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Abstract. We examine topological spaces not distinguishing ideal pointwise

and ideal σ-uniform convergence of sequences of real-valued continuous func-
tions defined on them. For instance, we introduce a purely combinatorial

cardinal characteristic (a sort of the bounding number b) and prove that it

describes the minimal cardinality of topological spaces which distinguish ideal
pointwise and ideal σ-uniform convergence. Moreover, we provide examples of

topological spaces (focusing on subsets of reals) that do or do not distinguish

the considered convergences. Since similar investigations for ideal quasi-normal
convergence instead of ideal σ-uniform convergence have been performed in lit-

erature, we also study spaces not distinguishing ideal quasi-normal and ideal

σ-uniform convergence of sequences of real-valued continuous functions defined
on them.
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1. Introduction

A topological space X is a QN-space if it does not distinguish pointwise and
quasi-normal convergence of sequences of real-valued continuous functions defined
on X (for the definition of quasi-normal convergence and definitions of other notions
used in Introduction see Section 2). QN-spaces were introduced by Bukovský,
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Rec law and Repický [7] and were thoroughly examined in the following years [3, 4,
6, 7, 8, 29, 30, 33, 36].

A notion of convergence (such as pointwise or quasi-normal convergence of se-
quences of functions) often can be generalized using ideals on the set of natural
numbers. For instance, the ordinary convergence of sequences of reals generalized
with the aid of the ideal of sets of asymptotic density zero is known as the statistical
convergence [16, 20, 35].

It is known [13, Theorem 5.1] (see also [2, Theorem 1.2]) that quasi-normal
convergence is equivalent to σ-uniform convergence. Thus, QN-spaces are in fact
topological spaces not distinguishing pointwise and σ-uniform convergence of se-
quences of real-valued continuous functions defined on them.

The research on ideal analogues of QN-spaces, initiated by Das and Chandra [14]
and continued by others [5, 27, 31, 32, 38, 39], has concentrated only on spaces not
distinguishing ideal pointwise and ideal quasi-normal convergence of sequences of
continuous functions so far. However, it is known [34] that ideal quasi-normal and
ideal σ-uniform convergence are not the same for a large class of ideals. What is
more, σ-uniform convergence seems to be better known than quasi-normal conver-
gence and ideal analogue of σ-uniform convergence seems more natural than ideal
analogue of quasi-normal convergence (the latter was even initially introduced in
two different ways [14, 19]).

It seems that the research on ideal QN-spaces would be incomplete without
studying spaces not distinguish ideal pointwise and ideal σ-uniform convergence of
sequences of real-valued continuous functions defined on them. Our paper is an
attempt to fill this gap, and it is organized in the following way.

In Section 3, we show (Corollary 3.5) that every infinite space distinguishes be-
tween ideal uniform convergence and the other considered convergences (i.e. point-
wise, σ-uniform and quasi-normal). Moreover, we show (Corollary 3.6) that a space
does not distinguish ideal pointwise and σ-uniform convergence if and only if it si-
multaneously does not distinguish ideal pointwise and quasi-normal convergence
and does not distinguish ideal quasi-normal and σ-uniform convergence.

In Section 4, we prove the main result of the paper (Corollary 4.6) which provides
a purely combinatorial characterization of the minimal cardinality of a topological
space which distinguishes ideal pointwise and ideal σ-uniform convergence of se-
quences of continuous functions.

In Section 5, we examine various properties of combinatorial cardinal character-
istics introduced in the preceding section (some of these properties are used in the
following sections).

In Section 6, we show (Corollary 6.5) that the property of “not distinguishing
ideal pointwise and σ-uniform convergence of continuous functions” is of the topo-
logical nature rather than set-theoretic. We also provide (Theorem 6.6) under CH
an example of an uncountable subspace of the reals revealing the above phenome-
non.

In Section 7, we show (Theorem 7.3) that combinatorial cardinal characteristics
introduced in the preceding section can be described in a uniform manner as the
bounding numbers of binary relations. These descriptions are crucial for the results
obtain in the following section.

In Section 8, we construct (Theorem 8.2) a subset of the reals of the minimal
size which distinguish the ideal pointwise convergence and σ-uniform convergence.
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Finally in Section 9, we show (Proposition 9.1) that consistently there exists a
space which does not distinguish ordinary pointwise convergence and ordinary σ-
uniform convergence but it does distinguish statistical pointwise convergence and
statistical σ-uniform convergence.

2. Preliminaries

By ω we denote the set of all natural numbers. We identify a natural number n
with the set {0, 1, . . . , n− 1}. We write A ⊆∗ B if A \B is finite. For a set A and
a cardinal number κ, we write [A]κ = {B ⊆ A : |B| = κ}, where |B| denotes the
cardinality of B.

If A and B are two sets then by AB we denote the family of all functions f :
B → A. If f ∈ AB and C ⊆ B then f ↾ C : C → A is the restriction of f to C.
In the case B = ω, an element of Aω will sometimes be denoted (an) – by this we
mean f : ω → A given by f(n) = an for all n.

For A ⊆ X, we write 1A(n) to denote the characteristic function of A i.e. 1A(x) =
1 for x ∈ A and 1A(x) = 0 for x ∈ X \A.

By ω, ω1 and c we denote the first infinite cardinal, the first uncountable cardinal
and the cardinality of R, respectively. By cf(κ) we denote the cofinality of a cardinal
κ.

2.1. Ideals. An ideal on a set X is a family I ⊆ P(X) that satisfies the following
properties:

(1) if A,B ∈ I then A ∪B ∈ I,
(2) if A ⊆ B and B ∈ I then A ∈ I,
(3) I contains all finite subsets of X,
(4) X /∈ I.

An ideal I on X is tall if for every infinite A ⊆ X there is an infinite B ∈ I such
that B ⊂ A. An ideal I on X is a P-ideal if for any countable family A ⊆ I there
is B ∈ I such that A \ B is finite for every A ∈ A. An ideal I on X is countably
generated if there is a countable family B ⊆ I such that for every A ∈ I there is
B ∈ B with A ⊆ B.

The vertical section of a set A ⊆ X × Y at a point x ∈ X is defined by (A)x =
{y ∈ Y : (x, y) ∈ A}.

For ideals I,J on X and Y , respectively, we define the following new ideals:

(1) I ⊗ J = {A ⊆ X × Y : {x ∈ X : (A)x /∈ J } ∈ I},
(2) I ⊗ {∅} = {A ⊆ X × ω : {x ∈ X : (A)x ̸= ∅} ∈ I}.
(3) {∅} ⊗ J = {A ⊆ ω × Y : (A)x ∈ J for all x ∈ X}.

The following specific ideals will be considered in the paper (see e.g. [23] for these
and many more examples).

Example 2.1.

• Fin = {A ⊆ ω : |A| < ω} is the ideal of all finite subsets of ω. It is a
non-tall P-ideal.
• Fin⊗ {∅} is an ideal that is not tall and not a P-ideal.
• {∅} ⊗ Fin is a non-tall P-ideal.
• Fin⊗ Fin is a tall non-P-ideal.
• I1/n = {A ⊆ ω :

∑
n∈A

1
n+1 < +∞} is a tall P-ideal called the summable

ideal.
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• Id = {A ⊆ ω : limn→∞
|A∩n|
n+1 = 0} is a tall P-ideal called the ideal of sets

of asymptotic density zero.
• Let Ω be the set of all clopen subsets of the Cantor space 2ω having Lebesgue

measure 1/2 (note that Ω is countable). Then the Solecki’s ideal, denoted
by S, is the collection of all subsets of Ω that can be covered by finitely
many sets of the form Gx = {A ∈ Ω : x ∈ A} for x ∈ 2ω. S is a tall
non-P-ideal.

2.2. Ideal convergence. Let I be an ideal on ω. A sequence (an) of reals is

I-convergent to zero (xn
I−→ 0) if

{n ∈ ω : |xn| ≥ ε} ∈ I for each ε > 0.

A sequence (fn) of real-valued functions defined on X is

• I-pointwise convergent to zero (fn
I-p−−→ 0) if fn(x)

I−→ 0 for all x ∈ X i.e.

{n ∈ ω : |fn(x)| ≥ ε} ∈ I for each x ∈ X and ε > 0;

• I-uniformly convergent to zero (fn
I-u−−→ 0) if

{n ∈ ω : ∃x ∈ X (|fn(x)| ≥ ε)} ∈ I for each ε > 0;

• I-σ-uniformly convergent to zero (fn
I-σ-u−−−→ 0) if there is a family {Xk :

k ∈ ω} of subsets of X such that⋃
k∈ω

Xk = X and fn ↾ Xk
I-u−−→ 0 for all k ∈ ω;

• I-quasi-normally convergent to zero (fn
I-qn−−−→ 0) if there is a sequence (εn)

of positive reals such that

εn
I−→ 0 and {n ∈ ω : |fn(x)− f(x)| ≥ εn} ∈ I for every x ∈ X.

2.3. Spaces not distinguishing convergence. For a topological space X, we
write C(X) to denote the family of all real-valued continuous functions defined on
X. Recall that a topological space X is called a normal space (or T4-space) if X
is a Hausdorff space and for every pair of disjoint closed subsets A,B ⊆ X there
exist open sets U, V such that A ⊆ U , B ⊆ V and U ∩ V = ∅.

Definition 2.2. Let α and β be some notions of convergences of sequences of real-
valued functions (for instance, pointwise, uniform, quasi-normal or σ-uniform). We

write fn
α−→ 0 if (fn) convergence to the constant zero function with respect to the

notion α.

(1) By (α, β) we denote the class of all normal spaces not distinguishing between
α and β convergences in C(X) i.e. a space X ∈ (α, β) if and only if it is
normal and

fn
α−→ 0 ⇐⇒ fn

β−→ 0 for every sequence (fn) in C(X).

(2) By non(α, β) we denote the smallest cardinality of a normal space which
distinguishes between α and β convergences in C(X):

non(α, β) = min ({|X| : X is normal and X /∈ (α, β)} ∪ {∞}) .
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For instance, we write X ∈ (I-p,I-u) if X is normal and

fn
I-p−−→ 0 ⇐⇒ fn

I-u−−→ 0

for any sequence (fn) of continuous real-valued functions defined on X.

3. Spaces not distinguishing uniform convergence

Proposition 3.1. Let I,J be ideals on ω. Let X be a nonempty topological space.
Let (fn) be a sequence in C(X).

(1) fn
I-u−−→ 0 =⇒ fn

I-σ-u−−−→ 0 =⇒ fn
I-qn−−−→ 0 =⇒ fn

I-p−−→ 0.
(2) If I ⊆ J , then

(a) fn
I-u−−→ 0 =⇒ fn

J -u−−→ 0,

(b) fn
I-σ-u−−−→ 0 =⇒ fn

J -σ-u−−−−→ 0,

(c) fn
I-qn−−−→ 0 =⇒ fn

J -qn−−−→ 0,

(d) fn
I-p−−→ 0 =⇒ fn

J -p−−→ 0.

Proof. (1) The first implication is obvious, the second is proved in [14, Theorem 2.1
along with Note 2.1], whereas the third one is shown in [18, Proposition 4.4].

(2) Straightforward. □

Proposition 3.2. Let I and J be ideals on ω. Let X be a nonempty topological
space. The following conditions are equivalent.

(1) I ⊆ J .
(2) fn

I-u−−→ 0 =⇒ fn
J -σ-u−−−−→ 0 for every sequence (fn) in C(X).

(3) fn
I-u−−→ 0 =⇒ fn

J -qn−−−→ 0 for every sequence (fn) in C(X).

(4) fn
I-σ-u−−−→ 0 =⇒ fn

J -qn−−−→ 0 for every sequence (fn) in C(X).

(5) fn
I-σ-u−−−→ 0 =⇒ fn

J -p−−→ 0 for every sequence (fn) in C(X).

(6) fn
I-u−−→ 0 =⇒ fn

J -p−−→ 0 for every sequence (fn) in C(X).

(7) fn
I-qn−−−→ 0 =⇒ fn

J -p−−→ 0 for every sequence (fn) in C(X).

The above characterizations are presented graphically on Figure 1.

I-p L-u

J -qn K-σ-u

I⊇L

K⊇L

J⊇
L

I⊇J

J⊇K

I⊇K

Figure 1. Diagram for Proposition 3.2, where “I-p
I⊇L←−−− L-u” is

a counterpart of the equivalence “(1) ⇐⇒ (6)”, and similarly for
other arrows.

Proof. First, we see that it is enough to prove the following chains of implications:
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• (1) =⇒ (2) =⇒ (3) =⇒ (6) =⇒ (1),
• (1) =⇒ (4) =⇒ (5) =⇒ (6) =⇒ (1),
• (1) =⇒ (7) =⇒ (1).

Second, we observe that the following implications easily follow from Proposi-
tion 3.1:

• (1) =⇒ (2), (2) =⇒ (3), (3) =⇒ (6),
• (1) =⇒ (4), (4) =⇒ (5), (5) =⇒ (6),
• (1) =⇒ (7).

Third, we prove the remaining two implications: (6) =⇒ (1) and (7) =⇒ (1)
simultaneously. Let A ∈ I. We define fn : X → R by fn(x) = 1A(n) for every

x ∈ X. Then fn are constant so continuous. Since fn
I-u−−→ 0 and fn

I-qn−−−→ 0, both

(6) and (7) imply that fn
J -p−−→ 0. Take any x0 ∈ X. Then A = {n ∈ ω : |fn(x0)| >

1/2} ∈ J . □

Proposition 3.3. Let I and J be ideals on ω. Let X be a nonempty normal space.
The following conditions are equivalent.

(1) |X| < ω and I ⊆ J .
(2) fn

I-p−−→ 0 =⇒ fn
J -u−−→ 0 for every sequence (fn) in C(X).

(3) fn
I-qn−−−→ 0 =⇒ fn

J -u−−→ 0 for every sequence (fn) in C(X).

(4) fn
I-σ-u−−−→ 0 =⇒ fn

J -u−−→ 0 for every sequence (fn) in C(X).

The above characterizations are presented graphically on Figure 2.

I-p L-u

J -qn K-σ-u

|X|<ω ∧ I⊆L

|X
|<
ω
∧
J⊆

L

|X|<ω ∧ K⊆L

Figure 2. Diagram for Proposition 3.3, where “I-p
|X|<ω∧I⊆L−−−−−−−−→

L-u” is a counterpart of the equivalence “(1) ⇐⇒ (2)”, and
similarly for other arrows.

Proof. (1) =⇒ (2) Let (fn) be a sequence in C(X) such that fn
I-p−−→ 0. Let ε > 0.

For every x ∈ X, Ax = {n ∈ ω : |fn(x)| > ε} ∈ I. Since X is finite and I ⊆ J ,

A =
⋃
{Ax : x ∈ X} ∈ J . But {n ∈ ω : ∃x ∈ X (|fn(x)| > ε)} = A, so fn

J -u−−→ 0.
(2) =⇒ (3) It easily follows from Proposition 3.1.
(3) =⇒ (4) It easily follows from Proposition 3.1.
(4) =⇒ (1) First, we show that I ⊆ J . Let A ∈ I. We define fn : X → R

by fn(x) = 1A(n) for every x ∈ X. Then fn are constant so continuous and

fn
I-σ-u−−−→ 0. Thus fn

J -u−−→ 0. Then A = {n ∈ ω : ∃x ∈ X (|fn(x)| > 1/2)} ∈ J .
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Second, we show that X is finite. Suppose, for sake of contradiction, that X is
infinite. Since X is an infinite Hausdorff space, it is not difficult to show that there
is an infinite sequence (Un : n ∈ ω) of pairwise disjoint nonempty open subsets of
X (see e.g. [22, Theorem 12.1, p. 45]). For each n ∈ ω, we pick xn ∈ Un. Since X
is a normal space, we can use Urysohn’s Lemma to obtain that for every n there
is a continuous function fn : X → [0, 1] such that fn(xn) = 1 and fn(x) = 0 for

every x ∈ X \ Un. If we show that fn
I-σ-u−−−→ 0 holds but fn

J -u−−→ 0 does not hold,
we obtain a contradiction and the proof will be finished.

Let us show fn
I-σ-u−−−→ 0. We put X0 = X \

⋃
{Uk : k < ω} and Xk+1 = Uk for

every k ∈ ω. Then X is covered by {Xk : k ∈ ω}. Since fn ↾ X0 is a constant

function with value zero for every n, fn ↾ X0
I-u−−→ 0. Whereas for k ∈ ω, fn ↾ Xk+1

is a constant function with value zero for every n ̸= k, so fn ↾ Xk+1
I-u−−→ 0.

To show that fn
J -u−−→ 0 does not hold, it is enough to see that {n ∈ ω : ∃x ∈

X (|fn(x)| > 1/2)} ⊇ {n ∈ ω : fn(xn) = 1} = ω /∈ J . □

Corollary 3.4. Let I and J be ideals on ω. Let X be a nonempty normal space.
The following conditions are equivalent.

(1) |X| < ω and I = J .
(2) fn

I-p−−→ 0 ⇐⇒ fn
J -u−−→ 0 for every sequence (fn) in C(X).

(3) fn
I-qn−−−→ 0 ⇐⇒ fn

J -u−−→ 0 for every sequence (fn) in C(X).

(4) fn
I-σ-u−−−→ 0 ⇐⇒ fn

J -u−−→ 0 for every sequence (fn) in C(X).

Proof. It follows from Propositions 3.2 and 3.3. □

Corollary 3.5. Let I and J be ideals on ω. Let X be a normal space.

(1) If I ≠ J , then non(I-p,J -u) = non(I-qn,J -u) = non(I-σ-u,J -u) = 1.
(2) X ∈ (I-p,I-u) ⇐⇒ X ∈ (I-qn,I-u) ⇐⇒ X ∈ (I-σ-u,I-u) ⇐⇒ |X| <

ω.
(3) non(I-p,I-u) = non(I-qn,I-u) = non(I-σ-u,I-u) = ω.
(4) There is no infinite normal space in the classes (I-p,I-u), (I-qn,I-u),

(I-σ-u,I-u).

Proof. It follows from Corollary 3.4. □

Corollary 3.6. Let I be an ideal on ω. Let X be a normal space.

(1) X ∈ (I-p,I-σ-u) ⇐⇒ X ∈ (I-p,I-qn) and X ∈ (I-qn,I-σ-u).
(2) non(I-p,I-σ-u) = min{non(I-p,I-qn),non(I-qn,I-σ-u)}.

Proof. (1) Since the implication “⇐= ” is obvious, we only show the reversed one.
Assume that X ∈ (I-p,I-σ-u).

First we will show that X is in the class (I-p,I-qn). By Proposition 3.1, if

fn
I-qn−−−→ 0 then fn

I-p−−→ 0, for every sequence (fn) in C(X). On the other hand, if

(fn) ∈ C(X) is such that fn
I-p−−→ 0 then fn

I-σ-u−−−→ 0 (as X is in the class (I-p,I-σ-

u)), so also fn
I-qn−−−→ 0 (by Proposition 3.1).

Now we show that X is in the class (I-qn,I-σ-u). By Proposition 3.1, if fn
I-σ-u−−−→

0 then fn
I-qn−−−→ 0, for every sequence (fn) in C(X). On the other hand, if (fn) ∈

C(X) is such that fn
I-qn−−−→ 0 then fn

I-p−−→ 0 (by Proposition 3.1), so also fn
I-σ-u−−−→ 0

(as X is in the class (I-p,I-σ-u)).
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(2) It follows from item (1). □

4. Spaces not distinguishing σ-uniform convergence

In the sequel, we use the convention that min ∅ = ∞ and κ < ∞ for every
cardinal κ.

Notation. Let I be an ideal on ω.

(1) P̂I = {(An) ∈ Iω : An ∩Ak = ∅ for all distinct n, k}.
(2) PI = {(An) ∈ P̂I :

⋃
{An : n ∈ ω} = ω}.

(3) MI = {(Ek) ∈ Iω : ∀k ∈ ω (Ek ⊆ Ek+1)} .

Definition 4.1. Let I,J ,K be ideals on ω.

(1) bs(I,J ,K) = min{|E| : E ⊆ P̂K ∧ ∀(An) ∈ PJ ∃(En) ∈ E (
⋃

n∈ω(An+1 ∩⋃
i≤n Ei) /∈ I)}.

(2) bσ(I,J ) = min{|E| : E ⊆MI ∧ ∀(An) ∈MJ ∃(En) ∈ E ∃∞n (En ̸⊆ An)}.
(3) addω(I,J ) = min{|A| : A ⊆ I ∧ ∀(Bn) ∈ J ω ∃A ∈ A∀n ∈ ω (A ̸⊆ Bn))}.

In the sequel, we will use the following shorthands: bs(I) = bs(I, I, I), bσ(I) =
bσ(I, I), addω(I) = addω(I, I).

The cardinal bs(I,J ,K) was introduced by Staniszewski [34, p. 1184] to charac-
terize the smallest size of a space which is not (I,J ,K)-QN. Later Repický [31, 32],
among others, characterized the same class of spaces in terms of another cardinal.
In [39], Šupina introduced the cardinal κ(I,J ) which is equal to bs(J ,J , I). In
the case of maximal ideal, bs(I, I, I) and bs(I,Fin,Fin) were studied by Can-
jar [11, 9, 10]. In the case of Borel ideals, bs(I, I, I) and bs(I,Fin,Fin) were
extensively studied in [17].

The cardinals bσ(I,J ) and addω(I,J ) are introduced here but the latter car-
dinal appeared, in a sense, in [34] were the author introduced the notion of κ-
P(Fin,J )-ideals, because it is not difficult to see that addω(I,J ) = min{κ :
I is not κ-P(Fin,J )}.

Theorem 4.2. Let I,J ,K be ideals on ω. Let X be a nonempty topological space.

(1) In the following list of conditions, each implies the next.
(a) |X| < bs(J ,J , I).

(b) fn
I-p−−→ 0 =⇒ fn

J -qn−−−→ 0 for every sequence (fn) in C(X).
(c) I ⊆ J .

(2) In the following list of conditions, each implies the next.
(a) |X| < addω(J ,K).

(b) fn
J -qn−−−→ 0 =⇒ fn

K-σ-u−−−−→ 0 for every sequence (fn) in C(X).
(c) J ⊆ K.

(3) In the following list of conditions, each implies the next.
(a) |X| < bσ(I,K).

(b) fn
I-p−−→ 0 =⇒ fn

K-σ-u−−−−→ 0 for every sequence (fn) in C(X).
(c) I ⊆ K.

The above implications are presented graphically on Figure 3.

Proof. (1a) =⇒ (1b) It follows from [39, Theorems 5.1 and 6.2].
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I-p L-u

J -qn K-σ-u

|X|<bs(J ,J ,I)
|X|<bσ(I,K)

|X|<addω(J ,K)

Figure 3. Diagram for Theorem 4.2, where “J -qn
|X|<addω(J ,K)−−−−−−→

K-σ-u” is a counterpart of the implication “(2a) =⇒ (2b)”, and
similarly for other arrows.

(1b) =⇒ (1c) Let A ∈ I. We define fn : X → R by fn(x) = 1A(n) for every

x ∈ X. Then fn are constant so continuous and fn
I-p−−→ 0. Thus fn

J -qn−−−→ 0. Then
there exists a sequence (εn) of positive reals which is J -convergent to zero and
{n ∈ ω : |fn(x)| ≥ εn} ∈ J for every x ∈ X. Let x0 ∈ X. Then A = {n ∈ ω :
|fn(x0)| > 1/2} ⊆ {n ∈ ω : |fn(x0)| > εn ∧ εn < 1/2} ∪ {n ∈ ω : εn ≥ 1/2} ⊆ {n ∈
ω : |fn(x0)| > εn} ∪ {n ∈ ω : εn ≥ 1/2} ∈ J .

(2a) =⇒ (2b) If J ̸⊆ K, then it is easy to see that addω(J ,K) = 1. (Indeed,
let E ∈ I \J and E = {E}. Take any (An) ∈MJ . Then E ̸⊆ An for every n ∈ ω.)
Hence, there is nothing to prove in that case. Below we assume that J ⊆ K.

Suppose that |X| < addω(J ,K) and let (fn) be a sequence in C(X) such that

fn
J -qn−−−→ 0. Then there exists a sequence (εn) of positive reals which is J -converegnt

to zero and {n ∈ ω : |fn(x)| ≥ εn} ∈ J for every x ∈ X. We define Ex =
{n ∈ ω : |fn(x)| ≥ εn} for every x ∈ X. Since {Ex : x ∈ X} ⊆ J and |X| <
addω(J ,K), there is B = {Bk : k ∈ ω} ⊆ K such that for each x ∈ X there is k ∈ ω
with Ex ⊆ Bk. We define Xk = {x ∈ X : Ex ⊆ Bk} for each k ∈ ω. It is easy to
see that X =

⋃
{Xk : k ∈ ω}, and we show that fn ↾ Xk converges K-uniformly

to 0 for every k ∈ ω. Fix any k ∈ ω and ε > 0. Since J ⊆ K and εn
J−→ 0, the

set Cε = {n ∈ ω : εn ≥ ε} ∈ K. For every x ∈ Xk, we have {n ∈ ω : |fn(x)| ≥
ε} ⊆ {n ∈ ω : |fn(x)| ≥ εn ∧ ε > εn} ∪ {n ∈ ω : εn ≥ ε} ⊆ Ex ∪ Cε ⊆ Bk ∪ Cε.
Consequently, {n ∈ ω : ∃x ∈ Xk (|fn(x)| ≥ ε)} ⊆ Bk ∪ Cε ∈ K.

(2b) =⇒ (2c) Let A ∈ J . We define fn : X → R by fn(x) = 1A(n) for every

x ∈ X. Then fn are constant so continuous and fn
J -qn−−−→ 0. Thus fn

K-σ-u−−−−→ 0.

Then there exists a cover {Xk : k ∈ ω} of X such that fn ↾ Xk
K-u−−→ 0 for every

k ∈ ω. Let x0 ∈ X and k0 ∈ ω be such that x0 ∈ Xk0 . Then A = {n ∈ ω :
|fn(x0)| > 1/2} ⊆ {n ∈ ω : ∃x ∈ Xk0

(|fn(x)| > 1/2)} ∈ K.
(3a) =⇒ (3b) Suppose that |X| < bσ(I,K) and let (fn) be a sequence in C(X)

such that fn
I-p−−→ 0. For every x ∈ X and k ∈ ω define:

Ex
k =

{
n ∈ ω : |fn(x)| ≥ 1

k + 1

}
.

Observe that Ex
k ∈ I and Ex

k ⊆ Ex
k+1 for all x ∈ X and k ∈ ω, i.e., (Ex

k ) ∈MI for
all x ∈ X.
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Since the family E = {(Ex
k ) : x ∈ X} has cardinality |X| < bσ(I,K), there is

(Ak) ∈ MK such that for each x ∈ X there is mx ∈ ω such that Ex
k ⊆ Ak for all

k ≥ mx. Define Xm = {x ∈ X : m = mx} and note that
⋃

m∈ω Xm = X.
We claim that fn ↾ Xm converges K-σ-uniformly to 0 for every m ∈ ω. Fix

any m ∈ ω and ε > 0. Let k ∈ ω be such that k ≥ m and 1
k+1 < ε. Since

Ak ∈ K, to finish the proof it suffices to show that |fn(x)| < ε for every x ∈ Xm

and n ∈ ω \Ak. Fix x ∈ Xm and n ∈ ω \Ak. Since k ≥ m = mx, we have Ex
k ⊆ Ak.

Hence, ω \ Ex
k ⊇ ω \Ak ∋ n. Thus, |fn(x)| < 1

k+1 < ε and we are done.

(3b) =⇒ (3c) It follows from item (1), because fn
K-σ-u−−−−→ 0 =⇒ fn

K-qn−−−→ 0 by
Proposition 3.1. □

Corollary 4.3. Let I and J be ideals on ω. If I ≠ J , then non(I-p,J -σ-u) =
non(I-p,J -qn) = non(I-qn,J -σ-u) = 1.

Proof. It follows from Proposition 3.2 and Theorem 4.2. □

Proposition 4.4. Let I be an ideal on ω. Let X be a topological space and suppose
that X =

⋃
{Xα : α < κ}. Let (fn) be a sequence in C(X).

(1) If κ < bs(I) and fn ↾ Xα
I-qn−−−→ 0 for every α < κ, then fn

I-qn−−−→ 0.

(2) If κ < bσ(I) and fn ↾ Xα
I-σ-u−−−→ 0 for every α < κ, then fn

I-σ-u−−−→ 0.

Proof. (1) For each α < κ, there is a sequence (εαn) of positive reals which is I-
convergent to zero and Ax,α = {n ∈ ω : |fn(x)| ≥ εαn} ∈ I for every x ∈ Xα.
For each n ∈ ω, we define ϕn : κ → R by ϕn(α) = εαn for each α ∈ κ. Having the

discrete topology on κ, functions ϕn are continuous. Since ϕn
I-p−−→ 0 and κ < bs(I),

we obtain that ϕn
I-qn−−−→ 0 (by Proposition 4.2(1)). Thus, there is a sequence (εn) of

positive reals which is I-convergent to zero and Bα = {n ∈ ω : |ϕn(α)| ≥ εn} ∈ I
for every α ∈ κ. We claim that the sequence (εn) also witnesses fn

I-qn−−−→ 0. Take
any x ∈ X. There is α < κ with x ∈ Xα. Then {n ∈ ω : |fn(x)| ≥ εn} ⊆ {n :
|fn(x)| ≥ εαn ∧ εαn < εn} ∪ {n ∈ ω : εαn ≥ εn} ⊆ Ax,α ∪Bα ∈ I.

(2) If κ is finite, then the result is obvious. If κ is infinite, then κ · ω = κ, so

without loss of generality we can assume that fn ↾ Xα
I-u−−→ 0 for every α < κ.

Now, we define Aα
k = {n ∈ ω : ∃x ∈ Xα (|fn(x)| > 1

k+1 )} for every α < κ and

k ∈ ω. Since (Aα
k ) ∈ MI for every α < κ and κ < bσ(I), there is (Bn) ∈ MI

such that for each α < κ there is kα ∈ ω such that Aα
k ⊆ Bk for every k ≥ kα.

For each k ∈ ω, we define Yk =
⋃
{Xα : kα = k}. Then X =

⋃
{Yk : k ∈ ω},

and once we show that fn ↾ Yk
I-u−−→ 0 for each k ∈ ω, the proof will be finished.

Take any k ∈ ω and ε > 0. Let i ∈ ω be such that ε > 1
i+1 and i ≥ k. Then

{n ∈ ω : ∃x ∈ Yk (|fn(x)| ≥ ε)} ⊆ {n ∈ ω : ∃x ∈ Yk (|fn(x)| ≥ 1
i+1 )} ⊆ {n ∈ ω :

∃α < κ ∃x ∈ Xα (kα = k ∧ |fn(x)| ≥ 1
i+1 )} ⊆ Bi ∈ I. □

Theorem 4.5. Let I,J ,K be ideals on ω. Let X be a discrete topological space.

(1) The following conditions are equivalent.

(a) fn
I-p−−→ 0 =⇒ fn

J -qn−−−→ 0 for any sequence (fn) in C(X).
(b) |X| < bs(J ,J , I).

(2) The following conditions are equivalent.

(a) fn
I-p−−→ 0 =⇒ fn

K-σ-u−−−−→ 0 for any sequence (fn) in C(X).
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(b) |X| < bσ(I,K).
(3) The following conditions are equivalent.

(a) fn
J -qn−−−→ 0 =⇒ fn

K-σ-u−−−−→ 0 for any sequence (fn) in C(X).
(b) |X| < addω(J ,K).

Proof. (1) It follows from [39, Theorems 5.1 and 6.2] and [34, Theorem 4.9(1)] as
the property W (J ,J , I) from [34] is equivalent to J being a ”weak P(I)-ideal”
from [39].

(2a) =⇒ (2b) Enumerate X = {xα : α < |X|} and fix any E = {(Eα
k ) : α <

|X|} ⊆ MI . We need to show that E is not a witness for bσ(I,K), i.e. there is
(Ak) ∈ MK such that for each α < |X| there is m ∈ ω such that Eα

k ⊆ Ak for all
k ≥ m.

Define functions fn : X → R by:

fn(xα) =

{
1

k+1 , if n ∈ Eα
k \ Eα

k−1,

0, otherwise

for every α < |X| (here we put Eα
−1 = ∅). Since X is discrete, functions fn are

continuous for every n. Observe that fn
I-p−−→ 0, since for each x ∈ X and k ∈ ω we

have: {
n ∈ ω : |fn(x)| ≥ 1

k + 1

}
= Eα

k ∈ I,

where α < |X| is given by x = xα.

By our assumption, fn
K-σ-u−−−−→ 0. Thus, there is (Xm) ⊆ P(X) such that⋃

m Xm = X and fn ↾ Xm
K-u−−→ 0 for all m ∈ ω, i.e.,

Bm,k =

{
n ∈ ω : ∃x ∈ Xm

(
|fn(x)| ≥ 1

k + 1

)}
∈ K

for every k,m ∈ ω.
Define Ak = B0,k ∪ B1,k ∪ . . . ∪ Bk,k ∈ K for all k ∈ ω. Note that Ak ⊆

B0,k+1 ∪B1,k+1 ∪ . . . ∪Bk,k+1 ⊆ Ak+1 for every k ∈ ω. We claim that (Ak) ∈MK
is as needed, i.e., for each α < |X| there is m ∈ ω such that Eα

k ⊆ Ak for all k ≥ m.
Fix α < |X| and let m ∈ ω be such that xα ∈ Xm. Fix any k ≥ m and n ∈ Eα

k .
Then fn(xα) ≥ 1

k+1 . Since xα ∈ Xm and k ≥ m, n ∈ Bm,k ⊆ B0,k ∪ B1,k ∪ . . . ∪
Bk,k = Ak. As n was arbitrary, we can conclude that Eα

k ⊆ Ak. This finishes the
proof.

(2b) =⇒ (2a) It follows from Theorem 4.2(3).
(3a) =⇒ (3b) Enumerate X = {xα : α < |X|} and fix any A = {Aα : α <

|X|} ⊆ J . We need to show that A is not a witness for addω(J ,K), i.e. there is
{Bk : k ∈ ω} ⊆ K such that for each α < |X| there is k ∈ ω such that Aα ⊆ Bk.

We define functions fn : X → R by

fn(xα) = 1Aα
(n)

for every α < |X|. Since X is discrete, functions fn are continuous for every n. Ob-

serve that fn
J -qn−−−→ 0. Indeed, if we take any sequence (εn) of positive reals which

is ordinary convergent to zero, then for each x ∈ X there is α with x = xα and
{n ∈ ω : |fn(xα)| ≥ εn} = {n ∈ Aα : |fn(xα)| ≥ εn}∪{n ∈ ω \Aα : |fn(xα)| ≥ εn} =
{n ∈ Aα : 1 ≥ εn} ∪ {n ∈ ω \Aα : 0 ≥ εn} ⊆ Aα ∪ ∅ ∈ J .
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By our assumption, fn
K-σ-u−−−−→ 0. Thus, there is a covering {Xk : k ∈ ω} of X

such that fn ↾ Xk
K-u−−→ 0 for all k ∈ ω.

For each k ∈ ω, we define

Bk =

{
n ∈ ω : ∃x ∈ Xk

(
|fn(x)| > 1

2

)}
.

We see that Bk ∈ K for each k ∈ ω, and we claim that for every A ∈ A there is k
with A ⊆ Bk. Indeed, let A ∈ A. Let α be such that A = Aα. Then there is k ∈ ω
such that xα ∈ Xk. Let n ∈ Aα. Then fn(xα) = 1 > 1/2, so n ∈ Bk.

(3b) =⇒ (3a) It follows from Theorem 4.2(2). □

In [7], the authors proved that non(Fin-p,Fin-qn) = b i.e. the smallest size of
non-QN-spaces equals b. The following corollary is a counterpart of the above
result which gives a purely combinatorial characterization of the topological cardi-
nal characteristics non(I-p,I-qn), non(I-p,I-σ-u), non(I-qn,I-σ-u) with the aid of
other bounding-like numbers.

Corollary 4.6. Let I be an ideal on ω.

(1) non(I-p,I-σ-u) = bσ(I).
(2) non(I-p,I-qn) = bs(I).
(3) non(I-qn,I-σ-u) = addω(I).

Proof. (1) The inequality non(I-p,I-σ-u) ≥ bσ(I) follows from Proposition 3.2
and Theorem 4.2. On the other hand, if X is a discrete topological space of
cardinality bσ(I), then by Theorem 4.5, X is not in (I-p,I-σ-u). Consequently,
non(I-p,I-σ-u) ≤ bσ(I).

Items (2) and (3) can be proved in the same way. □

In Section 6, we show that we cannot add an item: “there is no space of cardi-
nality bσ(I) in (I-p,I-σ-u)” in Corollary 4.6 (in contrast with Corollary 3.5).

5. Properties of cardinals describing minimal size of spaces
distinguishing convergence

In this section we will take a closer look on the cardinals bs(I,J ,K), bσ(I,J )
and addω(I,J ).

The following easy proposition shows that these cardinals are coordinate-wise
monotone (increasing or decreasing depending on a coordinate).

Proposition 5.1. Let I, I ′,J ,J ′,K,K′ be ideals on ω.

(1) If I ⊆ I ′, then bs(I,J ,K) ≤ bs(I ′,J ,K), bσ(I,J ) ≥ bσ(I ′,J ) and
addω(I,J ) ≥ addω(I ′,J ).

(2) If J ⊆ J ′, then bs(I,J ,K) ≤ bs(I,J ′,K), bσ(I,J ) ≤ bσ(I,J ′) and
addω(I,J ) ≤ addω(I,J ′).

(3) If K ⊆ K′, then bs(I,J ,K) ≥ bs(I,J ,K′).

The following theorem reveals the relationship between the considered cardinals.

Theorem 5.2. Let I,J be ideals on ω.

(1) bσ(I,J ) = min{bs(I ∩ J ,J , I), addω(I,J )}.
(2) bσ(I) = min{bs(I), addω(I)}.
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Proof. (1, ≤) First, we show bσ(I,J ) ≤ bs(I ∩ J ,J , I). Let E = {(Eα
n : n ∈ ω) :

α < bσ(I,J )} be a “witness” for bs(I ∩J ,J , I) i.e. (Eα
n : n ∈ ω) ∈ P̂I for every α

and for every (An) ∈ PJ there is α with
⋃

n∈ω(An+1∩
⋃

i≤n E
α
i ) /∈ I∩J . For every

α < bs(K,J , I) and n ∈ ω, we define Fα
n =

⋃
i≤n E

α
i . Then (Fα

n : n ∈ ω) ∈ MI ,

and we claim that {(Fα
n ) : α < bs(I ∩ J ,J , I)} is a “witness” for bσ(I,J ) i.e. for

every (An) ∈ MJ there is α such that Fα
n ̸⊆ An for infinitely many n. Indeed,

take any (An) ∈ MJ . Without loss of generality, we can assume that n ∈ An

for every n ∈ ω. We define B0 = A0 and Bn = An \ An−1 for n ≥ 1. Then
(Bn) ∈ PJ , so there is α with

⋃
n∈ω(Bn+1 ∩

⋃
i≤n E

α
i ) /∈ I ∩ J . Now, suppose

for sake of contradiction that Fα
n ⊆ An for almost all n ∈ ω, say for all n > n0.

Then Bn+1 ∩ Fα
n = ∅ for every n > n0. Consequently, Bn+1 ∩

⋃
i≤n E

α
i = ∅ for

every n > n0. Thus,
⋃

n∈ω(Bn+1 ∩
⋃

i≤n E
α
i ) ⊆

⋃
n≤n0

(Bn+1 ∩
⋃

i≤n E
α
i ) ∈ I ∩ J ,

a contradiction.
Second, we show bσ(I,J ) ≤ addω(I,J ). Let A = {Aα : α < addω(I,J )} be a

“witness” for addω(I,J ) i.e. Aα ∈ I for every α and for every {Bn : n ∈ ω} ⊆ J
there is α such that Aα ̸⊆ Bn for every n ∈ ω. For every α < addω(I,J ) and
n ∈ ω, we define Eα

n = Aα. Then (Eα
n : n ∈ ω) ∈ MI , and we claim that {(Eα

n :
n ∈ ω) : α < addω(I,J )} is a “witness” for bσ(I,J ) i.e. for every (Bn) ∈ MJ
there is α such that Eα

n ̸⊆ Bn for infinitely many n. Indeed, take any (Bn) ∈ MJ
then {Bn : n ∈ ω} ⊆ J , so there is α such that Aα ̸⊆ Bn for every n ∈ ω. Since
Eα

n = Aα for every n, we obtain Eα
n ̸⊆ Bn for every n ∈ ω.

(1, ≥) Let κ < min{bs(I ∩J ,J , I), addω(I,J )}. If we show that κ < bσ(I,J ),
the proof will be finished. We take any E = {(Eα

n : n ∈ ω) : α < κ} ⊆ MI and
need to find (An) ∈ MJ such that for every α < κ we have Eα

n ⊆ An for all but
finitely many n ∈ ω. For every α < κ and n ∈ ω, we define Fα

n = Eα
n \

⋃
i<n E

α
i .

Since (Fα
n : n ∈ ω) ∈ P̂I for every α < κ and κ < bs(I ∩ J ,J , I), we obtain

(Bn : n ∈ ω) ∈ PJ such that Gα =
⋃

n<ω(Bn+1∩Eα
n ) =

⋃
n<ω(Bn+1∩

⋃
i≤n F

α
i ) ∈

I ∩ J for every α. Since Gα ∈ I for every α < κ and κ < addω(I,J ), we obtain
(Cn : n ∈ ω) ∈ J ω such that for every α < κ there is nα ∈ ω with Gα ⊆ Cnα

.
For every n ∈ ω, we define An =

⋃
i≤n(Bi ∪ Ci). Then (An : n ∈ ω) ∈ MJ and

we claim that for every α < κ we have Eα
n ⊆ An for all but finitely many n ∈ ω.

Indeed, take any α < κ and notice that

Eα
n ⊆

⋃
i≤n

Bi ∪
⋃
k≥n

(Bk+1 ∩ Eα
k ) ⊆

⋃
i≤n

Bi ∪Gα ⊆
⋃
i≤n

Bi ∪
⋃
i≤n

Ci = An

for every n ≥ nα.
(2) It follows from item (1), but one could also show it “topologically” by using

Corollaries 3.6(2) and 4.6. □

The following proposition reveals some bounds for the considered cardinals. In
this proposition we use some known cardinals considered in the literature so far
which we define first.

For any ideal I, we define

add⋆(I) = min{|A| : A ⊆ I ∧ ∀B ∈ I ∃A ∈ A (|A \B| = ω)}.

For f, g ∈ ωω we write f ≤∗ g if f(n) ≤ g(n) for all but finitely many n ∈ ω.
The bounding number b is the smallest size of ≤∗-unbounded subset of ωω:

b = min{|F| : F ⊆ ωω ∧ ¬(∃g ∈ ωω ∀f ∈ F (f ≤∗ g))}.
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Proposition 5.3. Let I,J ,K be ideals on ω.

(1) (a) If I ̸⊆ J , then bs(I ∩ J ,J , I) = 1.
(b) If I ⊆ J , then bs(I ∩ J ,J , I) ≥ ω1.
(c) ω1 ≤ bs(I) ≤ c.
(d) bs(Fin,J ,Fin) = b.

(2) (a) If I ̸⊆ J , then addω(I,J ) = 1.
(b) If I ⊆ J , then addω(I,J ) ≥ max{ω1, add⋆(I)}.
(c) addω(I) <∞ ⇐⇒ I is not countably generated.

(3) (a) bσ(Fin,J ) = b.
(b) If I ̸⊆ J then bσ(I,J ) = 1.
(c) If I ⊆ J then ω1 ≤ bσ(I,J ) ≤ b.
(d) If I ⊆ J then cf(bσ(I,J )) ≥ ω1.

(4) bσ(I) ≥ bs(Fin, I, I) = min{b, add⋆(I)}.

Proof. (1) See [17, Proposition 3.13 and Theorem 4.2].
(2a) Let E ∈ I \ J . Let E = {E} and take any (An) ∈ MJ . Then E ̸⊆ An for

every n ∈ ω (otherwise, E ⊆ An ∈ J would imply E ∈ J ). Thus, addω(I,J ) ≤ 1.
(2b) The inequality addω(I,J ) ≥ ω1 will follow from item (3c) and Theorem 5.2.

To show that addω(I,J ) ≥ add⋆(I), let A ⊆ I be a witness for addω(I,J ).
We claim that A is also a witness for add⋆(I). Indeed, take any B ∈ I. Let
Fin = {Fn : n ∈ ω} and define Bn = B ∪Fn for every n ∈ ω. Since I ⊆ J , we have
(Bn) ∈ [J ]ω. Consequently, there is A ∈ A such that A ̸⊆ Bn = B ∪ Fn for any
n ∈ ω. Thus, |A \B| = ω.

(2c) Straightforward.
(3a) The inequality bσ(Fin,J ) ≤ b follows from item (1d) and Theorem 5.2.

Below we show b ≤ bσ(Fin,J ). Using Proposition 5.1, we see that it is enough to
show b ≤ bσ(Fin). Fix any E = {(Eα

k ) : α < bσ(Fin)} ⊆ MFin which is a witness for
bσ(Fin). For each α < bσ(Fin), we define a function fα ∈ ωω by fα(k) = maxEα

k .
We claim that {fα : α < bσ(Fin)} is ≤∗-unbounded subset of ωω. Fix any g ∈ ωω.
We want to find α < bσ(Fin) such that fα ̸≤∗ g. Without loss of generality we may
assume that g is increasing. Define Ak = {i ∈ ω : i ≤ g(k)} for all k ∈ ω. Then
(Ak) ∈ MFin. Since E is a witness for bσ(Fin), there is α < bσ(Fin) such that
Eα

k ̸⊆ Ak for infinitely many k ∈ ω. Observe that Eα
k ̸⊆ Ak implies g(k) < fα(k).

Hence, g(k) < fα(k) for infinitely many k ∈ ω, which means that fα ̸≤⋆ g.
(3b) It follows from item (2a) and Theorem 5.2.
(3c) The inequality bσ(I,J ) ≤ b follows from item (3a) and Proposition 5.1.

Below we show bσ(I,J ) ≥ ω1.
Fix any {(En

k ) : k ∈ ω} ⊆ MI . We will find (Ak) ∈ MJ such that {k ∈ ω :
En

k ̸⊆ Ak} ∈ Fin for all n ∈ ω.
Define Ak = E0

k ∪ E1
k ∪ . . . ∪ Ek

k for all k ∈ ω. Then Ak ∈ I ⊆ J and Ak ⊆
E0

k+1 ∪ E1
k+1 ∪ . . . ∪ Ek

k+1 ⊆ Ak+1 as (En
k ) ∈ MI for each n ∈ ω. Moreover, for

each n ∈ ω and k ≥ n we have En
k ⊆ Ak. Hence, (Ak) ∈MJ is as needed.

(3d) Let E be a witness for bσ(I,J ) i.e. |E| = bσ(I,J ), E ⊆ MI and for every
(An) ∈ MJ there is (En) ∈ E such that En ̸⊆ An for infinitely many n ∈ ω. Now,
suppose for sake of contradiction that cf(bσ(I,J )) = ω. Using the properties of
cofinality, we know that E can be decomposed into the union of countably many
subfamilies Ek of cardinalites less than bσ(I,J ). Since |Ek| < bσ(I,J ), there is
(Ak

n) ∈ MJ such that for every (En) ∈ Ek we have En ⊆ Ak
n for all but finitely

many n ∈ ω. Then A = {(Ak
n) : k ∈ ω} ⊆ MJ and |A| ≤ ω < bσ(J ) (by item
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(3c)), so there is (Bn) ∈ MJ such that for every k ∈ ω we have Ak
n ⊆ Bn for all

but finitely many n ∈ ω. Consequently, for every (En) ∈ E we have En ⊆ Bn for
all but finitely many n ∈ ω, a contradiction with the choice of the family E .

(4) The equality bs(Fin, I, I) = min{b, add⋆(I)} is shown in [17, Theorem 4.8].
Below we show that bσ(I) ≥ bs(Fin, I, I).

Let E = {{Eα
n : n ∈ ω} : α < bσ(I)} ⊆ MI be a witness for bσ(I). We define

Fα
0 = Eα

0 and Fα
n = Eα

n \ Eα
n−1 for every α < bσ(I) and n ≥ 1. Then F = {Fα

n :

n ∈ ω} : α < bσ(I)} ⊆ P̂I , and we claim that F is a witness for bs(Fin, I, I).
Indeed, take any (An) ∈ PI . For every n ∈ ω, we define Bn =

⋃
i≤n Ai. Then

(Bn) ∈ MI , so there exists α such that Eα
n ̸⊆ Bn for infinitely many n. Let (kn)

be a strictly increasing sequence such that Eα
kn
̸⊆ Bkn

for every n ∈ ω. Thus, for
every n ∈ ω there is ln > kn and an ∈ Aln ∩ Eα

kn
. Then A = {an : n ∈ ω} is

infinite. If we show that A ⊆
⋃

n<ω(An+1 ∩
⋃

i≤n F
α
n ), the proof will be finished.

Take any an ∈ A. Then an ∈ Aln ∩ Eα
kn

= Aln ∩
⋃

i≤kn
Fα
i ⊆ Aln ∩

⋃
i<ln

Fα
i =

A(ln−1)+1 ∩
⋃

i≤ln−1 F
α
i . □

Corollary 5.4. For every ideal I on ω we have

ω1 ≤ bσ(I) = min{bs(I), addω(I)} ≤ b.

Proof. It follows from Theorem 5.2 and Proposition 5.3(3c). □

Corollary 5.5. The cardinals bs(I), bσ(I) and addω(I) are regular for every ideal
I.

Proof. The regularity of bs(I) is shown in [17, Corollary 3.12] (however, one could
also show it using a similar “topological” argument as for bσ(I) presented below).

We will present two proofs of regularity of bσ(I) – one “topological” and one
“purely combinatorial”. We start with the “topological” proof.

Suppose for sake of contradiction that bσ(I) =
⋃
{Aα : α < κ} where κ < bσ(I)

and |Aα| < bσ(I) for every α < κ. Let X be a normal space such that X /∈
(I-p,I-σ-u) and |X| = bσ(I) (which exists by Corollary 4.6(1)). Then we can write
X =

⋃
{Xα : α < κ} with |Xα| = |Aα| for each α < κ. Take a sequence (fn) in

C(X) such that fn
I-p−−→ 0 but fn

I-σ-u−−−→ 0 does not hold. Since fn ↾ Xα
I-p−−→ 0

and |Xα| < bσ(I) for every α < κ, we can use Theorem 4.2(3) to obtain that

fn ↾ Xα
I-σ-u−−−→ 0 for every α < κ. Now, Proposition 4.4(2) implies that fn

I-σ-u−−−→ 0,
a contradiction.

Now we present the “purely combinatorial” proof of regularity of bσ(I). Let E
be a witness for bσ(I) i.e. |E| = bσ(I), E ⊆ MI and for every (An) ∈ MI there
is (En) ∈ E such that En ̸⊆ An for infinitely many n ∈ ω. Using the properties of
cofinality, we know that E can be decomposed into the union of cf(bσ(I)) subfamilies
Eα of cardinalites less than bσ(I). Since |Eα| < bσ(I), there is (Aα

n) ∈ MI such
that for every (En) ∈ Eα we have En ⊆ Aα

n for all but finitely many n ∈ ω. Now,
suppose for sake of contradiction that bσ(I) is not regular i.e. cf(bσ(I)) < bσ(I).
Then A = {(Aα

n) : α < cf(bσ(I))} ⊆ MI and |A| < bσ(I), so there is (Bn) ∈ MI
such that for every α < cf(bσ(I)) we have Aα

n ⊆ Bn for all but finitely many n ∈ ω.
Consequently, for every (En) ∈ E we have En ⊆ Bn for all but finitely many n ∈ ω,
a contradiction with the choice of the family E .

Finally, we show the regularity of addω(I). Suppose for sake of contradiction
that addω(I) =

⋃
{Aα : α < κ} where κ < addω(I) and |Aα| < addω(I) for every
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α < κ. Let B ⊆ I be such that |B| = addω(I) and for every (Dk) ∈ Iω there
is B ∈ B with B ̸⊆ Dk for any k < ω. Then we can write B =

⋃
{Bα : α < κ}

with |Bα| = |Aα| for every α < κ. Since |Bα| < addω(I) and Bα ⊆ I for every
α < κ, we can find (Cα

n ) ∈ Iω such that for every B ∈ Bα there is n ∈ ω with
B ⊆ Cα

n . Let C = {Cα
n : α < κ, n < ω}. Then C ⊆ I and |C| ≤ κ · ω < addω(I) (by

Proposition 5.3(2b)), so there is (Dk) ∈ Iω such that for every α < κ and n < ω
there is k < ω with Cα

n ⊆ Dk. Thus, for every B ∈ B we can find k with B ⊆ Dk,
a contradiction. □

5.1. P-ideals. An ideal I is a P-ideal if for every countable family A ⊆ I there
exists a set B ∈ I such that A \ B is finite for every A ∈ A. It is easy to see that
add⋆(I) ≥ ω1 for P-ideals and add⋆(I) = ω for non-P-ideals.

Remark. The inequality from Proposition 5.3(4) is interesting, in a sense, only for
P-ideals. Indeed, by Proposition 5.3(3c)(4), we have bs(Fin, I, I) = add⋆(I) = ω <
ω1 ≤ bσ(I) in the case of non-P-ideals.

Proposition 5.6. If I is a P-ideal on ω, then

addω(I) = add∗(I).

Proof. From Proposition 5.3(2b) it follows that we only need to show addω(I) ≤
add∗(I). Let A ⊆ I be a witness for add∗(I). We claim that A is also a witness
for addω(I). Indeed, take any (Bn) ∈ [I]ω. Since I is a P-ideal, there is B ∈ I
such that |Bn \ B| < ω for every n ∈ ω. Since B ∈ I, we find A ∈ A such that
A \ B is infinite. Consequently, A \ Bn is infinite for every n ∈ ω. Thus, A ̸⊆ Bn

for any n ∈ ω. □

Remark. The cardinal add⋆(I) has been extensively studied so far (see e.g. a very
good survey of Hrušák [23]). However, this cardinal is useless for non-P-ideals (be-
cause its value is ω for non-P-ideals). On the other hand, the cardinal addω(I)
coincides with add⋆(I) for P-ideals (as shown in Proposition 5.6) and it can distin-
guish non-P-ideals (as shown in Theorem 5.13). Thus, the cardinal addω(I) is, in
a sense, more sensitive variant of add⋆(I), and maybe it will turn out to be more
useful than add⋆(I) in the future research.

Corollary 5.7. If I is a P-ideal on ω then

bσ(I) = bs(Fin, I, I) = min{b, add⋆(I)} ≤ addω(I).

Proof. It is enough to note that bσ(I) ≥ bs(Fin, I, I) = min{b, add⋆(I)} follows
from Proposition 5.3(4), bσ(I) ≤ b follows from Proposition 5.3(3c), bσ(I) ≤
add⋆(I) follows from Theorem 5.2 and Proposition 5.6 and min{b, add⋆(I)} ≤
addω(I) follows from Proposition 5.6. □

5.2. Fubini products.

Lemma 5.8. Let I,J be ideals on ω.

(1) bσ(I ⊗ J ) ≤ bσ(I).
(2) addω(I ⊗ J ) ≤ addω(I).

Proof. (1) Let {(Eα
k ) : α < bσ(I)} ⊆ MI be a witness for bσ(I). Define Dα

k =
Eα

k × ω for all k ∈ ω and α < bσ(I). Then {(Dα
k ) : α < bσ(I)} ⊆ MI⊗J .

Fix any (Bk) ∈ MI⊗J . Define Ak = {n ∈ ω : (Bk)(n) /∈ J } for all k ∈ ω. Then
(Ak) ∈ MI , so there is α < bσ(I) such that Z = {k ∈ ω : Eα

k ̸⊆ Ak} /∈ Fin. For
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each k ∈ Z, we pick nk,mk ∈ ω such that nk ∈ Eα
k \ Ak and mk ∈ ω \ (Bk)(nk)

(which is possible as nk /∈ Ak implies (Bk)(nk) ∈ J ). Then (nk,mk) ∈ Dα
k \Bk for

each k ∈ Z, so Dα
k ̸⊆ Bk for infinitely many k ∈ ω.

(2) This is an easy modification of the proof of item (1). □

Lemma 5.9. Let I,J be ideals on ω.

(1) bσ(I ⊗ J ) ≤ bσ(J ).
(2) addω(I ⊗ J ) ≤ addω(J ).

Proof. (1) Let {(Eα
k ) : α < bσ(J )} ⊆ MJ be a witness for bσ(J ). Define Dα

k =
ω × Eα

k for all k ∈ ω and α < bσ(J ). Then {(Dα
k ) : α < bσ(J )} ⊆ MI⊗J .

Fix any (Bk) ∈ MI⊗J . Define ik = min{n ∈ ω : (Bk)(n) ∈ J } and Ak =
(Bk)(ik) for all k ∈ ω (note that ik is well defined as {n ∈ ω : (Bk)(n) /∈ J } ∈ I).
For every k ∈ ω, we define Ck =

⋃
j≤k Aj . Then (Ck) ∈MJ , so there is α < bσ(J )

such that Z = {k ∈ ω : Eα
k ̸⊆ Ck} /∈ Fin.

For each k ∈ Z, we pick mk ∈ ω such that mk ∈ Eα
k \Ck. Then for each k ∈ Z we

have (ik,mk) ∈ Dα
k \Bk (as (ik,mk) ∈ Bk would imply mk ∈ (Bk)(ik) = Ak ⊆ Ck),

so Dα
k ̸⊆ Bk for infinitely many k ∈ ω.

(2) This is an easy modification of the proof of item (1). □

Lemma 5.10. bσ(I ⊗ J ) ≥ min{bσ(I), bσ(J )} for every ideals I,J on ω.

Proof. Suppose that κ < min(bσ(I), bσ(J )) and fix any {(Eα
k : k ∈ ω) : α <

κ} ⊆ MI⊗J . We want to define (Ak) ∈ MI⊗J such that for each α < κ we have
Eα

k ̸⊆ Ak only for finitely many k ∈ ω.
For each α < κ and k, n ∈ ω put:

Dα
k = {m ∈ ω : (Eα

k )(m) /∈ J },

Cα
k,n =

{
(Eα

k )(n), if n ∈ ω \Dα
k ,

∅, otherwise.

Then {(Dα
k ) : α < κ} ⊆ MI . Since κ < bσ(I), there is (Bk) ∈ MI such that for

each α < κ we have {k ∈ ω : Dα
k ̸⊆ Bk} ∈ Fin. Moreover, for each n ∈ ω the

family {(
⋃

i≤k C
α
i,n : k ∈ ω) : α < κ} ⊆ MJ , so there is (Bn

k ) ∈ MJ such that

{k ∈ ω :
⋃

i≤k C
α
i,n ̸⊆ Bn

k } ∈ Fin for each α < κ (as κ < bσ(J )).
For every α < κ define fα ∈ ωω by:

fα(n) = max

k ∈ ω :
⋃
i≤k

Cα
i,n ̸⊆ Bn

k

 .

By Proposition 5.3(3c), κ < b, so there is g ∈ ωω such that fα + 1 ≤⋆ g for all
α < κ.

Define:

Ak = (Bk × ω) ∪
⋃
n∈ω

(
{n} ×

(
Bn

k ∪Bn
g(n)

))
.

Fix α < κ. We want to find m ∈ ω such that Eα
k ⊆ Ak for each k > m. Define

n0 = max{n ∈ ω : fα(n) + 1 > g(n)} (n0 is well defined as fα + 1 ≤⋆ g) and:

m = max ({n0} ∪ {fα(n) : n ≤ n0} ∪ {k ∈ ω : Dα
k ̸⊆ Bk})

(m is well defined as {k ∈ ω : Dα
k ̸⊆ Bk} ∈ Fin).

Fix k > m and any (x, y) ∈ Eα
k . We will show that (x, y) ∈ Ak. There are four

possible cases:
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• if x ∈ Dα
k then x ∈ Bk (as k > m ≥ max{k′ ∈ ω : Dα

k′ ̸⊆ Bk′}), so
(x, y) ∈ Bk × ω ⊆ Ak;
• if x /∈ Dα

k and fα(x) < k then (x, y) ∈ Eα
k implies y ∈ (Eα

k )(x) = Cα
k,x ⊆⋃

i≤k C
α
i,x ⊆ Bx

k , so (x, y) ∈ {x} ×Bx
k ⊆ Ak;

• if x /∈ Dα
k and x ≤ n0 then k > m ≥ max{fα(n) : n ≤ n0} ≥ fα(x), so this

case is covered by the previous one;
• if x /∈ Dα

k , fα(x) ≥ k and x > n0 then k ≤ fα(x) < g(x) (by x > n0),
so (x, y) ∈ Eα

k implies y ∈ (Eα
k )(x) = Cα

k,x ⊆
⋃

i≤g(x) C
α
i,x ⊆ Bx

g(x) (as

g(x) > fα(x)), so (x, y) ∈ {x} ×Bx
g(x) ⊆ Ak.

This finishes the entire proof. □

Theorem 5.11. Let I,J be ideals on ω.

(1) bs(I ⊗ J ) = bs(I).
(2) bσ(I ⊗ J ) = min(bσ(I), bσ(J )).
(3) addω(I ⊗ J ) ≤ min{addω(I), addω(J )}

Proof. (1) See [17, Theorem 5.13].
(2) and (3) It follows from Lemmas 5.8, 5.9 and 5.10. □

The following example shows that, in general, there is no way to calculate
addω(I ⊗ J ) using only values addω(I) and addω(J ).

Example 5.12. addω(Fin⊗ Fin) = b, but addω(Fin) =∞.

Proof. The equality addω(Fin) = ∞ follows from Proposition 5.3(2c) as Fin is
countably generated.

Now, we show addω(Fin ⊗ Fin) ≤ b. Let {fα : α < b} be an ≤∗-unbounded
set in ωω. For each α, we define Aα = {(n, k) ∈ ω2 : k ≤ fα(n)}. Then {Aα :
α < b} ⊆ Fin ⊗ Fin, and we claim that for every (Bn) ∈ (Fin ⊗ Fin)ω there is α
with Aα ̸⊆ Bn. Indeed, take any (Bn) ∈ (Fin ⊗ Fin)ω and suppose, for sake of
contradiction, that for every α there is n ∈ ω with Aα ⊆ Bn. Since Bn ∈ Fin⊗Fin,
for every n ∈ ω there is gn ∈ ωω and kn ∈ ω with max((Bn)(k)) ≤ gn(k) for every
k ≥ kn. Let g ∈ ωω be such that gn ≤∗ g for every n ∈ ω (we can find g because
b ≥ ω1). Consequently, fα ≤∗ g for every α < b, a contradiction.

Finally, we show that addω(Fin⊗ Fin) ≥ b. Let A ⊆ Fin⊗ Fin with |A| < b. If
we find (Bn) ∈ (Fin⊗Fin)ω such that for every A ∈ A there is n ∈ ω with A ⊆ Bn,
then add(Fin⊗ Fin, ω) ≥ b, and the proof will be finished.

For every A ∈ A there is fA ∈ ωω and nA ∈ ω such that max(A(n)) ≤ fA(n) for
every n ≥ nA. Since |A| < b, there is g ∈ ωω such that fA ≤∗ g for every A ∈ A.
Hence, for each A ∈ A there is kA ∈ ω such that fA(n) ≤ g(n) for all n > kA.

For every n ∈ ω, we define Bn = (n × ω) ∪ {(i, k) ∈ ω2 : k ≤ g(i)}. Then
Bn ∈ Fin⊗ Fin and A ⊆ Bmax(nA,kA) for every A ∈ A. □

5.3. Some examples and comparisons. Denote by N the σ-ideal of Lebesgue
null subsets of R and recall the definition of additivity of N :

add(N ) = min
{
|A| : A ⊆ N ∧

⋃
A /∈ N

}
.

It is known that ω1 ≤ add(N ) ≤ b ≤ c (see e.g. [1]).

Theorem 5.13.

(1) bσ(Fin) = bs(Fin) = b <∞ = addω(Fin).
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(2) bσ(Fin⊗ {∅}) = bs(Fin⊗ {∅}) = b <∞ = addω(Fin⊗ {∅}).
(3) bσ(Id) = addω(Id) = add(N ) ≤ b = bs(Id).
(4) bσ(I1/n) = addω(I1/n) = add(N ) ≤ b = bs(I1/n).
(5) bσ(Fin⊗ Fin) = bs(Fin⊗ Fin) = addω(Fin⊗ Fin) = b.
(6) bσ({∅} ⊗ Fin) = bs({∅} ⊗ Fin) = addω({∅} ⊗ Fin) = b.
(7) bσ(S) = bs(S) = addω(S) = ω1.

Proof. (1) It follows from Proposition 5.3(3a) and 5.3(1d) and Example 5.12.
(2) The equality addω(Fin⊗{∅}) =∞ follows from Proposition 5.3(2c) as Fin⊗

{∅} is countably generated. The equality bs(Fin ⊗ {∅}) = b follows from [17,
Example 5.15] and bσ(Fin⊗ {∅}) = b follows from Theorem 5.2.

(3) and (4) It is known that add⋆(Id) = add⋆(I1/n) = add(N ) (see e.g. [23]) and
bs(Id) = bs(I1/n) = b (see [17, Corollary 6.4]). Thus, the remaining inequalities
follow from Proposition 5.6 and Corollary 5.7

(5) It follows from item (1), Theorem 5.11(1)(2) and Example 5.12.
(6) It is known that add⋆({∅}⊗Fin) = b (see e.g. [23]) and bs({∅}⊗Fin) = b (see

[17, Theorem 5.13]). Thus, the remaining inequalities follow from Proposition 5.6
and Corollary 5.7

(7) It is known that bs(S) = ω1 (see [17, Theorem 7.4]). Then, using Propo-
sition 5.3(3c) and Theorem 5.2, we obtain bσ(S) = ω1. Below we show that
addω(S) = ω1.

Let Y ⊆ 2ω be any set of cardinality ω1. We claim that A = {Gy : y ∈ Y }, where
Gy = {A ∈ Ω : y ∈ A}, witnesses addω(S) = ω1. Let (Bn) ∈ Iω. Then for each
n ∈ ω there are kn ∈ ω and xn

0 , . . . , x
n
kn
∈ 2ω such that Bn ⊆

⋃
i≤kn

Gxn
i
. Since

|Y | = ω1, we can find y ∈ Y \ {xn
i : n ∈ ω, i ≤ kn}. We will show that Gy ̸⊆ Bn for

all n.
Let n ∈ ω. There is k ∈ ω such that 2k > 2kn and y ↾ k ̸= xn

i ↾ k for all i ≤ kn.
Since 2k > 2kn, we can find pairwise distinct yj ∈ 2k, for j < 2k−1 − 1, such that
y ↾ k ̸= yj and xn

i ↾ k ̸= yj for all i ≤ kn. Then

X = {x ∈ 2ω : x ↾ k = y ↾ k or x ↾ k = yj for some j < 2k−1 − 1} ∈ Ω

and X ∈ Gy \Bn. □

By Theorem 5.2 we know that bσ(I) = min{bs(I), addω(I)} for every ideal I.
The above result shows that

bσ(I) = bs(I) < addω(I)

for some P-ideal (item (1)) as well as for some non-P-ideal (item (2)). Since
add(N ) < b is consistent (see e.g. [1]), we obtain that it is consistent that

bσ(I) = addω(I) < bs(I)

for some P-ideals (items (3) and (4)). Next example shows that the latter is con-
sistent also for some non-P-ideal.

Example 5.14. Consider the ideal I = Fin ⊗ S, which is not a P-ideal. By
Theorems 5.11 and 5.13 and Corollary 5.4 we have bσ(I) = bσ(S) = ω1 and
addω(I) = ω1. On the other hand, bs(I) = bs(Fin) = b (by [17, Theorems 4.2
and 5.13]). It is known that ω1 < b is consistent (see e.g. [1]). Thus, consistently
bσ(I) = addω(I) < bs(I) also for non-P-ideals.
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6. Spaces not distinguishing convergence can be of arbitrary
cardinality

In this section, we show (see e.g. Corollary 6.5) that the properties “X ∈
(I-p,I-σ-u)” “X ∈ (I-p,I-qn)” and “X ∈ (I-qn,I-σ-u)” are of the topological
nature rather than set-theoretic.

Lemma 6.1. Let I,J be ideals on ω such that I ⊆ J . Let X be a topological
space such that for each f ∈ C(X) there is a set Y ⊆ X such that |Y | < bσ(I,J )
and f ↾ (X \ Y ) is constant. Then

fn
I-p−−→ 0 =⇒ fn

J -σ-u−−−−→ 0 for any sequence (fn) in C(X),

Proof. Let (fn) be a sequence in C(X) such that fn
I-p−−→ 0. For each n ∈ ω there

is a set Yn ⊆ X such that |Yn| < bσ(I,J ) and fn ↾ (X \ Yn) is constant. Let
Y =

⋃
{Yn : n ∈ ω} and put Z = X \ Y .

Since fn
I-p−−→ 0 and I ⊆ J , we have fn

J -p−−→ 0.

Since fn ↾ Z are constant for each n and fn ↾ Z
J -p−−→ 0, we obtain fn ↾ Z

J -u−−→ 0.
Since bσ(I,J ) has uncountable cofinality (by Proposition 5.3(3d)), we obtain

|Y | < bσ(I,J ). Thus, we can use Theorem 4.2 to obtain fn ↾ Y
J -σ-u−−−−→ 0.

Since X = Y ∪ Z, we obtain fn
J -σ-u−−−−→ 0. □

Lemma 6.2. Let I,J be ideals on ω such that I ⊆ J . Let X be a topological space
such that there exists a point p ∈ X with the property that |X \N | < bσ(I,J ) for
each neighborhood N of p. Then

fn
I-p−−→ 0 =⇒ fn

J -σ-u−−−−→ 0 for any sequence (fn) in C(X),

Proof. Let (fn) be a sequence in C(X) such that fn
I-p−−→ 0. We will show that we can

apply Lemma 6.1 to the space X. Let f : X → R be continuous. Using continuity
of f only at the point p, for each n ∈ ω we find a neighborhood Nn of p such that
|f(p)− f(x)| < 1/n for each x ∈ Nn. Let Y = X \

⋂
{Nn : n ∈ ω}. Since bσ(I,J )

has uncountable cofinality (by Proposition 3(3d)), we obtain |Y | < bσ(I,J ). Then
|f(p)− f(x)| < 1/n for each x ∈ X \ Y and each n ∈ ω. Consequently, f ↾ (X \ Y )
is constant with the value f(p). □

The following theorem shows that one cannot strengthen Theorem 4.5 to all
normal spaces.

Theorem 6.3. Let I,J be ideals on ω such that I ⊆ J . There exists a Hausdorff
compact (hence normal) space X of arbitrary cardinality such that

fn
I-p−−→ 0 =⇒ fn

J -σ-u−−−−→ 0 for any sequence (fn) in C(X).

Proof. Obviously every finite space X has the required property. Let D be an in-
finite (of arbitrary cardinality) discrete spaces. Then D is a Hausdorff and locally
compact space but not a compact space. Thus, the Alexandroff one-point compact-
ification X = D ∪ {∞} of D is a Hausdorff compact space. In particular, X is a
normal space (see e.g. [15, Theorem 3.1.9]).

We will show that we can apply Lemma 6.2 to the space X. Recall that open
neighborhoods of the point ∞ are of the form N = (D \K) ∪ {∞} where K is a
compact subset of D (see e.g. [15, Theorem 3.5.11]). Since every compact subset of
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D is finite, we have that X \N is finite for every neighborhood N of the point ∞.
In particular, |X \N | < bσ(I,J ) (by Proposition 5.3(3c)). □

In the above theorem, all but one point are isolated in the constructed spaces.
Below, we show that there also are required spaces (at least of cardinality up to the
cardinality of the continuum) in which only countably many points are isolated.

Theorem 6.4. Let I,J be ideals on ω such that I ⊆ J . There exists a Haus-
dorff separable, sequentially compact, compact (hence normal) space X of arbitrary
cardinality up to c such that only countably many points of X are isolated and

fn
I-p−−→ 0 =⇒ fn

J -σ-u−−−−→ 0 for any sequence (fn) in C(X).

Proof. Obviously every finite space X has the required property. Let A be an
infinite (of arbitrary cardinality up to c) almost disjoint family A of infinite subsets
of ω (see e.g. [25, Lemma 9.21]).

Let Ψ(A) = ω ∪A and introduce a topology on Ψ(A) as follows: the points of ω
are isolated and a basic neighborhood of A ∈ A has the form {A}∪ (A \F ) with F
finite.

Let Φ(A) = Ψ(A)∪{∞} be the Alexandroff one-point compactification of Ψ(A).
It is known (see e.g. [21]) that Φ(A) is Hausdorff, compact, sequentially compact
and separable.

We will show that we can apply Lemma 6.2 to the space Φ(A). Recall that open
neighborhoods of the point ∞ are of the form U = (Ψ(A) \K) ∪ {∞} where K is
a compact subset of Ψ(A) (see e.g. [15, Theorem 3.5.11]). Since for every compact
subset K of Ψ(A), both sets K ∩A and (K ∩ω) \

⋃
{A : A ∈ K ∩A} are finite (see

e.g. [21]), we obtain that Φ(A) \ N is countable for every neighborhood N of the
point ∞. In particular, |Φ(A) \N | < bσ(I,J ) (by Proposition 5.3(3c)). □

Corollary 6.5. For every ideal I the classes (I-p,I-σ-u), (I-p,I-qn) and (I-qn,I-
σ-u) contain spaces of arbitrary cardinality.

Proof. Let I be an ideal and X be a space from Theorem 6.3. Then

fn
I-p−−→ 0 =⇒ fn

I-σ-u−−−→ 0 for any sequence (fn) in C(X).

On the other hand, by Proposition 3.1 we have

fn
I-σ-u−−−→ 0 =⇒ fn

I-p−−→ 0 for any sequence (fn) in C(X).

Thus, X ∈ (I-p,I-σ-u). Now, Corollary 3.6 implies that X ∈ (I-p,I-qn) and
X ∈ (I-qn,I-σ-u). □

6.1. Subsets of reals not distinguishing convergence. Obviously, countable
subspaces of R are in the classes (I-p,I-σ-u), (I-p,I-qn) and (I-qn,I-σ-u). Un-
countable spaces constructed in the proof of Corollary 6.5 are not homeomorphic to
any subspace of R as those spaces contain uncountable discrete subspaces. Below
we show that consistently there is an uncountable subspace of R in the considered
classes at least for the ideal I = {∅} ⊗ Fin.

Recall that an uncountable set S ⊆ R is called a Sierpinski set if S ∩ N is
countable for every Lebesgue null set N ⊆ R.

Theorem 6.6. Let I = {∅} ⊗ Fin.

(1) Every Sierpiński set belongs to the classes (I-p,I-σ-u), (I-p,I-qn) and (I-
qn,I-σ-u).
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(2) Consistently (e.g. under the Continuum Hypothesis), there exists an un-
countable subspace of R which belongs to the classes (I-p,I-σ-u), (I-p,I-qn)
and (I-qn,I-σ-u).

Proof. (1) Let S ⊆ R be a Sierpiński set. Without loss of generality we can assume
that S ⊆ [0, 1]. By Corollary 3.6, it is enough to show that S ∈ (I-p,I-σ-u).
Let (fn) be a sequence in C(S) which is I-pointwise convergent to zero. By [24,
Theorem 5], there is a set A ∈ I such that the subsequence (fn : n ∈ ω \ A) is
Fin-pointwise convergent to zero. There are a Gδ set G ⊆ [0, 1] and continuous
functions gn : G → R such that S ⊆ G and fn = gn ↾ S for every n ∈ ω \ A
(see e.g. [26, Theorem 3.8]). It is not difficult to see that the set B = {x ∈
G : (gn(x) : n ∈ ω \A) is Fin-convergent to zero} is Borel and S ⊆ B. Applying
repeatedly Egorov’s theorem (see e.g. [12, Proposition 3.1.4]) to the sequence (gn ↾
B : n ∈ ω \A), we find a sequence of pairwise disjoint Borel sets {Ck : k ∈ ω} such
that (gn ↾ Ck : n ∈ ω\A) is uniformly convergent to zero and N = B\

⋃
{Ck : k ∈ ω}

is Lebesgue null. Then S∩N is countable, so (fn ↾ (S∩N) : n ∈ ω\A) is σ-uniformly
convergent to zero. Consequently, (fn : n ∈ ω \ A) is σ-uniformly convergent to
zero. Since A ∈ I, we obtain that (fn : n ∈ ω) is I-σ-uniformly convergent to zero.

(2) It follows from item (1) as under the Continuum Hypothesis there is a
Sierpiński set (see e.g. [28, Theorem 2.2]). □

Question 6.7. Let I be an arbitrary ideal. Do the classes (I-p,I-σ-u), (I-p,I-qn)
and (I-qn,I-σ-u) contain an uncountable subspace of R?

7. Bounding numbers of binary relations

If R is a binary relation, then by dom(R) and ran(R) we denote the domain and
range of R, respectively, i.e. dom(R) = {x : ∃y ((x, y) ∈ R)} and ran(R) = {y :
∃x ((x, y) ∈ R)}. A set B ⊆ dom(R) is called R-unbounded if for every y ∈ ran(R)
there is x ∈ B with (x, y) /∈ R. Following Vojtáš [37], for a binary relation R we
define

b(R) = min{|B| : B is an R-unbounded set}.
It is easy to see that the bounding number b is equal to the bounding number

of the relation ≤∗ on ωω i.e. b = b(≤∗).

Definition 7.1.

(1) The binary relation ⪰ is define by dom(⪰) = ran(⪰) = ωω and

x ⪰ y ⇐⇒ {m ∈ ω : ∃k ∈ ω (x(k) ≤ m < y(k))} ∈ Fin.

(2) The binary relation ≤ω is defined by dom(≤ω) = 2ω, ran(≤ω) = (2ω)ω and

x ≤ω (yk) ⇐⇒ ∃k ∈ ω ∀n ∈ ω(x(n) ≤ yk(n)).

(3) For an ideal I on ω, the binary relation ≤I is defined by dom(≤I) = ωω,
ran(≤I) = ωω and

x ≤I y ⇐⇒ {n ∈ ω : x(n) > y(n)} ∈ I.

In a similar manner we define <I , ≥I and >I .

Proposition 7.2. The relation ⪰ is a preorder on ωω i.e. the relation ⪰ is reflexive
and transitive.



SPACES NOT DISTINGUISHING IDEAL POINTWISE AND σ-UNIFORM CONVERGENCE 23

Proof. Since reflexivity is obvious, we show only transitivity. If f ⪰ g and g ⪰ h,
then put: n = max({m ∈ ω : ∃k ∈ ω (f(k) ≤ m < g(k))}∪{m ∈ ω : ∃k ∈ ω (g(k) ≤
m < h(k))}). Fix any m > n. Then for each k ∈ ω, if m < h(k) then also m < g(k),
and consequently m < f(k). Hence, {m ∈ ω : ∃k ∈ ω (f(k) ≤ m < h(k))} ⊆ {i ∈
ω : i ≤ n} ∈ Fin. □

Notation. For an ideal I, we define

CI = {x ∈ 2ω : x−1[{1}] ∈ I} = {1A : A ∈ I},
DI = {x ∈ ωω : x−1[{n}] ∈ I for every n ∈ ω}.

Theorem 7.3. Let I,J ,K be ideals on ω.

(1) bσ(I,J ) = b(⪰ ∩(DI ×DJ )).
(2) addω(I,J ) = b(≤ω ∩(CI × (CJ )ω)).
(3) bs(I,J ,K) = b(≥I ∩(DK ×DJ )). If J ∩ K ⊆ I, then bs(I,J ,K) = b(>I
∩(DK ×DJ )).

Proof. (1) First, we show bσ(I,J ) ≤ b(⪰ ∩(DI × DJ )). Let {fα : α < b(⪰
∩(DI ×DJ ))} be unbounded in (⪰ ∩(DI ×DJ )). Define Eα

k = f−1
α [[0, k]] for each

k ∈ ω and α < b(⪰ ∩(DI×DJ )). Then E = {(Eα
k ) : α < b(⪰ ∩(DI×DJ ))} ⊆ MI

as each fα is in DI . We claim that E witnesses bσ(I,J ).
Fix (Ak) ∈MJ and define Bk = (Ak ∪{k}) \

⋃
i<k Bi. Then (Bk) is a partition

of ω into sets belonging to J . Define a function g ∈ ωω by

g(n) = k ⇔ n ∈ Bk.

Then g ∈ MJ , so there is α < b(⪰ ∩(DI × DJ )) such that fα ̸⪰ g. Hence, there
are infinitely many m ∈ ω such that fα(nm) ≤ m < g(nm) for some nm ∈ ω.
Observe that in this case we have nm ∈ Eα

m and nm /∈ Am (as nm ∈ Am would
imply nm ∈

⋃
i≤m Bi and consequently g(nm) ≤ m).

Second, we show bσ(I,J ) ≥ b(⪰ ∩(DI × DJ )). Let {(Eα
k ) : α < bσ(I,J )} ⊆

MI be a witness for bσ(I,J ). For each α < bσ(I,J ) define fα ∈ ωω by:

fα(n) = k ⇔ n ∈ Bα
k ,

where Bα
k = (Eα

k ∪ {k}) \
⋃

i<k B
α
i . Note that each fα is well defined and belongs

to DI as (Bα
k ) is a partition of ω into sets belonging to I. We claim that {fα : α <

b(I,J )} is unbounded in (⪰ ∩(DI ×DJ )).
Fix any g ∈ DJ and define Ak = g−1[[0, k]]. Then (Ak) ∈ MJ , so there is

α < bσ(I,J ) such that Eα
k ̸⊆ Ak for infinitely many k ∈ ω. Note that if n ∈ Eα

k \Ak

for some k ∈ ω, then fα(n) ≤ k (as n ∈ Eα
k ⊆

⋃
i≤k B

α
i ) and k < g(n). Thus, there

are infinitely many k ∈ ω such that fα(n) ≤ k < g(n) for some n ∈ ω.
(2) It easily follows from the fact that A ⊆ B ⇐⇒ 1A(n) ≤ 1B(n) for every

n ∈ ω.
(3) See [17, Theorem 3.10]. □

8. Subsets of reals distinguishing convergence

In this section, we show (Theorem 8.2) that, in a sense, the connection be-
tween cardinals bσ(I) (bs(I), addω(I), resp.) and non(I-p,I-σ-u) (non(I-p,I-qn),
non(I-qn,I-σ-u), resp.) is even deeper than that following from the proof of Corol-
lary 4.6, as here we obtain subspaces of R as spaces which realize the minimum
value of spaces not distinguishing the considered convergences.
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Lemma 8.1. Let I,J ,K be ideals on ω.

(1) For each n ∈ ω, let fn : ωω → R be given by fn(x) = 1
x(n)+1 , for all x ∈ ωω.

Then
(a) ∀x ∈ ωω (fn(x)

I−→ 0 ⇐⇒ x ∈ DI),

(b) ∀X ⊆ DI (fn ↾ X
K-σ-u−−−−→ 0 ⇐⇒ X is bounded in (⪰ ∩(DI ×DK)).

(2) For each n ∈ ω, we define gn : 2ω → R by gn(x) = x(n) for all x ∈ 2ω.
Then

(a) ∀X ⊆ 2ω (gn ↾ X
J -qn−−−→ 0 ⇐⇒ X ⊆ CJ ),

(b) ∀X ⊆ CJ (gn ↾ X
K-σ-u−−−−→ 0 ⇐⇒ X is bounded in (≤ω ∩(CJ×(CK)ω)).

(3) For each n ∈ ω, we define hn : ωω → R by hn(x) = 1
x(n)+1 for all x ∈ ωω.

Then
(a) ∀x ∈ ωω (hn(x)

I−→ 0 ⇐⇒ x ∈ DI),

(b) ∀X ⊆ DI (hn ↾ X
J -qn−−−→ 0 ⇐⇒ X is bounded in (≥J ∩(DI ×DJ ))).

Proof. (1a) If x ∈ DI and ε > 0 then find k ∈ ω such that ε ≥ 1
k+1 and observe

that:

{n ∈ ω : fn(x) ≥ ε} ⊆
{
n ∈ ω :

1

x(n) + 1
≥ 1

k + 1

}
= x−1[[0, k]] ∈ I.

On the other hand, if x /∈ DI then there is k ∈ ω such that x−1[{k}] /∈ I. Then{
n ∈ ω : fn(x) ≥ 1

k+1

}
= x−1[[0, k]] ⊇ x−1[{k}] /∈ I.

(1b) If X ⊆ DI is bounded in (⪰ ∩(DI × DK)) by some g ∈ DK then for each
x ∈ X denote mx = max {m ∈ ω : ∃k∈ω x(k) ≤ m < g(k)} (recall that this set is
finite since x ⪰ g). Define Xm = {x ∈ X : mx = m} for each m ∈ ω. Then

X =
⋃

m∈ω Xm. We claim that fn ↾ Xm
K-u−−→ 0 for each m ∈ ω.

Fix m ∈ ω and ε > 0. Find k ∈ ω such that ε ≥ 1
k+1 . Since g ∈ DK,

g−1[0,max{m + 1, k}] ∈ K. Fix n ∈ ω \ g−1[0,max{m + 1, k}] and x ∈ Xm. Then
g(n) > m + 1, so x(n) ≥ g(n) (otherwise we would have x(n) ≤ g(n) − 1 < g(n)
which contradicts the choice of mx as g(n)− 1 > m = mx). Thus, we have:

ε ≥ 1

k + 1
>

1

g(n) + 1
≥ 1

x(n) + 1
= fn(x)

(as g(n) > k).
Assume now that X ⊆ DI is unbounded in (⪰ ∩(DI × DK)). Suppose to the

contrary that X =
⋃

m∈ω Xm for some sets Xm such that fn ↾ Xm
K-u−−→ 0 for each

m ∈ ω.
Then for each m, k ∈ ω we can find Am

k ∈ K such that fn(x) < 1
k+1 for all

n ∈ ω \ Am
k and x ∈ Xm. Define Ak =

⋃
i≤k A

i
k (observe that if n ∈ ω \ Ak and

x ∈
⋃

i≤k Xi then fn(x) < 1
k+1 ). Define Bk = (Ak ∪ {k}) \

⋃
i<k Bi, for all k ∈ ω,

and g ∈ DK by:

g(n) = k ⇔ n ∈ Bk

(g is well defined as (Bk) ∈ PK).
Since X is unbounded, there is x ∈ X such that x ̸⪰ g. Let m ∈ ω be such that

x ∈ Xm. Then there is m′ > m such that x(n) ≤ m′ < g(n) for some n ∈ ω. Since
m′ < g(n), n /∈ Am′ , so fn(x) < 1

m′+1 (by x ∈ Xm ⊆
⋃

i≤m′ Xi). On the other
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hand, fn(x) = 1
x(n)+1 ≥

1
m′+1 , since x(n) ≤ m′. Thus, we obtained a contradiction,

which proves that fn ↾ X
K-σ-u−−−−→ 0 does not hold.

(2a, =⇒ ) Let X ⊆ 2ω be such that gn ↾ X
J -qn−−−→ 0. Then there exists a

J -convergent to zero sequence (εn) of positive reals such that {n ∈ ω : |gn(x)| ≥
εn} ∈ J for every x ∈ X. Let A = {n ∈ ω : εn > 1/2}. Then A ∈ J and
{n ∈ ω : x(n) = 1} = {n ∈ ω : |gn(x)| > 1/2} ⊆ {n ∈ ω : |gn(x)| ≥ εn} ∪A ∈ J for
every x ∈ X. Thus, x ∈ CJ for every x ∈ X, and consequently X ⊆ CJ .

(2a, ⇐= ) Let X ⊆ CJ . We claim that any sequence (εn) of positive reals which

J -converges to zero witnesses that gn ↾ X
J -qn−−−→ 0. Indeed, take any sequence (εn)

of positive reals which J -converges to zero and fix x ∈ X. Then A = {n ∈ ω : εn >
1/2} ∈ J and {n ∈ ω : |gn(x)| ≥ εn} = {n ∈ ω : x(n) ≥ εn} ⊆ {n ∈ ω : x(n) ≥
1/2} ∪ {n ∈ ω : εn > 1/2} = x−1[{1}] ∪A ∈ J .

(2b, =⇒ ) Let X ⊆ CJ and assume that fn ↾ X
K-σ-u−−−−→ 0. Then there exists a

cover {Xk : k ∈ ω} of X such that fn ↾ Xk
K-u−−→ 0 for every k ∈ ω. For every k ∈ ω,

we define Ak = {n ∈ ω : ∃x ∈ Xk (|gn(x)| > 1/2)} and yk = 1Ak
. Since Ak ∈ K for

every k ∈ ω, we have (yk) ∈ (CK)ω. If we show that x ≤ω (yk) for every x ∈ X,
the proof will be finished. Take any x ∈ X. Then there is k ∈ ω with x ∈ Xk. If
n ∈ Ak, then x(n) ≤ 1 = yk(n), and if n ∈ ω \ Ak, then x(n) = gn(x) ≤ 1/2, so
x(n) = 0 and consequently x(n) = 0 ≤ yk(n). All in all, x ≤ω (yk).

(2b, ⇐= ) Let X ⊆ CJ be bounded in (≤ω ∩(CJ ×(CK)ω)). Then there is (yk) ∈
(CK)ω such that for every x ∈ X there is k ∈ ω with x(n) ≤ yk(n) for every n ∈ ω.
For every k ∈ ω, we define Xk = {x ∈ X : x(n) ≤ yk(n) for every n ∈ ω}. Then

{Xk : k ∈ ω} is a cover of X. If we show that gn ↾ Xk
K-u−−→ 0 for every k ∈ ω, the

proof will be finished. Take any k ∈ ω and ε > 0. Then {n ∈ ω : ∃x ∈ Xk (|gn(x)| ≥
ε)} = {n ∈ ω : ∃x ∈ Xk (x(n) ≥ ε)} ⊆ {n ∈ ω : yk(n) ≥ ε)} ⊆ y−1

k [{1}] ∈ K.
(3a) This is item (1a) as fn = hn for all n ∈ ω.

(3b, =⇒ ) Let X ⊆ DI be such that hn ↾ X
J -qn−−−→ 0. Then there exists a

J -convergent to zero sequence (εn) of positive reals such that {n ∈ ω : |hn(x)| ≥
εn} ∈ J for every x ∈ X. We define y ∈ ωω by y(n) = max{0, [1/εn− 1]} for every
n ∈ ω (here [r] means the integer part of x). We claim that y ∈ DJ and y is a
≥J -bound of a set X.

To see that y ∈ DJ , we fix k ∈ ω and notice {n ∈ ω : y(n) ≤ k} = {n ∈ ω :
1/εn − 1 < k + 1} = {n ∈ ω : εn > 1/(k + 2)} ∈ J as (εn) is J -convergent to zero.

To see that y is a ≥J -bound of a set X, we fix x ∈ X and notice {n ∈ ω : x(n) <
y(n)} ⊆ {n ∈ ω : x(n) < 1/εn − 1} = {n ∈ ω : 1

x(n)+1 > εn} = {n ∈ ω : |hn(x)| >

εn} ∈ J as the sequence (εn) witnesses hn ↾ X
J -qn−−−→ 0.

(3b, ⇐= ) Let X ⊆ DI be ≥J -bounded in (≥J ∩(DI × DJ )). Then there
exists y ∈ DJ such that {n ∈ ω : x(n) < y(n)} ∈ J for every x ∈ X. We define a
sequence (εn) by εn = 1/(y(n)+1) for every n ∈ ω. We claim that (εn) is a witness

for hn ↾ X
J -qn−−−→ 0

To see that (εn) is J -convergent to zero, we fix ε > 0 and notice {n ∈ ω : εn ≥
ε} = {n ∈ ω : y(n) ≤ 1/ε− 1} ∈ J as y ∈ DJ .

Now, we fix x ∈ X and notice that {n ∈ ω : |hn(x)| ≥ εn} = {n ∈ ω : x(n) ≤
1/εn − 1} ⊆ {n ∈ ω : x(n) < y(n)} ∪ {n ∈ ω : x(n) ≤ 1/εn − 1 ∧ x(n) ≥ y(n)} ⊆
{n ∈ ω : x(n) < y(n)} ∪ {n ∈ ω : y(n) ≤ 1/εn − 1} ∈ J as y ∈ DJ . □
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Theorem 8.2. Let I be an ideal on ω.

(1) There is X ⊆ ωω such that |X| = non(I-p,I-σ-u) and X /∈ (I-p,I-σ-u).
(2) If I is not countably generated then there is X ⊆ 2ω such that |X| =

non(I-qn,I-σ-u) and X /∈ (I-qn,I-σ-u).
(3) There is X ⊆ ωω such that |X| = non(I-p,I-qn) and X /∈ (I-p,I-qn).

Proof. (1) Since bσ(I) = b(⪰ ∩(DI × DI)) < ∞ (by Theorem 7.3(1) and Propo-
sition 5.3(3c)), there is a set X ⊆ DI which is unbounded in ⪰ ∩(DI × DI) and
|X| = bσ(I). By Corollary 4.6(1), |X| = non(I-p,I-σ-u) and by Lemma 8.1(1) we
obtain X /∈ (I-p,I-σ-u).

(2) Since addω(I) = b(≤ω ∩(CI×(CJ )ω)) <∞ (by Theorem 7.3(2) and Proposi-
tion 5.3(2c)), there is a set X ⊆ CI which is unbounded in (≤ω ∩(CI × (CJ )ω)) and
|X| = addω(I). By Corollary 4.6(3), |X| = non(I-qn,I-σ-u) and by Lemma 8.1(2)
we obtain X /∈ (I-qn,I-σ-u).

(3) Since bs(I) = b(⪰ ∩(DI × DI)) < ∞ (by Theorem 7.3(3) and Proposi-
tion 5.3(1c)), there is a set X ⊆ DI which is unbounded in ≥J ∩(DI × DJ ) and
|X| = bs(I). By Corollary 4.6(2), |X| = non(I-p,I-qn) and by Lemma 8.1(3) we
obtain X /∈ (I-p,I-qn). □

Remark. Since ωω is homeomorphic with R \ Q and 2ω is homeomorphic with
the Cantor ternary subset of R (see e.g. [26]), we can write “X ⊆ R” instead of
“X ⊆ ωω” and “X ⊆ 2ω” in Theorem 8.2.

Remark. We know that non(I-p,I-σ-u) = bσ(I) ≤ b (by Corollary 4.6 and Propo-
sition 5.3(3c)) and it is known that b < c is consistent (see e.g. [1]). Consequently, a
subset of the reals which distinguishes the considered convergences and constructed
in the proof of Theorem 8.2 can have the cardinality strictly less than the cardi-
nality of the continuum. On the other hand, the whole set DI is a subset of reals
of cardinality continuum which distinguishes between I-pointwise and I-σ-uniform
convergences (by Lemma 8.1(1) as DI is unbounded in ⪰ ∩(DI × DI)). Similar
reasoning can be performed in the case of the classes (I-qn,I-σ-u) (provided that
I is not countably generated) and (I-p,I-qn).

9. Distinguishing between spaces not distinguishing convergences

If bσ(J ) < bσ(I), then using Corollary 4.6(1) we see that there exists a space
X ∈ (I-p,I-σ-u) such that X /∈ (J -p,J -σ-u), and using Theorem 8.2(1), one
can even find X ⊆ R with the above property (and similarly for other types of
considered convergences). As an application of this method we have:

Proposition 9.1.

(1) The following statments are consistent with ZFC.
(a) There is X ⊆ R such that X ∈ (Fin-p,Fin-σ-u) and X /∈ (Id-p,Id-σ-u).
(b) There is X ⊆ R such that X ∈ (Fin-p,Fin-qn) and X /∈ (S-p,S-qn).

(2) There is X ⊆ R such that X ∈ (Fin-qn,Fin-σ-u) and X /∈ (Id-qn,Id-σ-u).

Proof. (1a) By Theorem 5.13, we have bσ(Fin) = b and bσ(Id) = add(N ) and it is
known (see e.g. [1]) that add(N ) < b is consistent with ZFC.

(1b) By Theorem 5.13, we have bσ(Fin) = b and bσ(S) = ω1 and it is known
(see e.g. [1]) that ω1 < b is consistent with ZFC.

(2) By Theorem 5.13, we have addω(Fin) =∞ > add(N ) = addω(Id). □
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However, if bσ(J ) = b (so it has the largest possible value, as shown in Proposi-
tion 5.3(3c)), then the above described method is useless for distinguishing between
spaces not distinguishing considered convergences. In particular, this is the case
for J = Fin (by Proposition 5.3(3a)).

Question 9.2. Do there exist a space X and an ideal I such that X ∈ (I-p,I-σ-u)
but X /∈ (Fin-p,Fin-σ-u)?
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related notions, Colloq. Math. 146 (2017), no. 2, 265–281. MR 3622377
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37. Peter Vojtáš, Generalized Galois-Tukey-connections between explicit relations on classical
objects of real analysis, Set theory of the reals (Ramat Gan, 1991), Israel Math. Conf. Proc.,

vol. 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 619–643. MR 1234291
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