Secantoptics of ovals and their properties

Magdalena Skrzypiec

Faculty of Mathematics, Physics and Computer Science
Maria Curie-Skłodowska University in Lublin

24 March 2010

Definition

An oval is a plane, closed curve given by the equation

$$
\begin{equation*}
z(t)=p(t) e^{i t}+\dot{p}(t) i e^{i t} \quad \text { for } \quad t \in[0,2 \pi) \tag{1}
\end{equation*}
$$

where $p(t)$, called the support function of an oval is C^{3} and the radius of curvature $R(t)=p(t)+\ddot{p}(t)$ is positive for all $t \in[0,2 \pi)$.

Definition [Philippe de La Hire]

An α-isoptic of a closed, convex curve is composed of those points in the plane from which the curve is seen under a fixed angle $\pi-\alpha$.

Theorem [W. Cieślak, S. Góźdź, A. Miernowski, W. Mozgawa]

The equation of an isoptic C_{α} of the curve C is given by

$$
\begin{equation*}
z_{\alpha}(t)=p(t) e^{i t}+\left\{-p(t) \cot \alpha+\frac{1}{\sin \alpha} p(t+\alpha)\right\} i e^{i t}, \quad t \in[0,2 \pi) \tag{2}
\end{equation*}
$$

Let C be an oval and let $\beta \in[0, \pi), \gamma \in[0, \pi-\beta)$ and $\alpha \in(\beta+\gamma, \pi)$ be fixed angles.

Definition

The set of intersection points $z_{\alpha, \beta, \gamma}(t)$ of $s_{1}(t)$ and $s_{2}(t)$ for $t \in[0,2 \pi]$ form a curve which we call a secantoptic $C_{\alpha, \beta, \gamma}$ of an oval C.

We introduce the following notation

Theorem

Let C be an oval and let $\beta \in[0, \pi), \gamma \in[0, \pi-\beta)$ and $\alpha \in(\beta+\gamma, \pi)$ be fixed angles. Then the parametrization of secantoptic $C_{\alpha, \beta, \gamma}$ of oval C is

$$
z_{\alpha, \beta, \gamma}(t)=(p(t)+\lambda(t) \sin \beta+i(\dot{p}(t)+\lambda(t) \cos \beta)) e^{i t} \quad \text { for } \quad t \in[0,2 \pi)
$$

The equation of a secantoptic $C_{\alpha, \beta, \gamma}$ of an oval C in terms of the support function is

$$
\begin{aligned}
z_{\alpha, \beta, \gamma}(t) & =(\sin (\alpha-\beta)(p(t) \cos \beta-\dot{p}(t) \sin \beta)+ \\
& +\sin \beta(p(t+\alpha-\beta-\gamma) \cos \gamma+\dot{p}(t+\alpha-\beta-\gamma) \sin \gamma)+ \\
& +i(-\cos (\alpha-\beta)(p(t) \cos \beta-\dot{p}(t) \sin \beta)+ \\
& +\cos \beta(p(t+\alpha-\beta-\gamma) \cos \gamma+\dot{p}(t+\alpha-\beta-\gamma) \sin \gamma))) \frac{e^{i t}}{\sin \alpha}
\end{aligned}
$$

Let C be a fixed oval. We denote by $e(C)$ the exterior of C and by ζ a half line from $z(0)$ in direction $i e^{-i \beta}$. We define a mapping

$$
\begin{equation*}
F_{\beta, \gamma}:(\beta+\gamma, \pi) \times(0,2 \pi) \mapsto e(C) \backslash \zeta \tag{3}
\end{equation*}
$$

by the formula

$$
\begin{equation*}
F_{\beta, \gamma}(\alpha, t)=z_{\alpha, \beta, \gamma}(t) \tag{4}
\end{equation*}
$$

The jacobian $J\left(F_{\beta, \gamma}\right)$ of $F_{\beta, \gamma}$ at (α, t) is given by

$$
\begin{equation*}
J\left(F_{\beta, \gamma}\right)=\frac{1}{\sin \alpha}(R(t+\alpha-\beta-\gamma) \sin \gamma-\mu(t))(R(t) \sin \beta+\lambda(t))>0 \tag{5}
\end{equation*}
$$

$$
\begin{aligned}
J\left(F_{\beta, \gamma}\right) & =\frac{1}{\sin \alpha}(R(t+\alpha-\beta-\gamma) \sin \gamma-\mu(t))(R(t) \sin \beta+\lambda(t))>0 \\
Q(t) & =\left(B(t)+R(t+\alpha-\beta-\gamma) \sin \gamma \sin (\alpha-\beta)-R(t) \sin ^{2} \beta+\right. \\
& +i(-b(t)-R(t+\alpha-\beta-\gamma) \sin \gamma \cos (\alpha-\beta)-R(t) \sin \beta \cos \beta)) e^{i t}
\end{aligned}
$$

Definition[R. Réaumur]

An evolutoid of angle δ of a curve $f(s)$ is the envelope of the lines making a fixed angle δ with the normal vector at $f(s)$.

The envelope Γ_{β} of the family of the secants of oval C obtained by rotation the tangent line $l(t)$ about the tangency point $z(t)$ through angle β can be parametrized by

$$
\begin{equation*}
z^{\beta}(t)=\psi_{\beta}(t) e^{i t}+\dot{\psi}_{\beta}(t) i e^{i t} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{\beta}(\theta)=p(\theta-\beta) \cos \beta+\dot{p}(\theta-\beta) \sin \beta, \quad \theta \in[0,2 \pi) \tag{7}
\end{equation*}
$$

Definition[R. Langevin, G. Levitt, H. Rosenberg, Y. Martinez-Maure]

A hedgehog Γ is a curve which can be parametrized by the formula

$$
\begin{equation*}
z(t)=\psi(t) e^{i t}+\dot{\psi}(t) i e^{i t} \tag{8}
\end{equation*}
$$

where $h(\cos t, \sin t)=\psi(t), h \in C^{2}\left(\mathbb{S}^{1}, \mathbb{R}\right)$ is called the support function of Γ. The hedgehog is the envelope of the family of lines given by the equation

$$
\begin{equation*}
x \cos t+y \sin t=p(t) \tag{9}
\end{equation*}
$$

Since $\psi_{\beta}(t)$ is at least of class $C^{2}(\mathbb{R})$, the curve Γ_{β} is a hedgehog.

Corollary

Any evolutoid of an oval is a hedgehog.

Isoptics of pairs of hedgehogs

Definition

Let

$$
\begin{aligned}
& \Gamma_{1}: z_{1}(t)=\psi_{1}(t) e^{i t}+\dot{\psi}_{1}(t) i e^{i t}, \\
& \Gamma_{2}: z_{2}(t)=\psi_{2}(t) e^{i t}+\dot{\psi}_{2}(t) i e^{i t} .
\end{aligned}
$$

be two hedgehogs and $\alpha \in(0, \pi)$ be fixed angle. The set of intersection points $z_{\alpha}^{\Gamma_{1} \Gamma_{2}}(t)$ of tangent lines $l(t)$ and $m(t+\alpha)$ for $t \in[0,2 \pi)$ form a curve which we call an α-isoptic $C_{\alpha}^{\Gamma_{1} \Gamma_{2}}$ of the pair Γ_{1} and Γ_{2}.

Let

$$
\begin{equation*}
q_{1}(t)=M(t) i e^{i(t+\alpha)}-L(t) i e^{i t} \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
L(t) & =-\dot{\psi}_{1}(t)-\psi_{1}(t) \cot \alpha+\psi_{2}(t+\alpha) \frac{1}{\sin \alpha}, \tag{11}\\
M(t) & =-\psi_{1}(t) \frac{1}{\sin \alpha}-\dot{\psi}_{2}(t+\alpha)+\psi_{2}(t+\alpha) \cot \alpha \tag{12}
\end{align*}
$$

Theorem

Let

$$
\begin{aligned}
& \Gamma_{1}: z_{1}(t)=\psi_{1}(t) e^{i t}+\dot{\psi}_{1}(t) i e^{i t} \\
& \Gamma_{2}: \\
& z_{2}(t)=\psi_{2}(t) e^{i t}+\dot{\psi}_{2}(t) i e^{i t}
\end{aligned}
$$

be two hedgehogs and $\alpha \in(0, \pi)$ be fixed angle. Then a parametrization of isoptic $C_{\alpha}^{\Gamma_{1} \Gamma_{2}}$ is given by

$$
\begin{equation*}
z_{\alpha}^{\Gamma_{1} \Gamma_{2}}(t)=\psi_{1}(t) e^{i t}+\left(\psi_{2}(t+\alpha) \frac{1}{\sin \alpha}-\psi_{1}(t) \cot \alpha\right) i e^{i t} \tag{13}
\end{equation*}
$$

where $t \in[0,2 \pi)$.
Let

$$
\begin{equation*}
\rho_{1}(t)=\psi_{1}(t)+\dot{\psi}_{2}(t+\alpha) \frac{1}{\sin \alpha}-\dot{\psi}_{1}(t) \cot \alpha \tag{14}
\end{equation*}
$$

then

$$
\begin{equation*}
\dot{z}_{\alpha}^{\Gamma_{1} \Gamma_{2}}(t)=-L(t) e^{i t}+\rho_{1}(t) i e^{i t} \tag{15}
\end{equation*}
$$

Isoptics of pairs of hedgehogs

Remark

Note that

$$
\begin{equation*}
\left|\dot{z}_{\alpha}^{\Gamma_{1} \Gamma_{2}}(t)\right|^{2}=\frac{1}{\sin ^{2} \alpha}\left|q_{1}(t)\right|^{2} \tag{16}
\end{equation*}
$$

hence $C_{\alpha}^{\Gamma_{1} \Gamma_{2}}$ can be a nonregular curve for $z_{1}(t)=z_{2}(t+\alpha)$ for some $t \in[0,2 \pi)$, then $\left|\dot{z}_{\alpha}^{\Gamma_{1} \Gamma_{2}}(t)\right|=0$.

Let

$$
\Gamma_{1}: \frac{x^{2}}{9^{2}}+\frac{y^{2}}{3^{2}}=1, \quad \Gamma_{2}: \frac{x^{2}}{3^{2}}+\frac{y^{2}}{9^{2}}=1, \quad \alpha=1.3494818844471053 .
$$

Consider two evolutoids of an oval C

$$
\begin{aligned}
\Gamma_{-\beta} & : \psi_{-\beta}(t)=p(t+\beta) \cos \beta-\dot{p}(t+\beta) \sin \beta \\
\Gamma_{\gamma} & : \psi_{\gamma}(t)=p(t-\gamma) \cos \gamma+\dot{p}(t-\gamma) \sin \gamma
\end{aligned}
$$

The equation of the isoptic $C_{\alpha}^{\Gamma-\beta \Gamma_{\gamma}}$, where $\beta \in[0, \pi), \gamma \in[0, \pi-\beta)$ and $\alpha \in(\beta+\gamma, \pi)$ is given by

$$
z_{\alpha}^{\Gamma_{-\beta} \Gamma_{\gamma}}(t)=\psi_{-\beta}(t) e^{i t}+\left(\psi_{\gamma}(t+\alpha) \frac{1}{\sin \alpha}-\psi_{-\beta}(t) \cot \alpha\right) i e^{i t}
$$

Theorem

The isoptic $C_{\alpha}^{\Gamma-\beta \Gamma_{\gamma}}$ and the secantoptic $C_{\alpha, \beta, \gamma}$ of a given oval C coincide if $\beta \in[0, \pi), \gamma \in[0, \pi-\beta)$ and $\alpha \in(\beta+\gamma, \pi)$.

Theorem

If $C_{\alpha, \beta, \gamma}$ is the secantoptic of the oval C, then

$$
\begin{aligned}
L(t) & =R(t) \sin \beta+\lambda(t) \\
M(t) & =\mu(t)-R(t+\alpha-\beta-\gamma) \sin \gamma \\
Q(t) & =M(t) i e^{i(t+\alpha-\beta)}-L(t) i e^{i(t-\beta)}=q_{1}(t)
\end{aligned}
$$

Theorem

Let C be an oval with the support function $p(t) \in C^{3}$ and let $C_{\alpha, \beta, \gamma}$ be a secantoptic of C for $\alpha \in(0, \pi-\beta-\gamma)$, where $\beta \in[0, \pi), \gamma \in[0, \pi-\beta)$. The curvature of the secantoptic $C_{\alpha, \beta, \gamma}$ is given by

$$
\begin{equation*}
\kappa(t)=\frac{\sin \alpha}{|Q(t)|^{3}}\left(2|Q(t)|^{2}-[Q(t), \dot{Q}(t)]\right) . \tag{17}
\end{equation*}
$$

where $t \in[0,2 \pi)$.

Theorem

The secantoptic $C_{\alpha, \beta, \gamma}$ of an oval C is convex if and only if

$$
\begin{equation*}
[Q(t), \dot{Q}(t)]<2|Q(t)|^{2} \quad \text { dla } \quad t \in[0,2 \pi) . \tag{18}
\end{equation*}
$$

Crofton integral formula(1868)
Let Ω denote the exterior of closed, convex curve C. Then

$$
\iint_{\Omega} \frac{\sin \omega}{t_{1} t_{2}} d x d y=2 \pi^{2}
$$

Theorem

Let $\beta \in[0, \pi)$ and $\gamma \in[0, \pi-\beta)$. Consider secantoptics $C_{\alpha, \beta, \gamma}$ of an oval C, where the angle α changes in $(\beta+\gamma, \pi)$. Let Ω denotes the exterior of an oval C and let

$$
\begin{aligned}
\omega & =\pi-\alpha \\
t_{1} & =L(t) \\
t_{2} & =-M(t)
\end{aligned}
$$

Then

$$
\begin{equation*}
\iint_{\Omega} \frac{\sin \omega}{t_{1} t_{2}} d x d y=2 \pi^{2}-2 \pi(\beta+\gamma) \tag{19}
\end{equation*}
$$

Let us recall, that $\int_{0}^{2 \pi} p(t) d t$ means the length of a given convex curve C, which we denote by L_{C}.

Definition [Y. Martinez-Maure]

The algebraic length of a hedgehog Γ is

$$
\begin{equation*}
L_{\Gamma}=\int_{0}^{2 \pi} \psi(t) d t \tag{20}
\end{equation*}
$$

where $\psi(t)$ is the support function of Γ.
Hence, for evolutoids of an oval C we get

$$
\begin{equation*}
L_{\Gamma_{-\beta}}=L_{C} \cos \beta \quad \text { and } \quad L_{\Gamma_{\gamma}}=L_{C} \cos \gamma \tag{21}
\end{equation*}
$$

Theorem

Let $\beta \in[0, \pi), \gamma \in[0, \pi-\beta)$ and consider secantoptics $C_{\alpha, \beta, \gamma}$ of an oval C, for α in $(\beta+\gamma, \pi)$. Let

$$
\begin{aligned}
\omega & =\pi-\alpha \\
\tau_{1} & =L(t) \\
\tau_{2} & =-M(t)
\end{aligned}
$$

Then

$$
\iint_{\Omega} \frac{\sin ^{2} \omega}{\tau_{1}} d x d y=L_{\Gamma_{-\beta}}(\pi-(\beta+\gamma))+L_{\Gamma_{\gamma}} \sin (\beta+\gamma)
$$

and

$$
\iint_{\Omega} \frac{\sin ^{2} \omega}{\tau_{2}} d x d y=L_{\Gamma_{\gamma}}(\pi-(\beta+\gamma))+L_{\Gamma_{-\beta}} \sin (\beta+\gamma)
$$

Theorem

The secantoptic $C_{\alpha, \beta, \gamma}$ of an oval C in $z_{\alpha, \beta, \gamma}(t)$ has the following property

$$
\begin{equation*}
\frac{|Q(t)|}{\sin \alpha}=\frac{L(t)}{\sin \alpha_{1}}=\frac{-M(t)}{\sin \alpha_{2}} \tag{22}
\end{equation*}
$$

Corollary

If α_{1} and α_{2} are angles formed by the tangent to the secantoptic $C_{\alpha, \beta, \gamma}$ of an oval C in $z_{\alpha, \beta, \gamma}(t)$ and lines s_{1} and s_{2}, and if σ_{1} and σ_{2} are angles formed by the vector $Q(t)$ and lines $s_{1}(t)$ and $s_{2}(t)$, then $\alpha_{1}=\sigma_{1} \mathrm{i} \alpha_{2}=\sigma_{2}$.

Thank you for your attention.

