WHITNEYTOWERS
 IN 4-MANIFOLDS

Peter Teichner

| 4th Andrzej Jankowski Memorial Lecture

Gdansk, June 2012

New results joint with Jim Conant (University of Tennessee, Knoxville) and Rob Schneiderman (Lehman College, New York City)

Six Papers available, a survey appeared in the

- Some History
- Main Questions
- Freedman's Classification
- Whitney Towers

CLASSIFICATION OF SURFACES

Theorem: Closed connected 2-manifolds are classified by their intersection form on the first homology group (over Z/2). Every unimodular form arises exactly once.

The same classification holds for homotopy respectively diffeomorphism types.

WHITNEY'S TRICK

also known as a Whitney move

Add time as the 4-th dimension: red arc becomes a disk.

CLASSIFICATION OF HIGH DIMENSIONAL MANIFOLDS

Get Smale's h-cobordism theorem which implies
Theorem: For $n>2$, closed ($n-1$)-connected $2 n$ manifolds are classified by their intersection form (and quadratic refinement) on the middle n-th homotopy = homology group.
Every unimodular quadratic form arises! Homotopy and diffeomorphism classification are very similar.

THE MAIN PROBLEM IN DIMENSION 4

Whitney disks may be assumed embedded and framed; they look as in our picture:

But other sheets can intersect
 them!

LINK ONTHE BOUNDARY

A neighborhood of the Whitney disk W is a 4-ball (3-ball \times time) and its boundary is a 3 -sphere.

The three disks in 4-ball have their boundary in this 3-sphere, the (ugly) Borromean rings:

MILNOR'S CONTRIBUTIONS

The Borromean rings are not slice, i.e. they don't bound 3 disjoint disks in the 4-ball. Milnor invariant $\mu(123)=I$. That makes 4-manifolds special and interesting!

Nevertheless, the homotopy type of I-connected closed 4-manifolds is completely determined by their intersection form on second homotopy group.
-Which forms λ are realized?

- Are the 4-manifolds unique?

ROKHLIN'S THEOREM

For a smooth closed spin 4-manifold the signature is divisible by 16 . In particular, the even definite form E8 is not realized smoothly.

Freedman-Kirby: If c is a characteristic surface in a closed 4-manifold M with intersection form λ and quadratic refinement τ then $(\bmod 16)$ have signature $\lambda=8 \mathrm{KS}(\mathrm{M})+8 \tau(c)+\lambda(c, c)$

HIGHER ORDER INTERSECTIONS

Freedman-Quinn-Stong: Geometric formula for τ :

$$
\tau(c)=\tau_{1}\left(S, W_{i}\right):=\sum_{i} \#\left\{S \pitchfork W_{i}\right\} \quad \bmod 2
$$

Assume S is a characteristic sphere in the 4-manifold, representing the element c, such that all self- intersections of S are paired by W hitney disks W_{i}.

FREEDMAN'S CLASSIFICATION

Any unimodular form is realized as the intersection form of a closed simply-connected topological 4-manifold.

Even forms determine the manifold uniquely, any odd form is realized by exactly two 4-manifolds, distinguished by KS or τ.

Classification for other fundamental open, except:

- Infinite cyclic [Freedman-Quinn]
- Finite cyclic [Hambleton-Kreck]
- solvable Baumslag-Solitar groups [H-K-T]:

$$
B(k):=\left\{a, b \mid a b a^{-1}=b^{k}\right\}
$$

SMOOTH 4-MANIFOLDS

Very exciting long story about relation to Gauge theory, started by Simon Donaldson. Briefly:

- The only definite forms that are realized smoothly are diagonalizable.
- | |/8-conjecture (Furuta's I 0/8-Theorem) predicts smooth realizability for even forms.
- Most 4-manifolds have (infinitely many) distinct smooth structures, including Euclidean 4-space! Open: 4-sphere.

SYMMETRIC WHITNEYTOWER

WITH COCHRAN \& ORR

- Levine-Tristran signatures vanish if knot bounds a symmetric Whitney tower of height 2
- Casson-Gordon signatures vanish if knot bounds a symmetric Whitney tower of height 3
- There are von Neumann signatures obstructing inductive existence of height n symmetric Whitney towers for all n .

Cochran-Harvey-Leidy: All iterated quotients are infinitely generated groups with lots of torsion.

SIMPLIFYTO HIGHER ORDER WHITNEY DISKS

THAT LEAD TO HIGHER ORDER WHITNEY TOWERS

COMPUTATION OFWn(m)

Group of m-component (framed) links in 3-sphere, bounding Whitney tower of order exactly n in 4-ball.
number m of link components

		1	2	3	4	5
Order n	\mathbb{Z}	\mathbb{Z}^{3}	\mathbb{Z}^{6}	\mathbb{Z}^{10}	\mathbb{Z}^{15}	
1	\mathbb{Z}_{2}	\mathbb{Z}_{2}^{3}	$\mathbb{Z} \oplus \mathbb{Z}_{2}^{6}$	$\mathbb{Z}^{4} \oplus \mathbb{Z}_{2}^{10}$	$\mathbb{Z}^{10} \oplus \mathbb{Z}_{2}^{15}$	
2	0	\mathbb{Z}	\mathbb{Z}^{6}	\mathbb{Z}^{20}	\mathbb{Z}^{50}	
3	0	\mathbb{Z}_{2}^{2}	$\mathbb{Z}^{6} \oplus \mathbb{Z}_{2}^{8}$	$\mathbb{Z}^{36} \oplus \mathbb{Z}_{2}^{20}$	$\mathbb{Z}^{126} \oplus \mathbb{Z}_{2}^{40}$	
4	0	\mathbb{Z}^{3}	\mathbb{Z}^{28}	\mathbb{Z}^{146}	\mathbb{Z}^{540}	
5	0	$\mathbb{Z}_{2}^{e_{2}}$	$\mathbb{Z}^{36} \oplus \mathbb{Z}_{2}^{e_{3}}$	$\mathbb{Z}^{340} \oplus \mathbb{Z}_{2}^{e_{4}^{4}}$	$\mathbb{Z}^{1740} \oplus \mathbb{Z}_{2}^{e_{5}}$	
	6	0	\mathbb{Z}^{6}	\mathbb{Z}^{126}	\mathbb{Z}^{1200}	\mathbb{Z}^{7050}

KEY: OUR 4-DIMENSIONAL JACOBI IDENTITY

Proof is an exercise in visualization:

START WITH
 FOUR SMALL SPHERES

PICKTHREE WHITNEY DISKS

MOVE WHITNEY ARCS

GET A WHITNEY TOWER OF ORDER 2

REMOVE INTERSECTIONS

