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CLASSIFICATION OF 
SURFACES

Theorem: Closed connected 2-manifolds are 
classified by their intersection form on the first 
homology group (over Z/2). Every unimodular 
form arises exactly once. 

The same classification holds for homotopy 
respectively diffeomorphism types. 



WHITNEY’S TRICK

W

Add time as the 4-th dimension: red arc becomes a disk.

also known as a Whitney move



CLASSIFICATION OF HIGH 
DIMENSIONAL MANIFOLDS

Get Smale's h-cobordism theorem which implies

Theorem: For n>2, closed (n-1)-connected 2n-
manifolds are classified by their intersection form 
(and quadratic refinement) on the middle n-th 
homotopy = homology group. 
Every unimodular quadratic form arises! Homotopy 
and diffeomorphism classification are very similar.



THE MAIN PROBLEM IN 
DIMENSION 4

W1

W2

W[1,2]

p

WWhitney disks may be assumed 
embedded and framed;
they look as in our picture:


But other sheets can intersect 
them!



LINK ON THE BOUNDARY

A neighborhood of the Whitney 
disk  W is a 4-ball (3-ball x time) 
and its boundary is a 3-sphere. 


The three disks in 4-ball have 
their boundary in this 3-sphere,
the (ugly) Borromean rings:



MILNOR'S CONTRIBUTIONS
The Borromean rings are not slice, i.e. they don't bound 
3 disjoint disks in the 4-ball.  Milnor invariant μ(123)=1. 
That makes 4-manifolds special and interesting!

Nevertheless, the homotopy type of 1-connected 
closed 4-manifolds is completely determined by their 
intersection form on second homotopy group.

• Which forms λare realized ?

• Are the 4-manifolds unique ?



ROKHLIN'S THEOREM

Freedman-Kirby: If c is a characteristic surface in 
a closed 4-manifold M with intersection form λ 

and quadratic refinementτthen (mod 16) have

signature λ= 8 KS(M) + 8τ(c) + λ(c, c)

For a smooth closed spin 4-manifold the 
signature is divisible by 16. In particular, the even 
definite form E8 is not realized smoothly.  



W1

W2

W[1,2]

p

HIGHER ORDER 
INTERSECTIONS

generic) immersed sphere S : S2 → M . This means that S looks locally like R2 × 0 ⊂ R4,
except for finitely many double points around which S looks like R2× 0∪ 0×R2 ⊂ R4. One
can add more local self-intersection points to S until their algebraic sum is zero. This implies
that one can choose Whitney disks Wi, pairing all these self-intersection points. These are
(topologically generic) immersed disks Wi : D2 → M whose boundary consists of two arcs,
each going between the two intersection points but on different sheets, see Figure 1.

Wi

S

S

S

Figure 1. A (framed) Whitney disk and a Whitney move.

We will explain in Lemma 4 why τ(c) equals an intersection invariant τ1(S,Wi), computed
by summing the (topologically generic) intersections between an immersed sphere S, repre-
senting the characteristic c ∈ H2(M) = Zm, and (the interiors of) framed Whitney disks Wi

for S:
τ(c) = τ1(S,Wi) :=

∑

i

#{S ! Wi} mod 2

In [7], this invariant was called the Kervaire-Milnor invariant because these authors first
proved Rohlin’s formula below [9] for the case where M is smooth and c is represented by
an embedded sphere, implying the properties τ(c) = 0 = KS(M).

Remark 3. The figure above shows a framed Whitney disk Wi in the sense that there are
two disjoint parallel copies of Wi, as needed for the Whitney move on the right hand side.
In general, a Whitney disk comes with a framing of its boundary and hence admits a well
defined Euler number in Z, its twist. The operation of boundary twisting [7] allows to assume
that all Whitney disks are framed, i.e. have twist zero. Moreover, one can also assume that
the Wi are (disjointly) embedded disks, by pushing all (self)-intersections off the boundary.

A generalization of Rohlin’s theorem [6] says that this geometric invariant determines the
Kirby-Siebenmann invariant of a closed oriented 4–manifold M by the formula

KS(M) ≡ τM(c) +
λM(c, c)− σ(λM)

8
mod 2

explaining the equivalence of criteria (iv) and (v) above. In Section 2 we’ll recall a definition
of τM which makes the above formula hold for all closed oriented 4–manifolds M (without
assuming that c is spherical).

The 2-complex W := S ∪ Wi in M is referred to as a Whitney tower of order 1 with
body S and order 1 Whitney disks Wi. The invariant τ1(W) = τ1(S,Wi) used above is the
first intersection invariant of such Whitney towers. It has again order 1, the order zero

2

Freedman-Quinn-Stong: Geometric formula for τ:

Assume S is a characteristic 
sphere in the 4-manifold, 
representing the element c, such 
that all self- intersections of S are 
paired by Whitney disks Wi. 

S

S

S

Wi



FREEDMAN'S CLASSIFICATION

Even forms determine the manifold uniquely, any odd form is 
realized by exactly two 4–manifolds, distinguished by KS or τ.

Any unimodular form is realized as the intersection form of a 
closed simply-connected topological 4–manifold.

• Infinite cyclic [Freedman-Quinn]

• Finite cyclic [Hambleton-Kreck]

• solvable Baumslag-Solitar groups [H-K-T]:

Classification for other fundamental open, except:



SMOOTH 4-MANIFOLDS
Very exciting long story about relation to Gauge 
theory, started by Simon Donaldson. Briefly:

• The only definite forms that are realized smoothly are 
diagonalizable.

• 11/8-conjecture (Furuta's10/8-Theorem) predicts 
smooth realizability for even forms. 

• Most 4-manifolds have (infinitely many) distinct smooth 
structures, including Euclidean 4-space! Open: 4-sphere.



SYMMETRIC WHITNEY TOWER



WITH COCHRAN & ORR
• Levine-Tristran signatures vanish if knot bounds a 
symmetric Whitney tower of height 2

• Casson-Gordon signatures vanish if knot bounds a 
symmetric Whitney tower of height 3

•  There are von Neumann signatures obstructing inductive 
existence of height n symmetric Whitney towers for all n. 

Cochran-Harvey-Leidy: All iterated quotients are infinitely 
generated groups with lots of torsion. 



SIMPLIFY TO HIGHER 
ORDER WHITNEY DISKS

Order 2



THAT LEAD TO HIGHER 
ORDER WHITNEY TOWERS



Whitney tower concordance of classical links 13

constructions (section 4.3). These geometric constructions will explain the origin of
the framing relations introduced above in Definition 1.6.

Setting T̃2k := T2k in even orders, Theorem 5.9 will show that the reduced realization
maps R̃n : T̃n → Wn are isomorphisms in three quarters of the cases, in close analogy
with Theorem 1.13 above. Then the higher-order Arf invariants will again appear in the
other quarter of cases, and Conjecture 1.17 will have an analogous expression in terms
of the framed Whitney tower filtration classification as the statement: “the realization
maps R̃n : T̃n →Wn are isomorphisms for all n” (section 5.3).

However, the analogy with Theorem 1.13 does not hold for the Milnor invariants µn

in the framed filtration, leading to the appearance of the higher-order Sato-Levine
invariants in the classification of the framed filtration described in Corollary 5.11. This
subtle interaction between Milnor invariants and framing obstructions is the reason
why the framed classification is trickier to describe.

A table of the framed filtration groups Wn(m) for low values of n, m is given in Figure 9,
where the higher-order Arf invariant Arf2 appears in order 5. The higher-order Sato-
Levine invariants correspond to 2-torsion in all odd orders (for m > 1), and the ranges
of possible ranks of the 2-torsion subgroups of the groups W5(m) correspond to the
possible ranks of Arf2 (as in Figure 8).

1 2 3 4 5
0 3 6 10 15

1 2
3
2 ⊕ 6

2
4 ⊕ 10

2
10 ⊕ 15

2
2 0 6 20 50

3 0 2
2

6 ⊕ 8
2

36 ⊕ 20
2

126 ⊕ 40
2

4 0 3 28 146 540

5 0 e2
2

36 ⊕ e3
2

340 ⊕ e4
2

1740 ⊕ e5
2

6 0 6 126 1200 7050

Figure 9: A table of the groups Wn(m), where m runs horizontally and n runs vertically. The
possible ranges of the torsion exponents in order 5 depend on the currently unknown ranks of
Arf2 : 3 ≤ e2 ≤ 4, 18 ≤ e3 ≤ 21, 60 ≤ e4 ≤ 66, 150 ≤ e5 ≤ 160.

For n = 0, the groups come from trees i−− j, and are detected by linking numbers for
i %= j and framings for i = j. For order n = 1, the generators come (via R1 ) from trees

i−<j
k . If all indices are distinct then they are detected by Milnor’s triple invariants

µ(ijk). However, in T̃1 repeating indices also give nontrivial elements of order 2. If

order n

number m of link components

COMPUTATION OF Wn(m)
Group of m-component (framed) links in 3-sphere, 
bounding Whitney tower of order exactly n in 4-ball. 



KEY: OUR 4-DIMENSIONAL
JACOBI IDENTITY 

4 4 43 3 3

1 1 12 2 2

W(3,4)

W(4,1) W(2,4)W(3,(4,1))

W(2,(3,4))

W(1,(2,4))

Proof is an exercise in visualization:

= 0
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START WITH
FOUR SMALL SPHERES
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PICK THREE WHITNEY DISKS
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MOVE WHITNEY ARCS
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GET A WHITNEY TOWER 
OF ORDER 2

W(3,4)

W
(2,(3,4))
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2
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REMOVE INTERSECTIONS


