The Harish-Chandra isomorphism for reductive symmetric superspaces

Alexander Alldridge

University of Paderborn, Germany

2nd Killing-Weierstrass Colloquium, Braniewo, March 24th 2010

partly joint work with J. HILGERT (*Paderborn*) *and* M. ZIRNBAUER (*Cologne*) Motivated by random matrix theory, ZIRNBAUER (1996) considers

$$X_0 = G_0/K_0 \hookrightarrow X = G/K$$

where

 (G, K, θ) symmetric superpair of complex Lie supergroups (G_0, K_0, θ) Riemannian real form of underlying symmetric pair

ZIRNBAUER thus embeds ten of CARTAN's infinite series of RSS

Class	G_Λ/H_Λ	$M_{\rm B}$	$M_{\rm F}$
A A	$\operatorname{Gl}(m n)$	Α	Α
AIAII	Gl(m 2n)/Osp(m 2n)	AI	AII
AIIAI	Gl(m 2n)/Osp(m 2n)	$A \Pi$	AI
AIII	$Gl(m_1+m_2 n_1+n_2)/Gl(m_1 n_1)\times Gl(m_2 n_2)$	AIII	AIII
BD C	Osp(m 2n)	BD	С
C BD	Osp(m 2n)	С	BD
CIDII	Osp(2m 2n)/Gl(m n)	CI	$D \Pi$
DIII CI	Osp(2m 2n)/Gl(m n)	DIII	CI
	$Osp(m_1 + m_2 2n_1 + 2n_2) / Osp(m_1 2n_1) \times Osp(m_2 2n_2)$	BDI	CII
CII	$Osp(m_1 + m_2 2n_1 + 2n_2)/Osp(m_1 2n_1) \times Osp(m_2 2n_2)$	CII	BD

PROGRAMME: Develop the harmonic analysis on X = G/K. First, understand the invariant differential operators $D(X)^G$.

Super CHEVALLEY's restriction theorem

Invariant symbols: $\mathbb{C}[T^*X]^G \cong S(\mathfrak{p}^*)^k$, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ the θ -eigenspaces.

Thus, let $(\mathfrak{g}, \mathfrak{k}, \theta)$ *symmetric superpair* of complex Lie superalgebras. We assume that $(\mathfrak{g}, \mathfrak{k})$ is

- *strongly reductive* ($\Rightarrow g = \bigoplus \{ \text{simple basic class. ideals } \neq A(1|1) \} \}$
- of *even type*, \exists even Cartan subspace: $\mathfrak{a} \subset \mathfrak{p}_{0,\text{semi-simple}}, \mathfrak{a} = \mathfrak{z}_{\mathfrak{p}}(\mathfrak{a}).$

Let

$$\Sigma_{i} = \Sigma(\mathfrak{g}_{i} : \mathfrak{a}), W_{0} = W(\mathfrak{g}_{0} : \mathfrak{a}) \qquad \text{roots, even Weyl group}$$

$$\bar{\Sigma}_{1} \qquad \lambda \in \Sigma_{1}, \lambda, 2\lambda \notin \Sigma_{0}$$

$$W_{\lambda} = \langle \exp \mathbb{R}T_{\lambda} \rangle \subset \text{GL}(\mathfrak{a}) \qquad \langle h', T_{\lambda}(h) \rangle = \lambda(h')\lambda(h)$$

Theorem (A, HILGERT, ZIRNBAUER 2010)

The image $I(\mathfrak{a}^*)$ *of the restriction map* $S(\mathfrak{p}^*)^{k} \to S(\mathfrak{a}^*)$ *is*

$$I(\mathfrak{a}^*) = S(\mathfrak{a}^*)^W$$
 where $W = \langle W_0 \cup \bigcup_{\lambda \in \bar{\Sigma}_1} W_\lambda \rangle$.

'Group' case: Sergeev (1999), KAC (1984), GORELIK (2004).

Super HARISH-CHANDRA isomorphism

Let $I(\mathfrak{a}) \cong I(\mathfrak{a}^*)$ be the image of the 'restriction' $S(\mathfrak{p})^{k} \to S(\mathfrak{a})$. Choose a positive system $\Sigma^+ \subset \Sigma$ and let $\mathfrak{n} = \bigoplus \{\text{positive root spaces}\}.$

For $D \in \mathfrak{U}(\mathfrak{g})^{\mathfrak{k}}$, define $D_{\mathfrak{a}} \in \mathfrak{U}(\mathfrak{a}) = S(\mathfrak{a})$ by $D - D_{\mathfrak{a}} \in \mathfrak{n}\mathfrak{U}(\mathfrak{g}) + \mathfrak{U}(\mathfrak{g})\mathfrak{k}$ and $\Gamma(D) = e^{-\varrho}D_{\mathfrak{a}}e^{\varrho} \in S(\mathfrak{a})$ where $\varrho = \frac{1}{2}\mathrm{str}_{\mathfrak{n}} \mathrm{ad} \mid_{\mathfrak{a}}$.

Theorem (A 2010)

 Γ is a surjective algebra morphism $\mathfrak{U}(\mathfrak{g})^{\mathfrak{k}} \to I(\mathfrak{a})$ with kernel $(\mathfrak{U}(\mathfrak{g})\mathfrak{k})^{\mathfrak{k}}$; it induces an algebra isomorphism $D(X)^G \to I(\mathfrak{a})$.

'Group' case: KAC (1984), GORELIK (2004).

Main ingredient: Spherical superfunction $\phi_{\lambda}(a) = \int_{K/M} L_a^* H^*(e^{\lambda-\varrho})$, $H: G \to \mathfrak{a}$ Iwasawa \mathfrak{a} -projection.

Differences: $\phi_{\lambda}(1) = 0$; $\phi_{w\lambda} = |\det w|^{-1} \cdot \phi_{\lambda}$ for $w \in W_{\lambda}$, $\lambda \in \overline{\Sigma}_1$; 'shifted' **c**-function asymptotics.

Let $(\mathfrak{g}, \mathfrak{k}) = (\mathfrak{k} \oplus \mathfrak{k}, \mathfrak{k})$ (group type), $\mathfrak{k} = \mathfrak{osp}(2|2)$. Then

 $I(\mathfrak{a}) = \mathbb{C}[L]$ (*L* = super-Laplacian)

Let g = osp(2|2), 'special' involution. Then

 $I(\mathfrak{a}) = \mathbb{C}[z, w]/(z^3 - w^2)$

is the ring of regular functions on a singular curve.

Thanks!