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1 Introduction and basic notation

We are going to present one of the basic tools used by the branch of mathematics that is
referred to as nonlinear analysis. We can de�ne the branch broadly as the one that deals with
solving nonlinear problems � including equations (also di�erential and integral equations) or
optimization problems. We are searching for di�erent methods that may be used for wide
classes on nonlinearities so we do concentrate on qualitative results rather then on pointing
precisely (or approximately) the solution that we are looking for. The ideas that we are going
to present will be tailored to answer the questions like

• does there exists a solution of the equation in the speci�ed set?

• what is the structure of the solution set?

• how does solution set change when we change problem parameters?

We will introduce the notion of the topological degree, known also as the Brouwer degree
(in case of �nite dimensional spaces) or Leray-Schauder degree (in case of completely contin-
uous vector �elds in in�nitely dimensional spaces). We are not going to present the precise
construction � although it is very beautiful and referring to various mathematical concepts �
but we are looking at this tool from the very practical perspective: as a tool that may be use-
ful in numerous applications. That is why we will present the idea by an axiomatic de�nition.
Starting from the set of three axioms we will be deriving numerous theorems and concepts �
but actually we must be aware that we will not prove that such animal as the topological degree
actually exists. The good news is that it really exists � there is nice construction procedure
that we mentioned before � but to �nd out how it works we must direct the Reader to the
literature (especially to the classic book of Nirenberg [3], where the construction is presented
in even more general setting of maps between two manifolds of the same dimension, but also
to [4] and [5]).

We will restrict ourselves to the �nitely dimensional case of the k-dimensional Euclidean
space Rk with the inner product

〈x, y〉 = x1y1 + x2y2 + ...+ xkyk,

where x = (x1, ..., xk), y = (y1, ..., yk) ∈ Rk. The Euclidean norm of the vector x will be
denoted by |x|.

In what follows U ⊂ Rk will always be the open and bounded set. By U we will denote
the closure and by ∂U the boundary of the set U . The letter I denotes the identity map
I : U → U .

The derivative of the map f : U → Rk at x0 ∈ U (if exists) will be denoted by Df(x0).
The norm of the linear map Df(x0) will be denoted by ‖Df(x0)‖, so

‖Df(x0)‖ = sup
|h|=1

|Df(x0)(h)|.

2 Axioms

We will consider the space C(U) of continuous maps f : U → Rk with the supremum norm

‖f‖∞ = sup
x∈U
|f(x)|.
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Since U is compact the norm is well de�ned, and it is well-known that the space C(U) is
the Banach space. Please note that f(x) may be represented by the coordinate functions
f(x) = (f1(x), ..., fk(x)), where fi : U → R are continuous functions.

We will be interested in the certain subset of space C(U), i.e.

K(U) = {f ∈ C(U) : 0 6∈ f(∂U)}.

This means that f ∈ K(U) if and only if f ∈ C(U) and f(x) 6= 0 for x ∈ ∂U . We will call
this family the set of compact vector �elds in U .

Let us start with simple but important observations being the consequence of the com-
pactness of the set ∂U and the continuity of the map f .

Proposition 1. If f ∈ K(U), then there exists such r > 0, that |f(x)| ≥ r for all x ∈ ∂U .

This leads to:

Proposition 2. The set K(U) is the open subset of C(U).

Proof. Let us take any f0 ∈ K(U) and let r > 0 be such constant that |f0(x)| ≥ r for all
x ∈ ∂U . Then for each ‖f − f0‖∞ < r

2
and x ∈ ∂U

|f(x)| ≥ |f0(x)| − |f(x)− f0(x)| ≥ r − r

2
=
r

2
> 0,

what proves that f ∈ K(U).

Now we are going to de�ne certain relation in the set K(U), that will appear to be one of
the most important tools that we will be using.

De�nition 1. We call two maps f, g ∈ K(U) homotopic if there exists such continuous map
h : [0, 1]× U → Rk, that

• h(t, ·) ∈ K(U), for t ∈ [0, 1];

• h(0, ·) = f ;

• h(1, ·) = g.

We call the map h homotopy joining maps f and g.

Let us now look at two simple one-dimensional examples that will show how this concept
works.

Example 1. Let f, g : [−1, 1] → R be given by f(x) = x2 and g(x) = 2. As we can see the
map h : [0, 1]× [−1, 1]→ R given by

h(t, x) = (1− t)f(x) + tg(x)

is a valid homotopy joining f and g.

Example 2. Let f, g : [−1, 1] → R be given by f(x) = x and g(x) = 2. The maps are not
homotopic. Assume there exists such homotopy h : [0, 1] × [−1, 1] → R that joins f and g.
Hence h(0, 0) = −1 and h(1, 0) = 2. The map h(·, 0) : [0, 1] → R is, of course, a continuous
map, that is why for some t ∈ [0, 1], there must be h(t, 0) = 0, implying that h is not valid
homotopy.
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Multi-dimensional examples showing the maps that may not be joined by homotopy may
seem to be more di�cult to prove (we cannot refer to Darboux property as easily), but later
we will see that they will emerge somewhat naturally.

Let us now proceed to the axiomatic de�nition of the topological degree.

De�nition 2. By topological degree we mean the family of maps deg(·, U) : K(U) → Z,
de�ned for open and bounded U ⊂ Rk and satisfying the following axioms

(A1) (normalization) If 0 ∈ U , then deg(I, U) = 1;

(A2) (additivity) Let U1, U2 ⊂ U be such open sets that U1∩U2 = ∅ and 0 6∈ f(U\(U1∪U2)),
then

deg(f, U) = deg(f |U1
, U1) + deg(f |U2

, U2);

(A3) (homotopy) Let f, g ∈ K(U) be homotopic, then deg(f, U) = deg(g, U).

We call the integer value deg(f, U) the topological degree of the map f relative to U .
The three axioms presented above lead to numerous consequences and very often these

consequences are not obvious. As an example we can see that if deg(f, U) 6= deg(g, U) then
f and g may not be joined by homotopy. We will see below that the identity map on B(0, 1)
may not be joined by homotopy to the constant map � the statement that is far from being
trivial in case of maps in dimension k ≥ 2.

3 Basic properties

We are going to present several simple properties that may be inferred from the set of axioms
presented before.

Property 1. Assume f, g ∈ K(U) are maps satisfying f(x) = g(x) for x ∈ ∂U . Then

deg(f, U) = deg(g, U)

Proof. Let us de�ne the homotopy h : [0, 1]× U → Rk by

h(t, x) = (1− t)f(x) + tg(x).

As we can see h(t, x) = f(x) = g(x) for all t ∈ [0, 1]× ∂U . But as f ∈ K(U), we are sure that
f(x) 6= 0. This means that maps f and g are homotopic and hence by the homotopy axiom,
we can see that

deg(f, U) = deg(g, U).

Property 2. deg(f, ∅) = 0.

Proof. Let us take U = U1 = U2 = ∅. As we can see, we may apply the additivity axiom and
conclude that

deg(f, U) = deg(f, U1) + deg(f, U2);

deg(f, ∅) = deg(f, ∅) + deg(f, ∅) = 2 deg(f, ∅).

Hence deg(f, ∅) = 0.
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Property 3 (excision). Assume f ∈ K(U) and V ⊂ U is such open bounded set that
0 6∈ f(U \ V ). Then

deg(f, U) = deg(f |V , V ).

Proof. Let us take U1 = V and U2 = ∅. We can see that applying additivity axiom to the
sets U,U1, U2 we arrive to

deg(f, U) = deg(f |V , V ) + deg(f, ∅).

Because of the Property 2 we see that deg(f, U) = deg(f |V , V ) what completes the proof.

Property 4. Let f ∈ K(U) be such that 0 6∈ f(U). Then deg(f, U) = 0.

Proof. As we can see we may now make use of the excision property given above for V = ∅.
This shows that

deg(f, U) = deg(f, ∅) = 0,

by Property 2.

Property 5 (existence). Assume deg(f, U) 6= 0. Then there exists such x0 ∈ U , that
f(x0) = 0.

Proof. This is just the logical transposition of the Property 4.

The last property shows the main power of the topological degree as the tool for solving
di�erent problems. By showing that the degree has the nonzero value in the given open set
U we may conclude that there must exists zero of the map f somewhere in the open set U .
Although we don't know how the value of the degree may be computed yet, we can feel that
if this technical issue is overcome, we can have quite nice tool of showing that solution of our
problem exists.

We have not stressed the dependence of the degree on the dimension of the Euclidian space
which it is de�ned on � but actually for each k ∈ N and space Rk we have degree de�ned
independently. Now we are going to show how the degrees de�ned within di�erent spaces
may be related. To avoid any misunderstanding we will now stress the dependence on the
dimension in our notation, so for sets U ⊂ Rm and maps f : U → Rm we will use Km(U) for
a family of vector �elds and degm(f, U) for the degree.

In order to show the dependence of the degree degk on degm for k < m we will need certain
method of extending continuous functions on open bounded subsets of Rm, to continuous
functions on certain open, bounded subsets of Rk. The extension will be quite natural, by
means of the the identity map on certain subset of Rk−m.

Let B ⊂ Rm−k denote the open ball B(0, 1) ⊂ Rm−k. Let U ⊂ Rk be open and bounded
set, and let f : U → Rk be continuous. Let f̃ : U ×B → Rk × Rm−k be given by

f̃(x, y) = (f(x), y).

Theorem 1. Let k < m be natural numbers and assume there is degree degm de�ned for open
bounded subsets U ⊂ Rm. Then the map

degk : Kk(U)→ Z

given by
degk(f, U) = degm(f̃ , U ×B),

satis�es the axioms (A1)-(A3).
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Proof. (A1). Let V ⊂ Rk be a neighbourhood of 0 and let f : V → Rk be the identity map,
f(x) = x. Then the extension f̃ : V ×B → Rm is also the identity map, meaning

degk(f, V ) = degm(I, V ×B) = 1.

(A2). Let U ⊂ Rk, f ∈ Kk(U) and U1, U2 ⊂ U by such that

0 6∈ f(U \ (U1 ∪ U2).

Let us look at f̃ : U × B → Rm and take x ∈ U \ (U1 ∪ U2). As we can see f̃(x, y) =
(f(x), y) 6= (0, 0) for (x, y) ∈ (U ×B) \ ((U1 ×B) ∪ (U2 ×B)), so

degm(f̃ , U ×B) = degm(f̃ , U1 ×B) + degm(f̃ , U2 ×B),

implying that
degk(f, U) = degk(f, U1) + degk(f, U2).

(A3). Let us take f, g ∈ Kk(U) and homotopy joining them, i.e. such h : [0, 1] × U → Rk

that h(0, x) = f(x), h(1, x) = g(x) and h(t, x) 6= 0 for t ∈ [0, 1] and x ∈ ∂U . Let us now
de�ne h̃ : [0, 1]× U ×B → Rk × Rm−k by

h̃(t, x, y) = (h(t, x), y).

As we can see h̃(t, x, y) = (0, 0) implies y = 0 and h(t, x) = 0, what means (x, y) ∈ U × B,
so for (x, y) ∈ ∂(U × B) we have h̃(t, x, y) 6= (0, 0) so we may apply the homotopy axiom for
degm and observe

degk(f, U) = degm(f̃ , U ×B) = degm(g̃, U ×B) = degk(g, U).

We will end this section with the practical de�nition that refers to the case of isolated
zeroes of the map f .

Let x0 be the isolated zero of the map f in U . Let V be the family of such open sets
V ⊂ U that V ∩ f−1(0) = {x0}. Obviously when V1, V2 ∈ V , then V1 ∪ V2 ∈ V and

deg(f, V1) = deg(f, V1 ∪ V2) = deg(f, V2)

by the excision property of the degree.
The previous observation allows us to give the following de�nition

De�nition 3. Assume x0 is the isolated zero of the continuous map f in U . Then the index
of the map f relative to the point x0 ∈ U is given by

i(f, x0) = deg(f, V ),

where V ∈ V .
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4 Calculations

In this section we are going to show how the degree may be calculated by means of quite
natural properties of the map f ∈ K(U). This may also be considered as the comment on
the uniqueness of the degree, i.e. that there exists at most one family of maps deg(·, U)
satisfying axioms (A1)-(A3). It is not far from here to the proof of the existence of such
family (i.e. that formulas given in this section actually always satisfy the axioms (A1)-(A3)),
but as we mentioned before, we are trying to avoid technical di�culties, that do not lead to
any potential applications.

Let us �rst observe that starting from axioms (A1)-(A3) we may calculate the degree of
all C1 maps f ∈ K(U). But we will start with the very simple map f : [−1, 1]→ R given by
f(x) = −x.

Lemma 1. deg(−I, (−1, 1)) = −1.

Proof. First of all, let us note, that by the excision property we have

deg(−I, (−1, 1)) = deg(−I, (−1, 3)).

Let us also observe that the two maps I : [−1, 3] → R and f : [−1, 3] → R given by
f(x) = x− 2 may be joined by homotopy h : [−1, 1]× [−1, 3]→ R given by

h(t, x) = x− 2t.

That is why deg(f, (−1, 3)) = 1. And, by the excision property, deg(f, (1, 3)) = 1.
Let us now de�ne the continuous map g : [−1, 3]→ R given by

g(x) =

{
−x for x ∈ [−1, 1]
x− 2 for x ∈ [1, 3].

As we can see it maybe joined by the homotopy to the constant map (equal 2), so by the
Property 4, the equality holds

deg(g, (−1, 3)) = 0.

But we can identify all zeroes of the function g, which are equal to 0 and 2, so now it is time
to refer to the additivity axiom. This gives us

0 = deg(g, (−1, 3)) = deg(−I, (−1, 1)) + deg(f, (1, 3)) = deg(−I, (−1, 1)) + 1,

what completes the proof.

Let us now consider the case of −I : R2 → R2.

Lemma 2. Let U ⊂ R2 be the open and bounded neighbourhood of 0 ∈ R2. Then

deg(−I, U) = 1.

Proof. Let us �rst consider U = B(0, 1). The case of general U is an easy consequence of the
excision property. Let us consider the homotopy h : [0, 1]×B(0, 1)→ R2 given by

h(t, (x1, x2)) =

[
cos(πt) sin(πt)
− sin(πt) cos(πt)

]
·
[
x1
x2

]
.

As we can see the homotopy is well-de�ned and joins I with −I. Hence

deg(−I, B(0, 1)) = deg(I, B(0, 1)) = 1.

7



Similarly for the identity map in the open and bounded neighbourhood of zero U ⊂ Rk

we may prove the following lemma.

Lemma 3. Let U ⊂ Rk be the open and bounded neighbourhood of 0 ∈ R2. Then

deg(−I, U) = (−1)k.

Proof. Let us �rst assume that k = 2n. By the excision property we may assume that
U = B2(0, 1)× B2(0, 1)× ...× B2(0, 1), where B2(0, 1) ⊂ R2 is the open ball in R2. On each
two-dimensional component B2(0, 1) the map −I joined by homotopy to identity, what shows
that in this case

deg(−I, U) = 1.

On the other hand for k = 2n+1 let us take U = B2(0, 1)×B2(0, 1)×...×B2(0, 1)×(−1, 1)
and building the homotopy in the same way as above we can show that −I may be joined on U
by a valid homotopy to the map Ĩ(x1, x2, ..., x2n, x2n+1) = (x1, x2, ..., x2n,−x2n+1). Following
the ideas of Theorem 1 and Lemma 1 we can see that

deg2n+1(Ĩ , U) = deg1(−I, (−1, 1)) = −1.

what completes the proof.

But what about the general linear map A : Rk → Rk? Of course the only nontrivial case
which we may consider is the linear isomorphism and calculate the degree relative to the ball
containing 0.

Theorem 2. Let A : Rk → Rk be the linear isomorphism. Then

deg(A,B(0, r)) = (−1)ν ,

where ν is the sum of the multiplicity of negative eigenvalues of A .

Proof. The known fact from the linear algebra (related to Jordan canonical form of the matrix)
says that there exists a decomposition Rk = X1⊕X2 and A = A1⊕A2, where A1 : X1 → X1,
A2 : X2 → X2, and A2 does not have a negative eigenvalue, while A1 has only negative
eigenvalues, with sum of their multiplicities equal to dimX1.

Let us write x = (p, q) ∈ X1 ⊕X2 and, for the �xed r > 0, let us de�ne the homotopy

h(t, x) = h(t, (p, q)) = (1− t)(A1p,A2q) + t(−p, q)) = (−tp+ (1− t)A1p, tq + (1− t)A2q).

Let us check if it is possible that h(t, (p, q)) = (0, 0) for some nonzero vector (p, q). Then{
−tp = −(1− t)A1p

tq = −(1− t)A2q.

In case t = 1 we must have p = q = 0, so let us assume that t ∈ [0, 1). Then{
t

1−tp = A1p
−t
1−tq = A2q.

If p 6= 0, then t
1−t is the nonnegative eigenvalue of A1, which is not possible. Hence p = 0.

On the other hand if q 6= 0, then −t
1−t is the eigenvalue of A2. But A2 does not have 0 as an
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eigenvalue (because A is an isomorphism). Moreover, it does not have any negative eigenvalue.
Hence also q = 0.

As we can see A is homotopic to (−I|X1)⊕ I|X2 . By homotopy property and Theorem 1
we can see that

deg(f,B(0, r)) = deg(−I|X1)⊕I|X2 , B(0, r)) = deg(−I|X1 , B(0, r)∩X1) = (−1)dimx1 = (−1)ν

Corollary 1. It is well known that the sign of the determinant of the matrix A equals to
(−1)ν, where ν is the sum of the multiplicity of negative eigenvalues of A . Hence for the
linear isomorphism A

deg(A,B(0, r)) = sign detA.

De�nition 4. Let f : U → Rk be the C1 map. We call y ∈ Rk a regular value of the map f
if for all x ∈ f−1(y) the derivative Df(x) is a linear isomorphism.

Lemma 4. If 0 is a regular value of the C1 map f ∈ K(U), then the set f−1(0) ⊂ U is �nite.

Proof. Let us take such x0 ∈ U , that f(x0) = 0. Because Df(x0) is the linear isomorphism
we know that in some nighbourhood Ux0 of x0 there is no other zero of f . So each zero is
isolated in the set f−1(0). Because of the compactness of f−1(0) this implies that the set is
�nite.

The additivity axiom, together with the previous lemma, immediately implies what follows:

Lemma 5. If 0 is a regular value of the C1 map f ∈ K(U), then

deg(f, U) =
∑

xi∈f−1(0)

i(f, xi),

where i(f, xi) denotes the index od the map f relative to xi (see De�nition 3).

Proof. For each isolated zero xi of f there exists such ball B(xi, r) ⊂ U , that f−1(0) ∩
B(xi, r) = {xi}. By the additivity axiom we can see that

deg(f, U) =
∑

xi∈f−1(0)

deg(f,B(xi, r)) =
∑

xi∈f−1(0)

i(f, xi).

But the local degree (i.e. the index of f relative to the zero xi) may be expressed by the
derivative Df(xi). This is because in the small neighbourhood of the isolated zero xi the
map f may be joined by homotopy with the linear isomorphism Df(xi). This leads to the
following theorem

Theorem 3. If 0 is a regular value of the C1 map f ∈ K(U), then

deg(f, U) =
∑

xi∈f−1(0)

sign detDf(xi).
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Proof. First, we are going to show, that in the ball B(x0, r0) with radius r0 > 0 small enough
the homotopy h : [0, 1]×B(x0, r0)→ Rk, given by

h(t, x) = (1− t)Df(x0)(x− x0) + tf(x)

is well de�ned.
We can see that

|h(t, x)| ≥ ‖Df(x0)‖ · |x− x0| − t|Df(x0)(x− x0)− f(x)| =

‖Df(x0)‖|x− x0| − t|f(x)− f(x0)−Df(x0)(x− x0)|.

Because of the di�erentiability of f at x0, there exists such r0 > 0, that

|f(x)− f(x0)−Df(x0)(x− x0)| ≤
‖Df(x0)‖

2
|x− x0|,

for |x− x0| < r0.
Then

|h(t, x)| ≥ ‖Df(x0)‖
2

|x− x0| > 0

for ‖x− x0‖ = r0, what proves that the homotopy is well de�ned.
By homotopy axiom and Theorem 2

deg(f,B(xi, r0)) = deg(Df(xi), B(xi, r0)) = sign detDf(xi),

what completes the proof.

But what we can do with the map that does not have 0 as the regular value? It is good
to refer to the celebrated Sard's theorem.

Theorem 4 (Sard's theorem). Let U ⊂ Rk be the open and bounded set and f : U → Rk the
C1 map. Then the set of critical values of f , i.e.

{y ∈ Rk : ∃x∈Uf(x) = y ∧ detDf(x) = 0}

has Lebesgue measure zero.

Corollary 2. The set of regular values of f , i.e.

{y ∈ Rk : ∀x∈f−1(y) detDf(x) 6= 0},

is dense in Rk.

Assume now that 0 is not a regular value of f . In this case from the previous corollary
we may conclude that there exists the sequence {cn} ⊂ Rk of regular values of f such that
cn → 0. By Proposition 1 there exist such r > 0, that |f(x)| ≥ r for all x ∈ ∂U . Then
we may take the regular value c of the map f satisfying |c| < r and consider the homotopy
h : [0, 1]× U → Rk given by

h(t, x) = f(x)− tc.

For x ∈ ∂U we have

|h(t, x)| = |f(x)− tc| ≥ |f(x)| − t|c| ≥ r − |c| > 0,
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hence the homotopy is well de�ned. This means that

deg(f, U) = deg(fc, U),

where fc(x) = f(x) − c and the value of the degree does not depend on c ∈ Rk satisfying
|c| < r. But we know how the value of deg(fc, U) may be calculated:

deg(fc, U) =
∑

x∈f−1
c (0)

sign detDf(x) =
∑

x∈f−1(c)

sign detDf(x).

There is one more step left to the most general case: the continuous map f ∈ K(U). We
will refer to the following well-known theorem

Theorem 5. The set C1(U) ∩ K(U) is the dense subset of K(U).

Let us now �x f ∈ K(U). By Proposition 1 there exist such r > 0 that |f(x)| ≥ r
for x ∈ ∂U . Hence for any f̃ ∈ C1(U) ∩ K(U) satisfying ‖f − f̃‖∞ < r the homotopy
h : [0, 1]× U → Rk given by

h(t, x) = (1− t)f(x) + tf̃(x)

is well de�ned. Hence we can see that

deg(f, U) = deg(f̃ , U),

and the value does not depend on the selection of f̃ , as long as ‖f − f̃‖∞ < r.
This shows that for each f ∈ K(U) the degree deg(f, U) may be expressed by the deter-

minant formula
deg(f, U) =

∑
x∈f̃−1(0)

sign detDf̃(x),

for the properly selected function f̃ . This formula allows as to prove various properties

Property 6 (multiplication). Let f ∈ Kk(U), g ∈ Km(V ). Then

degk+m(f ⊕ g, U ⊕ V ) = degk(f, U) · degm(g, V ),

where f ⊕ g : U ⊕ V → Rk ⊕ Rm is given by (f ⊕ g)(x, y) = (f(x), g(y)), and degk and degm
are induced by degk+m as in Theorem 1.

Proof. The observation is easy for the C1 maps f, g having 0 as the regular value. We can
see that (f ⊕ g)(x, y) = (0, 0) i� f(x) = 0 and g(y) = 0, so

degk+m(f ⊕ g, U ⊕ V ) =
∑

x∈f−1(0);y∈g−1(0)

sign detD(f ⊕ g)(x, y) =

=
∑

x∈f−1(0);y∈g−1(0)

sign detDf(x) · sign detDg(y) =

= degk(f, U) · degm(g, V ).

The general continuous case may be achieved by the approximation of f ⊕ g with C1 maps
f̃ ⊕ g̃ having (0, 0) as the regular value.
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Let us have a look at one more consequence of the determinant formula.

Theorem 6 (change of variables). Let A : Rk → Rk be the linear isomorphism and let
0 6∈ f(∂U) . Then deg(f, U) = deg(AfA−1, A(U)) .

Proof. Let us �rst assume that f ∈ C1(U) and 0 is the regular value of f . Then

deg
(
AfA−1, A(U)

)
=

∑
x∈(AfA−1)−1(0)

sign detD(AfA−1)(x)

Let us observe that (AfA−1)−1(0) = Af−1A−1(0) = Af−1(0) and let us substitute y =
A−1(x) .

deg
(
AfA−1, A(U)

)
=

∑
y∈f−1(0)

sign det
(
ADf(y)A−1

)
=

=
∑

y∈f−1(0)

sign detA · sign detDf(y) · sign detA−1 =

=
∑

y∈f−1(0)

sign detDf(y) = deg(f, U)

Let us now consider f ∈ C(U) . Then there exists such g ∈ C1(U) , with 0 as the regular
value, that deg(f, U) = deg(g, U) and

|f(x)− g(x)| < ε ,

for all x ∈ U and some ε > 0 .
Then ∣∣AfA−1(x)− AgA−1(x)∣∣ =

∣∣A(f − g)A−1(x)∣∣ ≤
≤ ‖A‖ ·

∣∣(f − g)A−1(x)∣∣ < ‖A‖ · ε .
For ε small enough: deg (AfA−1, A(U), 0) = deg (AgA−1, A(U)) . But, according to what

we can see above, deg(g, U) = deg (AgA−1, A(U)) . Hence we can see that

deg(f, U) = deg(g, U) = deg(AgA−1, A(U)) = deg(AfA−1, A(U)).

5 Sample applications

Let us look now at a series of theorems that present very general results concerning existence
of zeroes (or �xed points) of nonlinear maps. The proofs will mainly refer to the homotopy
property, showing that if we are able to de�ne the appropriate deformation of our map, to
the map of the known degree (e.g. to the identity map), then we can say something about
the existence of the zero of the map.

All balls and other sets used in this section are subsets of Rk.

Theorem 7. Let f : B(0, r)→ Rk be a continuous map such that |f(x)| ≤ r for all |x| = r.
Then there exists a �xed point of f .
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Proof. If f has a �xed point in ∂B(0, r), then we are done. So we may assume that f(x) 6= x
for |x| = r.

Now de�ne the homotopy h : [0, 1]×B(0, r)→ Rk by

h(t, x) = x− tf(x).

As we can see h(1, x) 6= x by our assumption. And for t ∈ [0, 1) we have

t|f(x)| ≤ tr < r = |x|,

hence x 6= tf(x) and the homotopy is well de�ned. Thus we may conclude that by axioms
(A1) and (A3) we have

deg(I − f,B(0, r)) = deg(I, B(0, r) = 1

what, by existence property 5, implies that there exists zero of the map I − f , i.e. the �xed
point of f .

The well-known Brouwer �xed point theorem is the immediate consequence of the Theorem
7 given above.

Theorem 8 (Brouwer �xed point theorem). Let f : B(0, 1)→ B(0, 1) be a continuous map.
Then there exists a �xed point of f .

Similarly we may prove the following:

Theorem 9. Let f : Rk → Rk be such continuous map that

lim
|x|→+∞

|f(x)|
|x|

= 0,

(such maps are called sublinear), then there exists a �xed point of f

Proof. Let us observe that there exists such R > 0 that f(B(0, R) ⊂ B(0, R). Otherwise
there would exist |xn| → +∞ satisfying |f(xn)| ≥ |xn| what contradicts the sublinearity
assumption.

Having such ball B(0, R) we may apply the Brouwer �xed point theorem and conclude
that there exists the �xed point of f in B(0, R).

We may also prove the following generalization of the Brouwer �xed point theorem

Theorem 10. Let A ⊂ Rk be the set homeomorphic to B(0, 1) and f : A→ A any continuous
map. Then there exists the �xed point of A.

The proof is left to the Reader.
Slightly di�erent � more geometrical conditions � may also lead to existence theorems

Theorem 11. Let U be an open and bounded subset of Rk and f : U → Rk be a continuous
map. If 〈f(x), x〉 > 0 for all x ∈ ∂U , then there exists zero of the map f .
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Proof. This is, again, an easy application of the homotopy axiom (A3). Let us de�ne the
homotopy h : [0, 1]× U → Rk by

h(t, x) = (1− t)f(x) + tx.

As we can see, since it is not possible that f(x) = 0 or x = 0, for x ∈ ∂U

〈h(t, x), h(t, x)〉 = (1− t)2|f(x)|2 + 2t(1− t)〈f(x), x〉+ t2|x|2 > 0,

for x ∈ ∂U and t ∈ [0, 1], what implies that h(t, x) 6= 0.
This implies that

deg(f,B(0, r)) = deg(I, B(0, r)) = 1

and there exists 0 of the map f .

The above theorem leads to an interesting corollary:

Theorem 12. Let f : Rk → Rk be a continuous map. If

lim
|x|→+∞

〈f(x), x〉
|x|

= +∞,

then f maps Rk onto Rk (i.e. f(Rk) = Rk).

Proof. Let us take any y ∈ Rk and de�ne the map fy : Rk → Rk by fy(x) = f(x) − y. We
will show that there exists the zero of the map fy i.e. such point x ∈ Rk that f(x) = y.

Let us �rst observe that for any x ∈ Rk we can write

〈fy(x), x〉
|x|

=
〈f(x), x〉 − 〈y, x〉

|x|
=
〈f(x), x〉
|x|

− 〈y, x〉
|x|

≥ 〈f(x), x〉
|x|

− |y|.

Because there exists such Ry > 0, that

〈f(x), x〉
|x|

≥ |y|+ 1

for |x| ≥ Ry, we can see that the map fy satis�es assumptions of the previous Theorem 11
for U = B(0, Ry). So there exists zero of the map fy, what completes the proof.
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