rend. Istit. Mat. Univ. Trieste 44 (2012), 503-511. MR 3019575
23. M. Katětov, On descriptive classification of functions., General topology and its relations to modern analysis and algebra, III (Proc. Third Prague Topological Sympos., 1971), Academia [Publishing House of the Czechoslovak Academy of Sciences], Prague; Academic Press, New York-London, 1972, pp. 235-242. MR 355956
24. Miroslav Katětov, Products of filters, Comment. Math. Univ. Carolinae 9 (1968), 173-189. MR 250257
25. Menachem Kojman, Hindman spaces, Proc. Amer. Math. Soc. 130 (2002), no. 6, 1597-1602. MR 1887003
26. \qquad , van der Waerden spaces, Proc. Amer. Math. Soc. 130 (2002), no. 3, 631-635. MR 1866012
27. Menachem Kojman and Saharon Shelah, van der Waerden spaces and Hindman spaces are not the same, Proc. Amer. Math. Soc. 131 (2003), no. 5, 1619-1622. MR 1950294
28. Wiesław Kubiś and Paul Szeptycki, On a topological Ramsey theorem, Canad. Math. Bull. 66 (2023), no. 1, 156-165. MR 4552506
29. A. Kwela and J. Tryba, Homogeneous ideals on countable sets, Acta Math. Hungar. 151 (2017), no. 1, 139-161. MR 3594409
30. Adam Kwela, Unboring ideals, Fund. Math. 261 (2023), no. 3, 235-272. MR 4584767
31. A. R. D. Mathias, Solution of problems of Choquet and Puritz, Conference in Mathematical Logic-London ' 70 (Proc. Conf., Bedford Coll., London, 1970), Lecture Notes in Math., Vol. 255, Springer, Berlin, 1972, pp. 204-210. MR 0363911
32. - Happy families, Ann. Math. Logic 12 (1977), no. 1, 59-111. MR 491197
33. Krzysztof Mazur, F_{σ}-ideals and $\omega_{1} \omega_{1}^{*}$-gaps in the Boolean algebras $P(\omega) / I$, Fund. Math. 138 (1991), no. 2, 103-111. MR 1124539
34. D. Meza-Alcántara, Ideals and filters on countable set, Ph.D. thesis, Universidad Nacional Autónoma de México, 2009, (https://ru.dgb.unam.mx/handle/DGB_UNAM/TESO1000645364).
35. Hiroaki Minami and Hiroshi Sakai, Katětov and Katětov-Blass orders on F_{σ}-ideals, Arch. Math. Logic 55 (2016), no. 7-8, 883-898. MR 3555332
36. Nikodem Mrożek, Some applications of the Katětov order on Borel ideals, Bull. Pol. Acad. Sci. Math. 64 (2016), no. 1, 21-28. MR 3550610
37. Hiroshi Sakai, On Katětov and Katětov-Blass orders on analytic P-ideals and Borel ideals, Arch. Math. Logic 57 (2018), no. 3-4, 317-327. MR 3778962
38. Alan D. Taylor, A canonical partition relation for finite subsets of ω, J. Combinatorial Theory Ser. A 21 (1976), no. 2, 137-146. MR 424571
39. Hang Zhang and Shuguo Zhang, Some applications of the theory of Katětov order to ideal convergence, Topology Appl. 301 (2021), Paper No. 107545, 9. MR 4312995
(Rafał Filipów) Institute of Mathematics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, ul. Wita Stwosza 57, 80-308 Gdańsk, Poland Email address: Rafal.Filipow@ug.edu.pl URL: http://mat.ug.edu.pl/~rfilipow
(Krzysztof Kowitz) Institute of Mathematics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, ul. Wita Stwosza 57, 80-308 Gdańsk, Poland Email address: Krzysztof.Kowitz@phdstud.ug.edu.pl
(Adam Kwela) Institute of Mathematics, Faculty of Mathematics, Physics and Infor-
matics, University of Gdańsk, ul. Wita Stwosza 57, 80-308 Gdańsk, Poland
Email address: Adam.Kwela@ug.edu.pl
URL: https://mat.ug.edu.pl/~akwela

[^0]: Date: August 18, 2023.
 2020 Mathematics Subject Classification. Primary: 03E05, 05D10.
 Key words and phrases. Katetov order, ideal, filter, Ramsey's theorem for coloring graphs, Hindman's finite sums theorem, van der Waerden's arithmetical progressions theorem.

