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Being here in Braniewo where Weierstrass was once a teacher, I can’t resist to start with a 

little story from that time. The director of the Catholic Gymnasium in Braunsberg where 

Weierstrass was teaching during the years 1848 until 1855 reports: 

 One morning, when Weierstrass had to teach the highest class („Prima“), he didn’t 

show up. The director looked for him and found him sitting in his apartment totally absorbed 

in his work. He had been working all night and had not realized that morning had begun. He 

told the director that he cannot interrupt his work, for he is on the track of an important 

discovery that will surprise the experts. 

As it is told, the director gave the lessons instead of the teacher. Perhaps Weierstrass was 

working on Abelian functions. Actually, his first publication on the theory of those functions 

appeared in the so-called Schulprogramm (school prospectus) of the Catholic Gymnasium in 

Braunsberg (printed in 1849) 
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Abelian functions became the life-long focus of Weierstrass’s research. These functions are 

periodic functions of complex variables, the first non-trivial case of which are the elliptic 

functions. The theory of Abelian functions was the most impressive achievement of 

nineteenth-century analysis. 

That Schulprogramm is a scarce document. It’s not very surprising, that the paper published at 

such a place had gone unnoticed. 

 

In my talk today, I would like to speak about some aspects in the work of Weierstrass 

concerning the foundation of analysis. The main topics will be the notion of real numbers and 

the well-known theorem of Bolzano-Weierstrass. 

 

According to the available archive documents, Weierstrass presents the theorem of Bolzano-

Weierstrass for the first time in his introduction to the theory of analytic functions, a lecture 

course held in the winter semester 1863/64. There exist notes that Hermann Amandus 

Schwarz (1843 – 1921) took during the lectures (Schwarz became successor on Weierstrass’s 

Berlin chair in 1892). Here we read: I need a lemma that is indispensable for finer 

mathematical investigations. Apparently, this is a quotation of what Weierstrass’s actually 

had said during the lecture. And a little bit later:  If there is an infinite sequence of quantities 
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lying in a finite region, then there is necessarily at least one point in the neighborhood of 

which lie infinitely many others. 

This is the first appearance of the theorem of Bolzano-Weierstrass, although not written down 

correctly by Schwarz. Of course, the correct version is that in every neighborhood of that 

point lie infinitely many other points. Later on in his lectures, Weierstrass stresses the central 

importance of this theorem even more. So, for instance, in his lectures in 1886: 

 Now we come to the development of a theorem that is not only one of the most 

important for the theory of numbers but it is the necessary basis for the most related 

investigations at all. 

 

In order to prove such a theorem, an exact foundation of the real number system has to be 

available. But such a theory was not established at that time. And therefore, logically, we find 

in these lectures also the first introduction to the concept of a real number. 

 

Weierstrass’s construction is based – one could say, quite Weierstrass-like – on the concept of 

infinite series (Weierstrass’s function theory can be described as a theory of power series). 

A first, still as a quite vague hint, this is contained already a little bit earlier in his lectures on 

differential calculus during the summer 1861. Schwarz attended these lectures and we have 

his handwritten notes, which show that Weierstrass probably had not yet developed a theory 

of irrational numbers but that he had some ideas on that matter. For we read in the notes of 

Schwarz: 

 There are quantities which cannot represented by the unit and the parts of the unit 

(Weierstrass refers here to the irrational numbers); for those one applies infinite series. 

 

By the way, in this lecture Weierstrass uses the existence of a supremum for sets with an 

upper bound as an evident fact without giving any further explanation. 

After an attack of faintness during a lecture in December 1861 he was only able to continue 

teaching after a year-long break. From then on he remained sitting during lectures, with 

students responsible for writing on the board. 

It is quite possible that Weierstrass developed his theory of irrational numbers during this 

break. 

 

Now we come to his construction of a real number system in his lectures 1863/64. Weierstrass 

presupposes the notion of natural numbers. As a first step he explains what positive rational 

numbers should be. He considers the commutative ring generated by the unit 1 and by the so-

called parts  
n

1
  of the unit for arbitrary natural numbers n which one has to consider simply 

formally as elements  ne   with property  1 nen . Then the rational numbers are defined as 

the elements of that ring. But that’s, of course, not enough, for he must define the equality of 

two such sums. They are equal, if they can be transformed into each other by substitutions of  

n

1
  by  

mnmnmn

1
...

11
   (m  terms)  and vice versa substitutions (therefore as a special 

case,  the unit 1  by  
mmm

1
...

11
  )  for arbitrary natural numbers  m,n .  In our 

terminology, the rational numbers are equivalence classes with respect to the transformations 

mentioned. It’s obvious how to define the order relation for them. 

Now comes the crucial step in the construction of irrational numbers. We confine ourselves to 

the positive real numbers. In what follows, I slightly deviate from Weierstrass’s original 

version, but only with respect to the shape not with respect to the contents. 
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Weierstrass considers infinite series  

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n
n

a  , all na  are natural numbers or 0. In order to 

define a number, one has to suppose that all partial sums lie below a fixed bound. Now the 

equality of two such sums is yet to be defined. For any rational number r  we let 


n

n
n
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  if  r  is less than a certain partial sum: 



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n
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1

1
 (note that for rational 
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  . Now, an equality can be defined:    
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and    

n

n

n

n
n

a
n

b
11

 . 

In our terminology, the positive real numbers are defined as equivalence classes with respect 

to the equality relation. 

The addition of the new objects is defined component-wise 

  
n

ba
n

b
n

a nnnn
1

)(
11

  and the multiplication is defined by the sum of all 

products of terms involved  
mn

ba mn
1

  (such that  
mnmn 


111

 ) 

One must prove that these definitions make sense, that means they lead to real numbers again 

and are independent of the representatives. 

The important aspect of completeness, that means, that any new formation of infinite series 

formed by the new objects will produce no “new numbers”, is not formulated explicitly. But it 

is expressed, for instance, in the following theorem equivalent to the completeness property 

(the quotation is from the lecture in 1874): 

 The sum formed by an infinite number of terms has a finite value [that means is a real 

number] if the sum of arbitrarily many [one has to add: finitely] lies below a bound 

independent of the number of terms. 

Such an infinite sum is defined by   


























1 11

1

n i

in

i

i
n

a   with   






1

1

i

ini
n

a  ,  if  


1i

ina  

is finite ( ns  that means almost all terms are equal to 0)  and  


1

1

n

n
n

s   is a bounded series, 

such that it defines a real number. 
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As a consequence, it follows from that theorem at once that any bounded, monotone 

increasing sequence of real numbers converges, a statement, again equivalent to the 

completeness property. 

By the way, these results are obtained without using the Bolzano-Weierstrass theorem (which 

appears much later in the course in 1874). 

 

In Weierstrass’s lectures the construction of all real numbers, including the negative ones,  

corresponds to the formation of pairs as it is the usual procedure today. 

 

The question may arise, why not give the definition of real numbers simply as the limits of 

sequences of rational numbers. Let Weierstrass answer this (the quotation is from his lecture 

in 1886, June 8): 

 Usually, the value of infinite series is defined as the limit of the partial sums:  n
n

s


lim  . 

According to the arithmetical point of view that we are preferring, this is not permissible. We 

do not assume the existence of a limit, but consider the limit notion as something that has to 

be defined. 

And one day later he says: If we start with rational numbers then it makes no sense to define 

the irrational numbers as limits of the rationals because initially we do not know whether 

other than rational numbers do exist. […]  However, once the concept of real numbers is 

established, then one can consider the irrational numbers as limits of the rationals. For we 

can always from a number formed by infinitely many elements remove elements [a finite 

number of which is meant] such that the remainder is smaller than any arbitrary little 

quantity   ; hence, there are infinitely many rational numbers lying as close to the 

irrationals as ever one wishes. 

Weierstrass’ student, Georg Cantor (1845 – 1918; he came to Berlin in the autumn of 1863 

and remained until the summer of 1866), remarks in 1883 in a publication:  

It has to be emphasized as essential that the number to be defined cannot be 

considered from the beginning as the sum  a   of the infinite sequence  ( a ). I think, 

Weierstrass was the first who avoided this logical error generally adopted in the past. 

In his lecture in the summer of 1874 Weierstrass says: 

 If the infinite sum is of finite value [that means it defines a real number], then it can 

always divided in two quantities, one of which consists of a finite number of terms and the 
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other of an infinite number of terms such that the latter is smaller than an arbitrary given 

small quantity. 

In our terminology, this is nothing else but  







k

n

n
kn

n
n

a
n

a

11

1
lim

1
  . 

 

Weierstrass never published his theory of irrational numbers. The only sources to get to know 

his method are the lecture notes of his students, as far as the manuscripts have survived the 

times, or publications of them. He presented his construction as a part of his lecture course 

“Introduction to the theory of analytic functions”. Weierstrass gave that course in a cycle of 

two years, from 1863/64 until 1884/85, and also in his lecture “Selected chapters of function 

theory” in the summer of 1886. The treatment of the concept of real numbers occupies in 

those lectures different, sometimes considerable space. For instance, in the summer of 1874 it 

amounts to 85 handwritten pages of a total of 700 pages for the whole manuscript. This shows 

the importance that Weierstrass attached to these basic concepts. In his lecture in the summer 

of 1874 he says:  

The reason for the main difficulties in higher analysis is the vague and not sufficiently 

detailed presentation of the arithmetical basic notions and operations. 

 

Let me add at this point some more general remarks about Weierstrass’s lectures. 

What he offered was often not published. Both students from all regions of Germany and 

already educated mathematicians (as for instance the Swedish Gösta Mittag-Leffler) attended 

his lectures, sometimes more than 250 students. An impressive participation! From some of 

these lectures notes and detailed handwritten manuscripts have survived. To write a copy and 

to sell it was an option for the poorer students to get some money. These texts have 

contributed to the further spreading of Weierstrass’s mathematics. 

 

One of the first publications in which theorems of Weierstrass’s lectures are discussed is a 

paper of Eduard Heine (1821 – 1881), professor in Halle. You know his name from the 

Heine-Borel theorem. He suggested to the young Georg Cantor to study trigonometric series, 

which, finally, led Cantor to the development of his set theory. Heine was in contact with 

Weierstrass. In a paper “Elements of the theory of functions” dated October 1871 Heine says:  

 The development of the theory of functions is essentially obstructed by the fact that 

some of the elementary theorems in that, though they are proven by an astute researcher 

[referring to Weierstrass] are questioned, such that the results of an investigation are not 
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accepted everywhere, if they are based on these indispensable fundamental theorems. […] 

Their truth is related to the not completely established definition of irrational numbers […]. 

He then continues:  

 […] to construct the general numbers [that’s Heine’s name for real numbers] with the 

help of those especially appropriate sequences which are denoted here as “Zahlenreihen” 

(number sequences) […] is a lucky further stage of the original kind of invention using the 

multiples of certain quantities in an infinite number. 

It is remarkable that Heine considers Cantor’s idea to construct real numbers by means of 

fundamental sequences as a further development of Weierstrass’s original number concept. 

Heine points out that his theorems (for instance the intermediate value theorem for continuous 

functions) already are all proven by Weierstrass by means of his number concept but that he 

will now give proofs using Cantor’s number concept. 

 

As it is well-known, besides Weierstrass and Cantor, Richard Dedekind (1831 – 1916) 

independently developed a quite different approach to real numbers. He had found his concept 

of “cuts” during his lectures on the calculus in 1858 (published only in 1872). Cantors’s 

starting point were uniqueness theorems for trigonometric series. He presented his number 

concept for the first time in a lecture on differential calculus in summer 1870 (published in 

1872 too). 

The first person to publish a theory of real numbers was the French mathematician Charles 

Méray in 1869. His concept is based – like Cantor’s – on fundamental sequences, but his 

paper had gone largely unnoticed. 

 

It would be interesting to know Weierstrass’s reaction to Heine’s or Cantor’s  constructions. 

Although the Berlin Academy of Sciences keeps the correspondence between Weierstrass and 

Schwarz with hundreds of letters, unfortunately, in that very period of time there are 

considerable gaps in this correspondence so that we cannot say anything about that. 

 

Now I would like to come back to the theorem of Bolzano-Weierstrass. 

In our days this theorem appears in the beginning of every lecture on differential calculus. 

The meaning is immediately clear. Why waste time for a proof? 

Weierstrass answered this. He points out in a lecture dated June 9
th

, 1886: 

 The beginner will feel inclined to think that such a theorem is something obvious. In 

fact, let us assume for a moment, that x [elements of an infinite set of real numbers] lie 
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between the bounds  a  and  b. Then it is evident, if one refers to the idea of a straight line, 

that, if in the finite interval [a,b] lie infinitely many points that there is at least one point 

where points of the given set accumulate in infinity. However, we will provide here an exact 

proof of the theorem. 

Two days later he again comments the necessity of a proof: 

 If we fix on the straight line AB a unit measure, then each point C is represented by a 

number quantity. But, on the other hand, it is in advance not clear that to each given number 

quantity corresponds a certain point. At least for a moment, it cannot be excluded the 

possibility that the set of all positive real numbers is something more than the set of the 

points. 

 

How did Weierstrass prove the theorem for the first time in 1863/64? 

At first he points out for what purpose he will use the theorem: 

I would like to prove the theorem mentioned yesterday: That two functions coincide, if 

they coincide for infinitely many points.  

This statement is known as the uniqueness theorem for power series. Then follow the words 

mentioned already at the beginning: I need a lemma that is indispensable for finer 

mathematical investigations.  

It’s not so easy to decipher the text because of the permanent abbreviations and gaps. But for 

notes written during a lecture that is quite understandable. However, the contents can quite 

probably be reconstructed as follows: 

It is assumed that in the square defined by the points  0, 1, 1+i, i  of the complex plane lie 

infinitely many points. Bisecting the sides yields four new squares. In at least one of them 

must lie infinitely many points again. Let 1x  denote its lower left corner.  

We have  
2

1
1

a
x   for some  },1,1,0{1 iia  . Bisecting that square produces four new 

squares again. Analogously, we obtain a square with lower left corner 2x  containing 

infinitely many of the given points. It follows  
42

21
2

aa
x    for some  },1,1,0{2 iia  . 

Repeating this procedure yields a sequence of complex numbers (namely the corners)  

n

n
n

aaa
x

2
...

42

21     with  },1,1,0{ iian  . Since  2na  the sequence converges (it 

is absolutely convergent). Here we reach the point where Weierstrass’s number concept is to 

be applied (in a somewhat broader context for complex numbers instead of the real ones). 
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Then it is shown that the limit of the corners has the desired property (namely, to be an 

accumulation point). The lemma is done. 

That’s the first proof of the theorem of Bolzano-Weierstrass at all. 

 

Note that the theorem is not stated for subsets of real numbers as it is common today in the 

introductory lectures on analysis. The same situation we find in the notes of Wilhelm Killing 

(1847 – 1923) of Weierstrass’s lecture in 1868 (thus, I can mention here the second renowned 

teacher of Braunsberg). Of course, that is due to the fact that Weierstrass discusses in these 

lectures only power series for complex variables. Weierstrass included the treatment of 

functions of one real variable in his lectures in the summer of 1874. Consequently, the 

theorem of Bolzano-Weierstrass is then stated and proved for bounded sets of real numbers. It 

is applied in the proofs of the known statements for continuous functions of one real variable. 

However, in that version the theorem is already discussed in the 1870 correspondence 

between Cantor and Schwarz. I will come back to this point later on. 

 

                                                   
 

 

Bernard  Bolzano 

(1781 – 1848) 
 

I would like to come to Bolzano’s contributions. Bernard Bolzano was a Bohemian 

philosopher, logician and Catholic priest. He studied also mathematics in Prague and 

published mathematical papers. 
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What part has Bolzano in the theorem of Bolzano-Weierstrass? 

His relevant paper was published in Prague in 1817:  Purely analytical proof of the theorem, 

that between each two roots which guarantee an opposing result [in sign], at least one real 

root of the equation lies. 

With respect to the theorem of Bolzano-Weierstrass the most important statement is the 

following 

 Lehrsatz. If  M  is a property of real numbers that does not hold for all  x , and there 

exists a number  u  such that all numbers  ux   have property  M , then there exists a largest 

U  such that all numbers  Ux   have property  M . 

At first sight, perhaps, it looks quite different from the theorem of Bolzano-Weierstrass. But 

actually, both theorems are equivalent. I leave the proof as a nice exercise to the interested 

student. 

I would like to say some words about Bolzano’s proof of the Lehrsatz. 

In §7 a criterion for convergence of sequences of functions is stated, that is exactly what we 

call the Cauchy convergence criterion for sequences of functions (as it occurs in his “Cours 

d’analyse”, Paris 1821). By the way, Bolzano formulates his criterion not for sequences of 

real numbers. As opposed to Cauchy, Bolzano proves the theorem (we have to say, he tries to 

prove). He argues: under this assumption [the Cauchy condition] it is possible to determine 

that quantity [that means the limit] as precisely as ever one wishes. Thus, Bolzano concludes 

the existence of the limit from the fact that this quantity can be calculated with arbitrary 

exactness. The gap in his deduction is that the number concept is not discussed (and that’s the 

only gap). 

In §9 he applies the Cauchy criterion to infinite series. 

In §12 the Lehrsatz is stated. Bolzano’s proof runs as follows. He constructs a sequence of 

intervals  ],[ nn Uu  such that property M  holds for all nux   ,  but M  doesn’t hold for all 

nUx  . Let  ],[ Duu   be a starting interval (there is one by assumption). Bisecting the 

interval generates at  least one  new interval with the analogous property with respect to M . 

Repeating that procedure leads to an infinite sequence )( nu  such that the  nu  are the partial 

sums of the infinite series ...
22 21


mm

DD
uU  and the powers of 2 in the denominators 

are strictly monotonic increasing. That series is convergent by the Cauchy criterion for 

infinite series of §9. The number U  has the desired property stated in the Lehrsatz. 

In §13 Bolzano underlines that for sets bounded from above a maximum does not necessarily 

exist. 
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For what purpose does Bolzano use his Lehrsatz?  

He told it already in the paper’s title: the existence of zeroes for continuous functions. In fact, 

in §15 he proves a more general theorem: Let gf ,  be continuous functions on the closed 

interval  [a,b], )()(),()( bgbfagaf  , then there exists a ],[ bax  such that  )()( xgxf  . 

Especially, as stated in the title of his paper, if )(af  and )(bf  differ in sign, then there is a  

],[ bax  such that  0)( xf . 

To prove the theorem the set  {u for all )()(: xagxafux  } is considered. It has an 

upper bound. Hence the Lehrsatz applies to it. It follows that a + U  has the required property 

where  U  is from the Lehrsatz. 

 

Why is Bolzano interested in these matters? 

His interest has a general background. In his 1817 paper he discusses that point in some 

detail. He criticizes references made to geometrical imagination in mathematical proofs. As 

an example he mentions Gauss’s first proof of the so-called fundamental theorem of algebra, 

where Gauss made extensive use of geometric representations, reducing the problem to the 

proof that there exist points of intersection of certain algebraic curves in the plane. Bolzano 

says: […] a geometrical proof is in fact a logical circular reasoning. Even though the 

geometrical truth to which the reference is made is most evident such that there is no need to 

make it sure nevertheless it requires a proof. 

At that time, such a point of view is exotic. His view on the fundamental concepts of analysis 

is sharper than that of his contemporaries. 

 

It is not clear whether Weierstrass was aware of Bolzano’s paper when he discussed his 

lemma in the lectures in 1863/64. In any case, Bolzano’s name doesn’t appear in the notes of 

Schwarz. The same is true for the notes of Killing in the summer of 1868. As an exception, in 

his last lecture on the number concept in summer 1886, Bolzano is mentioned a few times. 

Anyway, the correspondence between Cantor an Schwarz shows clearly that Weierstrass 

knew Bolzano’s paper at least in 1869. 

According to the notes of Killing, Weierstrass’s formulation of the lemma in the summer of 

1868 is a little bit closer to Bolzano’s Lehrsatz: 

 If a function has a property on a bounded region infinitely often, then there exists at 

least one point such that for every neighborhood of it the function has the required property. 

Weierstrass brings forward only a very short argument in that lecture without any reference to 

his number concept: namely, let the region be contained in a square. Repeated bisection (as 
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described above) allows “to approach the point as close as ever we wish”. That’s all. This 

reminds of Bolzano’s argument, who thought the existence of his “largest U”  is proved by 

saying that it is possible to determine that quantity with arbitrary accuracy. 

 

It is remarkable that, in fact, Bolzano uses the theorem of Bolzano-Weierstrass in the form as 

it is familiar to us. Up to the year 1930 this was completely unknown and could, of course, not 

have played any role in giving the theorem that name and was of no influence to the 

generation of Weierstrass and Cantor at all.  

But, in which form does the theorem occur in Bolzano’s work? 

Bolzano wrote the manuscript around 1830, entitled “Functionenlehre” (theory of functions). 

He considers a function which is not bounded on a closed interval [a,b]. He shows that the 

function cannot be continuous (§20). His proof goes as follows: There must exist for all 

natural numbers  n  points ],[ baxn    such that  nxf n )( . Then he deduces that there is a 

point  c  such that in any arbitrary small neighborhood elements nx  exist, that means it is 

exactly that what we call an accumulation point. Bolzano shows that   f   is not continuous at  

c .  For the existence of  c  he refers to a paragraph § that is not contained in his manuscript. 

We know that the “Functionenlehre” was planned as a part of a certain “Grössenlehre”, but 

that text remained unfinished. As a corollary he states, that continuous functions on closed 

intervals are bounded. Quite analogously, Bolzano proves (§22): Let   f   be a continuous 

function on a closed interval [a,b] . If there are infinitely many  ],[ baxn    such that   

Cxf n
n




)(lim  ,  then there is a point ],[ bac  such that  Ccf )( . It is followed by the 

theorem that a continuous function on a closed interval attains its maximum and minimum 

(§24). The intermediate value theorem is stated too. Moreover, in that manuscript Bolzano 

described a continuous function on a closed interval that is nondifferentiable on a subset 

dense everywhere, about four decades before Weierstrass presented his famous example. But 

– as already mentioned – nobody knew of these achievements of Bolzano at that time. The 

basic theorems on continuous functions, except for the concept of uniform continuity, are 

stated by Bolzano. With respect to his precise treatment, his clear concept of arithmetization 

of analysis, Bolzano is a forerunner of the further developments in the 19
th

 century. 

 

For what does Weierstrass use the theorem of Bolzano-Weierstrass in his lectures? 

In the first lecture in 1863/64, as already mentioned, to prove the uniqueness theorem for 

power series; 
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in the summer of 1868, according to the notes of Killing, to discuss the difference between 

polynomials and infinite power series convergent on the whole complex plane, that means the  

transcendental entire functions – today known as the Casorati-Weierstrass theorem; 

Thus, in the first years Weierstrass stated the theorem only for the complex plane because he 

was concerned in his lectures exclusively with complex power series. 

In his lectures later on, for instance in the summer of 1874, functions of one real variable are 

considered and therefore the Bolzano-Weierstrass theorem is stated for subsets of real 

numbers and is applied in the proofs of the basic theorems on continuous functions. A new 

aspect is the concept of uniform continuity. In his proof that a continuous funtion on a closed 

interval is uniform continuous Weierstrass uses that “fundamental theorem of the theory of 

quantities”, as he called it in the lectures 1886. In one of the existing lecture notes one reads: 

Weierstrass was the first who drew the attention to the fact that this property [of uniform 

continuity] has to be assumed for the concept of definite integral.   

 

It is through Weierstrass’s lectures that the strict foundation of analysis, its exact control over 

basic concepts like limit, convergence, continuity and differentiability, and its systematic 

construction with watertight proofs, became known to mathematicians. The so-called 

“Weierstrassian rigour” became legendary. Today we are familiar with such deductions. No 

lecture on analysis without these concepts. So, hardly anyone would assume that theorems of 

this kind could be something to start controversial discussions. In the 1880’s, the conflict 

between Weierstrass and his Berlin colleague Leopold Kronecker became more acute. Their 

friendship, which had lasted for more than twenty years, ended once and for all. This 

escalation seems surprising, the more so because for a long time these fundamental existence 

theorems (as for instance the completeness property or the intermediate value theorem) were 

generally regarded as self-evident before and also during the nineteenth century when efforts 

to provide an exact foundation of analysis started. 

 

Lets come back again to the last third of the 19
th

 century. One has to keep in mind, that 

although Weierstrass, Dedekind and Cantor presented their constructions in their lectures, the 

mathematical community was not aware of an exact theory of real numbers or even refused 

such concepts. Still in 1884 Cantor declares: 

 Its worth to be remarked that our proof  [Cantor refers to the method of nested 

intervals] is attacked by some geometers [that means mathematicians]. Many are 

embarrassed, intimidated or confused. 



 14 

 

I would like to give some more attention to the controversy concerning the foundation of 

analysis. 

It was Weierstrass’ intention to develop analysis without any reference to geometrical 

imagination. A quotation from the lecture in the summer of 1874: 

 To establish analysis we need a purely arithmetical foundation […] analysis has to be 

cleaned of geometry. 

 

Was that the right way? Lively discussions started, especially around 1870. The most 

prominent critic was Leopold Kronecker (1823 – 1891). He, Weierstrass and Eduard Kummer 

(1810 – 1893) were the leading mathematicians in Berlin at that time, a distinguished group 

with world-wide recognition . 

Both Kronecker and Weierstrass agreed that there was a need for a more exact foundation of 

analysis. In 1864 Felice Casorati (1835 – 1890) came as a young professor to Berlin. He made 

notes on his discussions with Weierstrass, Kronecker and others that make clear what a 

central theme the foundation of analysis was, for instance how to define the notion of 

continuity. Heine also reports that Weierstrass and Kronecker discussed such questions 

frequently. 

 

Kronecker wrote to Schwarz a letter, dated 1870, 3
rd

 July: 

 Beloved friend, 

[…] through your correspondence with Heine and Cantor you are very well informed about 

their work on Fourier series. I would like to tell you the same thing that I already said to 

Heine and Cantor personally, namely, that I did not get to like those papers  […]. Cantor’s 

approach is based on Weierstrassian “method” using the “upper and lower bound” 

[supremum and infimum in our terminology] that you are also applying, which I cannot 

accept like the more obvious fallacies Bernard Bolzano’s as well. […]  By the way, in my 

disbelief of Bolzano’s kind of reasoning and the analogous, although more subtle reasoning 

of Weierstrass, I have Heine and Borchardt on my side. [With respect to Heine it can only be 

viewed as an illusion.] I’m even convinced that it will be possible to construct functions which 

are so unreasonable that they don’t have an upper bound despite Weierstrass’s assumptions 

being satisfied. All such general theorems have their hiding places where they do not hold. In 

order to prove such statements one has to go back to the first principles, to the explanation of 

“quantities” where one is confronted with the whole difficulties and controversies that arose 
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whenever efforts are made to a renewal of the foundations of our science. In order to 

overcome them it requires years of reasoning. As for my part, having been engaged in such 

matters for a few months, I’m glad to get away from such things. I would like to warn you not 

to waste your youthful freshness and inventive talent for these relatively fruitless things. As 

already said, it became quite clear to me that the Weierstrassian claim that an “upper 

bound” exists cannot be proved and that it is, perhaps, even not true. 

A few days later, Kronecker again explains in a letter to Schwarz his criticism. 

 Beloved friend, 

[…] In my opinion, Cantor’s attempt to extend his proof of uniqueness to arbitrary 

trigonometric series failed. For his deductions are based on the existence of a “maximum” 

that is at least not yet proved. The many attempts Weierstrass made to overcome my doubts 

were all in vain. I think, Weierstrass himself is now convinced that this maximum is 

unprovable. However, he regards it as existent. But Heine […] neither does believe in the 

rigour of the Bolzano-Weierstrass method nor in the rigour of Cantor’s proof based on it. 

[…] I wished that Heine and Cantor had withdrawn their publications; after the intervention 

of Weierstrass I decided for the present not to publish my point of view; but later I shall 

surely find the opportunity to do so. 

 

Not only Kronecker, but also the third of the Berlin triumvirate, Eduard Kummer (father-in-

law of Schwarz) explains his objections at the same time. He writes to his son-in-law in 1870, 

1
st
 June: 

 I for myself would like to remark that I regard as very slippery the whole ground on 

which the investigations of the Dirichlet principle grow, namely the ground where completely 

indetermined functions are studied such that a solid building is impossible to establish. Yet 

you know my words: “In the field of transcendental functions everything is possible.” Here it 

can always appear that in special cases the theorems stated stop being valid. I would really 

like it if you don’t cultivate that slippery ground with such an eagerness, but that you turn to 

those problems to which you are excellently gifted, namely, the more concrete ones, where the 

success doesn’t depend on the opinions about rigour which can have that or the other 

mathematician and where one simply, by drive for rigour, goes into the most fruitless 

investigations which never reach the absolute rigour in such a generality as it is sought-after. 

 

A few weeks later, on July 14
th

, Weierstrass spoke in the Berlin Academy on his criticism of 

Dirichlet principle – the basis of Riemann’s function theory with the result that Riemann’s 
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approach was no longer accepted. Two years later (1872, on July 18
th

) Weierstrass presented a 

function continuous for all real numbers that is differentiable nowhere. A shocking fact. For it 

was a common belief that continuous functions on finite intervals are always differentiable 

except, perhaps, at a finite number of points. There were even “proofs”  of this wrong 

statement, for instance by such renowned mathematicians like Galois (1830) and Bertrand 

(1864). Such a function represented in the eyes of Charles Hermite (1822 – 1901) a 

“deplorable wound”. Still in 1893 he declares: I turn away with fright and horror from this 

lamentable evil of functions that do not have derivatives. 

By the way, it seems that Weierstrass knew for years that such functions do exist. I was 

surprised when I read in Schwarz’s notes of the lecture 1863/64 (that lecture where the 

theorem of Bolzano-Weierstrass occurs for the first time): 

It is not justified that such functions have derivatives; - proofs are wrong, for I shall 

show that there are such functions that are continuous but that they have at no point a 

derivative. 

 

The criticism to Weierstrass’s approach was not without influence. Schwarz became doubtful.  

Answering a letter of him Cantor writes in 1870, July 27
th

 : 

 You ask me, if our Weierstrass admits a lack of rigour in his characteristic kind of 

proving. That’s in no way the case. Although the professors Kummer, Kronecker and 

Borchardt have made the most intensive attempts to drive him to a corner, I find that his point 

of view has been changed not an inch. When on the one hand your father-in-law raises the 

objection that it is impossible to state general theorems without assumptions, on the other 

hand Weierstrass emphasizes that his theorem of the existence and the attainment of the upper 

bound for continuous functions has just its power and its applicability in the fact that it is 

general. 

 I for myself have no doubts about its truth. Moreover, I’m convinced that it will be 

accepted over the years. 

As already said, in the 1880’s the conflict between Weierstrass and Kronecker became more 

acute. Kronecker speaks of the “so-called analysis”. He writes to Schwarz in 1884, December 

28
th

:  

 If enough years and powers are left to me I shall show to the mathematical world that 

not only geometry but also algebra can show analysis the ways and certainly the stronger 

ones. If I cannot do that, then those will do it who shall come after me and, moreover, they 

will realize the incorrectness of all these reasonings, used today by the so-called analysis. 
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That’s especially a slap in the face of Weierstrass. In his attacks Kronecker never mentioned 

the name of Weierstrass explicitly. Although a concrete criticism by Kronecker himself is not 

known – despite promising it on several occasions – , the position he adopted in basic 

questions can be describes as follows. For him, mathematical concepts and deductions are 

only admissible if they can be described through constructive procedures requiring only a 

finite number of steps. For instance, the introduction of the notion of irreducibility of a 

polynomial is only justified if, at the same time, a procedure is stated which allows one to 

decide in a finite number of steps whether a given polynomial is irreducible or not. For this 

reason it is also quite clear that Kronecker could not accept a theorem like that of Bolzano-

Weierstrass, because it is a pure existence theorem: it provides for any given infinite bounded 

set of real numbers no way of determining in a finite number of steps an accumulation point. 

 

 
 

 

Sofya  Vasilievna  Kovalevskaya 

(1850 – 1891)  

 

In the correspondence between Weierstrass and Sofya Kovalevskaya, his unforgettable 

Russian student, we find also traces of the controversy with Kronecker. In the autumn of 1870 

she had come from Heidelberg to Berlin in order to continue her studies with Weierstrass. She 

remained in Berlin until the summer of 1874. A connection grew between them which is 

difficult to find anywhere else in the history of science. In 1874 she received the doctoral 

degree from the University of Göttingen. In 1884 she was appointed professor for higher 
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analysis at the then still young University of Stockholm. For the first time, a woman held a 

chair in mathematics in an unrestricted sense. 

About that time, Weierstrass writes to her in 1885, March 24
th

:  

 So it happens not seldom, that I present in a lecture a theorem together with a proof  –  

at least that is my opinion  –  that is viewed in another lecture as untenable and misleading. 

[Weierstrass had mentioned before that his colleagues Kronecker and Fuchs  “work against 

him”] Whereas I say that a so-called irrational number has such a real existence as anything 

else in the world of thinking, it is now an axiom for Kronecker that there are only equations 

between integers. 

 

Finally, the controversy between Weierstrass and Kronecker led to a permanent discord 

between them. For Weierstrass the strain was so great that he even had the intention, a few 

weeks before his 70
th

 birthday, to leave Berlin and to settle in Switzerland. We know that 

from one of his letters to Sofya Kovalevskaya.  

Weierstrass and his two sisters all lived together in one apartment. All three remained 

unmarried. The sisters were worried about their brother. Was he on the right way? Was his 

work of any value?  

Sister Clara wrote to Sofya and asked her for an evaluation of the work of her brother. A letter 

arrived (undated, but presumably written in 1887): 

Nothing on this world is more certain to me than that: the mathematical truths 

discovered by Weierstrass will be recognized as long as there are mathematicians on this 

earth at all. His name will be forgotten only, when the names of Gauss and Abel are forgotten 

too. 

 

Acknowledgement: I would like to thank John Parker (Durham) for spelling corrections and 

stylistic improvements. 

 

 


