The Weil-Steinberg character of finite classical groups

Moritz Schröer RWTH Aachen

Braniewo, 24.3.2010

Let $q = p^{\alpha}$ be a prime power and let G be one of the following groups: GL(n,q), U(n,q), Sp(n,q). We write accordingly G(m,q) for GL(m,q), U(m,q) or Sp(m,q) respectively.

U(n,q) ≤ GL(n,q²), isometries of the hermitean form J_n = (1/1).
 Sp(n,q) ≤ GL(n,q) (n = 2m even), isometries of the symplectic form (-J_m J_m).

Let δ be 1 in case G is symplectic or linear and 2 in case G is unitary.

Each of the above groups is a group with (split) BN-pair:

- *B* is the intersection of the group of upper triangular matrices of $GL(n, q^{\delta})$ with *G*
- *N* is the intersection of the group of monomial matrices of $GL(n, q^{\delta})$ with *G*.

The group $W = N/(B \cap N)$ is called the WEYL **group**. It is isomorphic to S_n in case G is linear and otherwise to $C_2 \wr S_m$, where $m = \lfloor \frac{n}{2} \rfloor$.

Groups Levi subgroups Parametrization of characters Cuspidal characters Weil-Steinberg Harish-Chandra parametrization

A subgroup of GL(n, q) of the form

$$L := \begin{pmatrix} \mathsf{GL}(n_1, q) & & & \\ & \mathsf{GL}(n_2, q) & & \\ & & \ddots & \\ & & & \mathsf{GL}(n_k, q) \end{pmatrix}$$

is called a LEVI **subgroup**.

This LEVI subgroup is contained in the parabolic subgroup

$$P := \begin{pmatrix} GL(n_1, q) & & & \\ & GL(n_2, q) & & \\ & & \ddots & \\ & & & GL(n_k, q) \end{pmatrix}$$

.

The LEVI subgroup L is a complement of

$$V := \begin{pmatrix} I_{n_1} & & * \\ & I_{n_2} & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & I_{n_k} \end{pmatrix}$$

in *P*, i.e. $P = L \ltimes V$ (LEVI decomposition).

For unitary and symplectic groups the $\ensuremath{\mathrm{LEVI}}$ subgroups are of the form

$$\left\{\begin{pmatrix}A_{1} & & & \\ & A_{d} & & \\ & & B_{J\overline{A_{d}}^{-\mathrm{tr}}J} \\ & & & J\overline{A_{d}}^{-\mathrm{tr}}J \\ & & & \ddots \\ & & & J\overline{A_{1}}^{-\mathrm{tr}}J\end{pmatrix} \mid A_{i} \in \mathsf{GL}(n_{i}, q^{\delta}), B \in \mathcal{G}(k, q)\},\right.$$

where $\overline{}$ is the FROBENIUS automorphism of $\mathbb{F}_{q^2}/\mathbb{F}_q$, i.e. $a \mapsto a^q$. Analogously, this group is contained in a parabolic subgroup and we have a LEVI decomposition.

Definition

Let L be a LEVI subgroup, P the corresponding parabolic subgroup.

- 1. The map $\mathsf{R}_{L}^{G} = \mathsf{Ind}_{P}^{G} \circ \mathsf{Infl}_{L}^{P}$ is called HARISH-CHANDRA induction.
- 2. We denote the adjoint map of R_L^G by T_L^G (truncation).

Remark

Let M be a LEVI subgroup of G. The LEVI subgroups of M are exactly the LEVI subgroups of G contained in M. Define R_L^M and T_L^M analogously to the previous definition.

Definition

Let *L* be a LEVI subgroup. A character $\chi \in Irr(L)$ is called **cuspidal** if $T_M^L(\chi) = 0$ for all proper LEVI subgroups *M* of *L*.

Definition

Let L be a LEVI subgroup and let ϑ be a cuspidal character of L. We define

- 1. $W_G(L) := (N_G(L) \cap N)L/L.$
- 2. $W_G(L, \vartheta) := \{ w \in W_G(L) \mid ^w \vartheta = \vartheta \}.$

The latter group is called the **relative** WEYL **group** of ϑ .

Remark

Relative WEYL groups are isomorphic to

- direct products of symmetric groups in case G is linear.
- direct products of wreath products of C₂ with symmetric groups in case G is unitary or symplectic.

Theorem (Harish-Chandra parametrization)

Let $L \leq G$ be a LEVI subgroup and let $\vartheta \in Irr(L)$ be cuspidal. The set

 $\mathcal{E}_{\vartheta} := \{ \chi \in \mathsf{Irr}(\mathcal{G}) \, | \, (\mathsf{T}_{\mathcal{L}}^{\mathcal{G}}(\chi), \vartheta) \neq \mathsf{0} \}$

is called a HARISH-CHANDRA *series. Every irreducible character is contained in a unique series.*

The irreducible characters in the series \mathcal{E}_{ϑ} are in bijection to the irreducible characters of the relative WEYL group of ϑ in G.

For G = GL(n, q) the WEIL character of G is the character

$$\omega \colon g \mapsto |\{v \in \mathbb{F}_q^n \,|\, gv = v\}|$$

of degree q^n . Otherwise it is a "square root" of the permutation character on the natural module.

- The STEINBERG character is an irreducible character of degree |G|_p (q = p^α). We denote this character by St.
- The WEIL-STEINBERG character is the product of the WEIL and STEINBERG character.

Groups Preliminaries Parametrization of characters Picture Weil-Steinberg Results

Theorem (Hiss, Zalesskii)

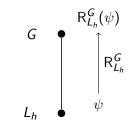
$$\omega \cdot \mathsf{St} = \sum_{h=0}^{m} \mathsf{R}_{L_h}^G(\mathsf{St}_h^- \boxtimes \gamma'_{m-h}),$$

where $St^- = St \cdot 1^-$ and

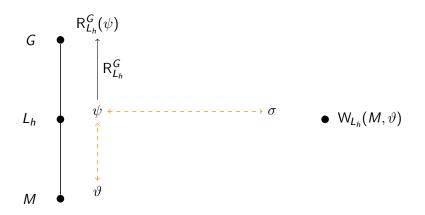
• (G is linear) m = n, $L_h = \begin{pmatrix} GL(h,q) \\ GL(m-h,q) \end{pmatrix}$, γ'_{m-h} is the GELFAND-GRAEV character.

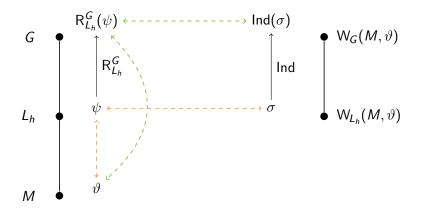
• (otherwise)
$$m = \lfloor \frac{n}{2} \rfloor$$
,
 $L_h = \{ \begin{pmatrix} A & B \\ & J_h \overline{A}^{-tr} J_h \end{pmatrix} \mid A \in GL(h, q^{\delta}), B \in G(m - h, q) \}$ and
 γ'_{m-h} is a "truncated" GELFAND-GRAEV character.

Groups Preliminaries Parametrization of characters Picture Weil-Steinberg Results



Groups Preliminaries
Parametrization of characters Picture
Weil-Steinberg Results





Groups	Preliminaries
Parametrization of characters	Picture
Weil-Steinberg	Results

Linear:

$$\omega \cdot \mathsf{St} = \sum_{r=0}^{n} \sum_{\substack{s' \in \mathcal{S}_{n-r,q} \\ \mathsf{E}_{s}(-1)=0}} \sum_{i=0}^{\lfloor \frac{n-2}{2} \rfloor} (n-r-2i+1) \eta_{D_{n-r} \times M_{s'}, \mathbf{1}_{n-r}^{-} \boxtimes \tau_{s'}; \zeta^{[n-r-i,i]'} \boxtimes_{\mathcal{E}_{s'}}}$$

Unitary and symplectic:

$$\omega \cdot \mathsf{St} = \sum_{h=0}^{m} \sum_{\substack{s \in \mathcal{S}_{n-2h,q} \\ \mathsf{E}_{s}(-1)=0}} \sum_{i=0}^{h} \eta_{D_{h} \times M_{s}, \mathbf{1}_{h}^{-} \boxtimes_{\tau_{s}}; \xi^{\gamma_{i}} \boxtimes_{\varepsilon_{s}}}$$