Secantoptics of ovals and their properties

Magdalena Skrzypiec

Faculty of Mathematics, Physics and Computer Science Maria Curie-Skłodowska University in Lublin

 $24 \ \mathrm{March} \ 2010$

Definition

 $An \ oval$ is a plane, closed curve given by the equation

$$z(t) = p(t)e^{it} + \dot{p}(t)ie^{it} \quad \text{for} \quad t \in [0, 2\pi),$$
(1)

where p(t), called the support function of an oval is C^3 and the radius of curvature $R(t) = p(t) + \ddot{p}(t)$ is positive for all $t \in [0, 2\pi)$.

Definition [Philippe de La Hire]

An α -isoptic of a closed, convex curve is composed of those points in the plane from which the curve is seen under a fixed angle $\pi - \alpha$.

Theorem [W. Cieślak, S. Góźdź, A. Miernowski, W. Mozgawa]

The equation of an isoptic C_{α} of the curve C is given by

$$z_{\alpha}(t) = p(t)e^{it} + \{-p(t)\cot\alpha + \frac{1}{\sin\alpha}p(t+\alpha)\}ie^{it}, \qquad t \in [0, 2\pi).$$
(2)

Definition of a secantoptic

Let C be an oval and let $\beta \in [0,\pi)$, $\gamma \in [0,\pi-\beta)$ and $\alpha \in (\beta+\gamma,\pi)$ be fixed angles.

Definition

The set of intersection points $z_{\alpha,\beta,\gamma}(t)$ of $s_1(t)$ and $s_2(t)$ for $t \in [0, 2\pi]$ form a curve which we call a secantoptic $C_{\alpha,\beta,\gamma}$ of an oval C.

We introduce the following notation

Let C be an oval and let $\beta \in [0, \pi)$, $\gamma \in [0, \pi - \beta)$ and $\alpha \in (\beta + \gamma, \pi)$ be fixed angles. Then the parametrization of secantoptic $C_{\alpha,\beta,\gamma}$ of oval C is

$$z_{\alpha,\beta,\gamma}(t) = (p(t) + \lambda(t)\sin\beta + i(\dot{p}(t) + \lambda(t)\cos\beta))e^{it} \quad for \quad t \in [0, 2\pi).$$

The equation of a secant optic $C_{\alpha,\beta,\gamma}$ of an oval C in terms of the support function is

$$\begin{aligned} z_{\alpha,\beta,\gamma}(t) &= \Big(\sin(\alpha-\beta)(p(t)\cos\beta-\dot{p}(t)\sin\beta) + \\ &+ \sin\beta(p(t+\alpha-\beta-\gamma)\cos\gamma+\dot{p}(t+\alpha-\beta-\gamma)\sin\gamma) + \\ &+ i\Big(-\cos(\alpha-\beta)(p(t)\cos\beta-\dot{p}(t)\sin\beta) + \\ &+ \cos\beta(p(t+\alpha-\beta-\gamma)\cos\gamma+\dot{p}(t+\alpha-\beta-\gamma)\sin\gamma)\Big)\Big)\frac{e^{it}}{\sin\alpha}. \end{aligned}$$

Let C be a fixed oval. We denote by e(C) the exterior of C and by ζ a half line from z(0) in direction $ie^{-i\beta}$. We define a mapping

$$F_{\beta,\gamma}: (\beta + \gamma, \pi) \times (0, 2\pi) \mapsto e(C) \setminus \zeta \tag{3}$$

by the formula

$$F_{\beta,\gamma}(\alpha,t) = z_{\alpha,\beta,\gamma}(t). \tag{4}$$

The jacobian $J(F_{\beta,\gamma})$ of $F_{\beta,\gamma}$ at (α, t) is given by

$$J(F_{\beta,\gamma}) = \frac{1}{\sin\alpha} (R(t+\alpha-\beta-\gamma)\sin\gamma-\mu(t))(R(t)\sin\beta+\lambda(t)) > 0.$$
 (5)

$$J(F_{\beta,\gamma}) = \frac{1}{\sin\alpha} (R(t+\alpha-\beta-\gamma)\sin\gamma-\mu(t))(R(t)\sin\beta+\lambda(t)) > 0$$
$$Q(t) = (B(t)+R(t+\alpha-\beta-\gamma)\sin\gamma\sin(\alpha-\beta)-R(t)\sin^2\beta+i(-b(t)-R(t+\alpha-\beta-\gamma)\sin\gamma\cos(\alpha-\beta)-R(t)\sin\beta\cos\beta))e^{it}$$

Definition[R. Réaumur]

An evolutoid of angle δ of a curve f(s) is the envelope of the lines making a fixed angle δ with the normal vector at f(s).

The envelope Γ_{β} of the family of the secants of oval C obtained by rotation the tangent line l(t) about the tangency point z(t) through angle β can be parametrized by

$$z^{\beta}(t) = \psi_{\beta}(t)e^{it} + \dot{\psi}_{\beta}(t)ie^{it}, \qquad (6)$$

where

$$\psi_{\beta}(\theta) = p(\theta - \beta) \cos \beta + \dot{p}(\theta - \beta) \sin \beta, \quad \theta \in [0, 2\pi).$$
(7)

Definition[R. Langevin, G. Levitt, H. Rosenberg, Y. Martinez-Maure]

A hedgehog Γ is a curve which can be parametrized by the formula

$$z(t) = \psi(t)e^{it} + \dot{\psi}(t)ie^{it}, \qquad (8)$$

where $h(\cos t, \sin t) = \psi(t), h \in C^2(\mathbb{S}^1, \mathbb{R})$ is called the support function of Γ . The hedgehog is the envelope of the family of lines given by the equation

$$x\cos t + y\sin t = p(t). \tag{9}$$

Since $\psi_{\beta}(t)$ is at least of class $C^{2}(\mathbb{R})$, the curve Γ_{β} is a hedgehog.

Corollary

Any evolutoid of an oval is a hedgehog.

Isoptics of pairs of hedgehogs

Definition

Let

$$\Gamma_1: \ z_1(t) = \psi_1(t)e^{it} + \dot{\psi}_1(t)ie^{it},$$

$$\Gamma_2: \ z_2(t) = \psi_2(t)e^{it} + \dot{\psi}_2(t)ie^{it}.$$

be two hedgehogs and $\alpha \in (0, \pi)$ be fixed angle. The set of intersection points $z_{\alpha}^{\Gamma_{1}\Gamma_{2}}(t)$ of tangent lines l(t) and $m(t + \alpha)$ for $t \in [0, 2\pi)$ form a curve which we call an α -isoptic $C_{\alpha}^{\Gamma_{1}\Gamma_{2}}$ of the pair Γ_{1} and Γ_{2} .

Isoptics of pairs of hedgehogs

Let

$$q_1(t) = M(t)ie^{i(t+\alpha)} - L(t)ie^{it},$$
(10)

where

$$L(t) = -\dot{\psi}_1(t) - \psi_1(t) \cot \alpha + \psi_2(t+\alpha) \frac{1}{\sin \alpha},$$
 (11)

$$M(t) = -\psi_1(t) \frac{1}{\sin \alpha} - \dot{\psi}_2(t+\alpha) + \psi_2(t+\alpha) \cot \alpha.$$
 (12)

Let

$$\Gamma_1: \ z_1(t) = \psi_1(t)e^{it} + \dot{\psi}_1(t)ie^{it},$$

$$\Gamma_2: \ z_2(t) = \psi_2(t)e^{it} + \dot{\psi}_2(t)ie^{it}.$$

be two hedgehogs and $\alpha \in (0, \pi)$ be fixed angle. Then a parametrization of isoptic $C_{\alpha}^{\Gamma_1 \Gamma_2}$ is given by

$$z_{\alpha}^{\Gamma_{1}\Gamma_{2}}(t) = \psi_{1}(t)e^{it} + (\psi_{2}(t+\alpha)\frac{1}{\sin\alpha} - \psi_{1}(t)\cot\alpha)ie^{it},$$
(13)

where $t \in [0, 2\pi)$.

Let

$$\rho_1(t) = \psi_1(t) + \dot{\psi}_2(t+\alpha) \frac{1}{\sin \alpha} - \dot{\psi}_1(t) \cot \alpha,$$
(14)

then

$$\dot{z}_{\alpha}^{\Gamma_{1}\Gamma_{2}}(t) = -L(t)e^{it} + \rho_{1}(t)ie^{it}.$$
(15)

Isoptics of pairs of hedgehogs

Remark

Note that

$$\left|\dot{z}_{\alpha}^{\Gamma_{1}\Gamma_{2}}(t)\right|^{2} = \frac{1}{\sin^{2}\alpha}|q_{1}(t)|^{2},$$
 (16)

hence $C_{\alpha}^{\Gamma_1\Gamma_2}$ can be a nonregular curve for $z_1(t) = z_2(t+\alpha)$ for some $t \in [0, 2\pi)$, then $|\dot{z}_{\alpha}^{\Gamma_1\Gamma_2}(t)| = 0$.

Let

$$\Gamma_{1}: \frac{x^{2}}{9^{2}} + \frac{y^{2}}{3^{2}} = 1, \qquad \Gamma_{2}: \frac{x^{2}}{3^{2}} + \frac{y^{2}}{9^{2}} = 1, \qquad \alpha = 1.3494818844471053.$$

Secantoptic as isoptic of pair of evolutoids

Consider two evolutoids of an oval ${\cal C}$

$$\Gamma_{-\beta}: \ \psi_{-\beta}(t) = p(t+\beta)\cos\beta - \dot{p}(t+\beta)\sin\beta,$$

$$\Gamma_{\gamma}: \ \psi_{\gamma}(t) = p(t-\gamma)\cos\gamma + \dot{p}(t-\gamma)\sin\gamma.$$

The equation of the isoptic $C_{\alpha}^{\Gamma-\beta}{}^{\Gamma\gamma}$, where $\beta \in [0, \pi)$, $\gamma \in [0, \pi - \beta)$ and $\alpha \in (\beta + \gamma, \pi)$ is given by

$$z_{\alpha}^{\Gamma_{-\beta}\Gamma_{\gamma}}(t) = \psi_{-\beta}(t)e^{it} + \left(\psi_{\gamma}(t+\alpha)\frac{1}{\sin\alpha} - \psi_{-\beta}(t)\cot\alpha\right)ie^{it}.$$

The isoptic $C_{\alpha}^{\Gamma_{-\beta}\Gamma_{\gamma}}$ and the secantoptic $C_{\alpha,\beta,\gamma}$ of a given oval C coincide if $\beta \in [0,\pi), \gamma \in [0,\pi-\beta)$ and $\alpha \in (\beta+\gamma,\pi)$.

Secantoptic as isoptic of pair of evolutoids

Theorem

If $C_{\alpha,\beta,\gamma}$ is the secantoptic of the oval C, then

$$\begin{split} L(t) &= R(t)\sin\beta + \lambda(t), \\ M(t) &= \mu(t) - R(t+\alpha-\beta-\gamma)\sin\gamma, \\ Q(t) &= M(t)ie^{i(t+\alpha-\beta)} - L(t)ie^{i(t-\beta)} = q_1(t) \end{split}$$

Let C be an oval with the support function $p(t) \in C^3$ and let $C_{\alpha,\beta,\gamma}$ be a secantoptic of C for $\alpha \in (0, \pi - \beta - \gamma)$, where $\beta \in [0, \pi)$, $\gamma \in [0, \pi - \beta)$. The curvature of the secantoptic $C_{\alpha,\beta,\gamma}$ is given by

$$\kappa(t) = \frac{\sin \alpha}{|Q(t)|^3} (2|Q(t)|^2 - [Q(t), \dot{Q}(t)]).$$
(17)

where $t \in [0, 2\pi)$.

Theorem

The secantoptic $C_{\alpha,\beta,\gamma}$ of an oval C is convex if and only if

$$[Q(t), \dot{Q}(t)] < 2|Q(t)|^2 \quad \text{dla} \quad t \in [0, 2\pi).$$
(18)

Crofton integral formula(1868)

Let Ω denote the exterior of closed, convex curve C. Then

$$\iint_{\Omega} \frac{\sin \omega}{t_1 t_2} dx dy = 2\pi^2.$$

Let $\beta \in [0, \pi)$ and $\gamma \in [0, \pi - \beta)$. Consider secantoptics $C_{\alpha, \beta, \gamma}$ of an oval C, where the angle α changes in $(\beta + \gamma, \pi)$. Let Ω denotes the exterior of an oval C and let

$$\omega = \pi - \alpha,$$

$$t_1 = L(t),$$

$$t_2 = -M(t).$$

Then

$$\iint_{\Omega} \frac{\sin \omega}{t_1 t_2} dx dy = 2\pi^2 - 2\pi (\beta + \gamma).$$
⁽¹⁹⁾

Let us recall, that $\int_0^{2\pi} p(t)dt$ means the length of a given convex curve C, which we denote by L_C .

Definition [Y. Martinez-Maure]

The algebraic length of a hedgehog Γ is

$$L_{\Gamma} = \int_{0}^{2\pi} \psi(t)dt, \qquad (20)$$

where $\psi(t)$ is the support function of Γ .

Hence, for evolutoids of an oval C we get

$$L_{\Gamma_{-\beta}} = L_C \cos \beta$$
 and $L_{\Gamma_{\gamma}} = L_C \cos \gamma$. (21)

Let $\beta \in [0, \pi)$, $\gamma \in [0, \pi - \beta)$ and consider secantoptics $C_{\alpha,\beta,\gamma}$ of an oval C, for α in $(\beta + \gamma, \pi)$. Let

$$\omega = \pi - \alpha,$$

$$\tau_1 = L(t),$$

$$\tau_2 = -M(t).$$

Then

$$\iint_{\Omega} \frac{\sin^2 \omega}{\tau_1} dx dy = L_{\Gamma_{-\beta}} (\pi - (\beta + \gamma)) + L_{\Gamma_{\gamma}} \sin(\beta + \gamma)$$

and

$$\iint_{\Omega} \frac{\sin^2 \omega}{\tau_2} dx dy = L_{\Gamma_{\gamma}} (\pi - (\beta + \gamma)) + L_{\Gamma_{-\beta}} \sin(\beta + \gamma).$$

The secantoptic $C_{\alpha,\beta,\gamma}$ of an oval C in $z_{\alpha,\beta,\gamma}(t)$ has the following property

$$\frac{|Q(t)|}{\sin \alpha} = \frac{L(t)}{\sin \alpha_1} = \frac{-M(t)}{\sin \alpha_2}.$$
(22)

Corollary

If α_1 and α_2 are angles formed by the tangent to the secantoptic $C_{\alpha,\beta,\gamma}$ of an oval C in $z_{\alpha,\beta,\gamma}(t)$ and lines s_1 and s_2 , and if σ_1 and σ_2 are angles formed by the vector Q(t) and lines $s_1(t)$ and $s_2(t)$, then $\alpha_1 = \sigma_1$ i $\alpha_2 = \sigma_2$.

Thank you for your attention.