3-dimensional affine space forms and hyperbolic geometry

William M. Goldman

Department of Mathematics University of Maryland

26 March 2010 Second W. Killing and W. Weierstrass Colloquium Braniewo, Poland

- When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n/G$ a (Hausdorff) manifold?
- G acts by Euclidean isometries \Longrightarrow G finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbarch 1912);
- A Euclidean isometry is an *affine transformation*

$$\vec{x} \stackrel{\gamma}{\longmapsto} A\vec{x} + \vec{b}$$

$$A \in \mathsf{GL}(n,\mathbb{R}), \vec{b} \in \mathbb{R}^n,$$

- Only finitely many topological types in each dimension.
- Only one commensurability class

- When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n/G$ a (Hausdorff) manifold?
- G acts by Euclidean isometries \Longrightarrow G finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbarch 1912);
- A Euclidean isometry is an *affine transformation*

$$\vec{x} \stackrel{\gamma}{\longmapsto} A\vec{x} + \vec{b}$$

$$A \in \mathsf{GL}(n,\mathbb{R}), \vec{b} \in \mathbb{R}^n,$$

- Only finitely many topological types in each dimension.
- Only one commensurability class

- When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n/G$ a (Hausdorff) manifold?
- G acts by Euclidean isometries \Longrightarrow G finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbarch 1912);
- A Euclidean isometry is an *affine transformation*

$$\vec{x} \stackrel{\gamma}{\longmapsto} A\vec{x} + \vec{b}$$

$$A \in \mathsf{GL}(n,\mathbb{R}), \vec{b} \in \mathbb{R}^n,$$

- Only finitely many topological types in each dimension.
- Only one commensurability class

- When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n/G$ a (Hausdorff) manifold?
- G acts by Euclidean isometries \Longrightarrow G finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbarch 1912);
- A Euclidean isometry is an *affine transformation*

$$\vec{x} \stackrel{\gamma}{\longmapsto} A\vec{x} + \vec{b}$$

$$A \in \mathsf{GL}(n,\mathbb{R}), \vec{b} \in \mathbb{R}^n,$$

- Only finitely many topological types in each dimension.
- Only one commensurability class

- When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n/G$ a (Hausdorff) manifold?
- G acts by Euclidean isometries \Longrightarrow G finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbarch 1912);
- A Euclidean isometry is an *affine transformation*

$$\vec{x} \stackrel{\gamma}{\longmapsto} A\vec{x} + \vec{b}$$

$$A \in \mathsf{GL}(n,\mathbb{R}), \vec{b} \in \mathbb{R}^n,$$

- Only finitely many topological types in each dimension.
- Only one commensurability class

- When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n/G$ a (Hausdorff) manifold?
- G acts by Euclidean isometries \Longrightarrow G finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbarch 1912);
- A Euclidean isometry is an affine transformation

$$\vec{x} \stackrel{\gamma}{\longmapsto} A\vec{x} + \vec{b}$$

$$A \in \mathsf{GL}(n,\mathbb{R}), \vec{b} \in \mathbb{R}^n,$$

- Only finitely many topological types in each dimension.
- Only one commensurability class

- When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n/G$ a (Hausdorff) manifold?
- G acts by Euclidean isometries \Longrightarrow G finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbarch 1912);
- A Euclidean isometry is an affine transformation

$$\vec{x} \stackrel{\gamma}{\longmapsto} A\vec{x} + \vec{b}$$

$$A \in \mathsf{GL}(n,\mathbb{R}), \vec{b} \in \mathbb{R}^n,$$

- Only finitely many topological types in each dimension.
- Only one commensurability class.

- When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n/G$ a (Hausdorff) manifold?
- G acts by Euclidean isometries \Longrightarrow G finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbarch 1912);
- A Euclidean isometry is an affine transformation

$$\vec{x} \stackrel{\gamma}{\longmapsto} A\vec{x} + \vec{b}$$

$$A \in \mathsf{GL}(n,\mathbb{R}), \vec{b} \in \mathbb{R}^n,$$

- Only finitely many topological types in each dimension.
- Only one commensurability class.

- When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n/G$ a (Hausdorff) manifold?
- G acts by Euclidean isometries \Longrightarrow G finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbarch 1912);
- A Euclidean isometry is an affine transformation

$$\vec{x} \stackrel{\gamma}{\longmapsto} A\vec{x} + \vec{b}$$

$$A \in \mathsf{GL}(n,\mathbb{R}), \vec{b} \in \mathbb{R}^n,$$

- Only finitely many topological types in each dimension.
- Only one commensurability class.

- When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n/G$ a (Hausdorff) manifold?
- G acts by Euclidean isometries \Longrightarrow G finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbarch 1912);
- A Euclidean isometry is an affine transformation

$$\vec{x} \stackrel{\gamma}{\longmapsto} A\vec{x} + \vec{b}$$

$$A \in \mathsf{GL}(n,\mathbb{R}), \vec{b} \in \mathbb{R}^n,$$

- Only finitely many topological types in each dimension.
- Only one commensurability class.

- When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n/G$ a (Hausdorff) manifold?
- G acts by Euclidean isometries \Longrightarrow G finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbarch 1912);
- A Euclidean isometry is an affine transformation

$$\vec{x} \stackrel{\gamma}{\longmapsto} A\vec{x} + \vec{b}$$

$$A \in \mathsf{GL}(n,\mathbb{R}), \vec{b} \in \mathbb{R}^n,$$

- Only finitely many topological types in each dimension.
- Only one commensurability class.

- A complete affine manifold M^n is a quotient \mathbb{R}^n/G where G is a discrete group of affine transformations.
- For *M* to be a (Hausdorff) smooth manifold, *G* must act:
 - Discretely: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).
 - More precisely, the map

$$G \times X \longrightarrow X \times X$$

 $(g, x) \longmapsto (gx, x)$

- is a proper map (preimages of compacta are compact).
- Unlike Riemannian isometries, discreteness does not imply properness.
- Equivalently this structure is a geodesically complete torsionfree affine connection on M

- A complete affine manifold M^n is a quotient \mathbb{R}^n/G where G is a discrete group of affine transformations.
- For *M* to be a (Hausdorff) smooth manifold, *G* must act:
 - Discretely: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).
 - More precisely, the map

$$G \times X \longrightarrow X \times X$$

 $(g, x) \longmapsto (gx, x)$

- is a proper map (preimages of compacta are compact).
- Unlike Riemannian isometries, discreteness does not imply properness.
- Equivalently this structure is a geodesically complete torsionfree affine connection on M

- A complete affine manifold M^n is a quotient \mathbb{R}^n/G where G is a discrete group of affine transformations.
- For *M* to be a (Hausdorff) smooth manifold, *G* must act:
 - Discretely: $(G \subset \mathsf{Homeo}(\mathbb{R}^n) \mathsf{ discrete});$
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).
 - More precisely, the map

$$G \times X \longrightarrow X \times X$$

 $(g, x) \longmapsto (gx, x)$

- is a proper map (preimages of compacta are compact).
- Unlike Riemannian isometries, discreteness does not imply properness.
- Equivalently this structure is a geodesically complete torsionfree affine connection on M

- A complete affine manifold M^n is a quotient \mathbb{R}^n/G where G is a discrete group of affine transformations.
- For *M* to be a (Hausdorff) smooth manifold, *G* must act:
 - Discretely: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).
 - More precisely, the map

$$G \times X \longrightarrow X \times X$$

 $(g,x) \longmapsto (gx,x)$

- is a proper map (preimages of compacta are compact)
- Unlike Riemannian isometries, discreteness does not imply properness.
- Equivalently this structure is a geodesically complete torsionfree affine connection on M

- A complete affine manifold M^n is a quotient \mathbb{R}^n/G where G is a discrete group of affine transformations.
- For *M* to be a (Hausdorff) smooth manifold, *G* must act:
 - Discretely: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).
 - More precisely, the map

$$G \times X \longrightarrow X \times X$$

 $(g,x) \longmapsto (gx,x)$

- is a proper map (preimages of compacta are compact).
- Unlike Riemannian isometries, discreteness does not imply properness.
- Equivalently this structure is a geodesically complete torsionfree affine connection on M

- A complete affine manifold M^n is a quotient \mathbb{R}^n/G where G is a discrete group of affine transformations.
- For *M* to be a (Hausdorff) smooth manifold, *G* must act:
 - Discretely: $(G \subset \mathsf{Homeo}(\mathbb{R}^n) \mathsf{discrete});$
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).
 - More precisely, the map

$$G \times X \longrightarrow X \times X$$

 $(g,x) \longmapsto (gx,x)$

- is a proper map (preimages of compacta are compact).
- Unlike Riemannian isometries, discreteness does not imply properness.
- Equivalently this structure is a geodesically complete torsionfree affine connection on M

- A complete affine manifold M^n is a quotient \mathbb{R}^n/G where G is a discrete group of affine transformations.
- For *M* to be a (Hausdorff) smooth manifold, *G* must act:
 - Discretely: $(G \subset \mathsf{Homeo}(\mathbb{R}^n) \mathsf{discrete});$
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).
 - More precisely, the map

$$G \times X \longrightarrow X \times X$$

 $(g,x) \longmapsto (gx,x)$

- is a proper map (preimages of compacta are compact).
- Unlike Riemannian isometries, discreteness does not imply properness.
- Equivalently this structure is a geodesically complete torsionfree affine connection on M

- A complete affine manifold M^n is a quotient \mathbb{R}^n/G where G is a discrete group of affine transformations.
- For *M* to be a (Hausdorff) smooth manifold, *G* must act:
 - Discretely: $(G \subset \mathsf{Homeo}(\mathbb{R}^n) \mathsf{ discrete});$
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).
 - More precisely, the map

$$G \times X \longrightarrow X \times X$$

 $(g,x) \longmapsto (gx,x)$

- is a proper map (preimages of compacta are compact).
- Unlike Riemannian isometries, discreteness does not imply properness.
- Equivalently this structure is a geodesically complete torsionfree affine connection on *M*.

- Most interesting examples: Margulis (\sim 1980):
 - lacksquare G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $\mathbb{L}(G) \subset O(2,1)$ is isomorphic to G.
 - M³ noncompact complete flat Lorentz 3-manifold.
 - Associated to every Margulis spacetime M^3 is a noncompact complete hyperbolic surface Σ^2 .
 - Closely related to the geometry of M^3 is a *deformation* of the hyperbolic structure on Σ^2 .
- Conjecture: Every Margulis spacetime is diffeomorphic to a solid handlebody.

- Most interesting examples: Margulis (\sim 1980):
 - \blacksquare G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $\mathbb{L}(G) \subset O(2,1)$ is isomorphic to G.
 - M³ noncompact complete flat Lorentz 3-manifold.
 - Associated to every Margulis spacetime M^3 is a noncompact complete hyperbolic surface Σ^2 .
 - Closely related to the geometry of M^3 is a *deformation* of the hyperbolic structure on Σ^2 .
- Conjecture: Every Margulis spacetime is diffeomorphic to a solid handlebody.

- Most interesting examples: Margulis (\sim 1980):
 - lacksquare G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $\mathbb{L}(G) \subset O(2,1)$ is isomorphic to G.
 - M³ noncompact complete flat Lorentz 3-manifold.
 - Associated to every Margulis spacetime M^3 is a noncompact complete hyperbolic surface Σ^2 .
 - Closely related to the geometry of M^3 is a *deformation* of the hyperbolic structure on Σ^2 .
- Conjecture: Every Margulis spacetime is diffeomorphic to a solid handlebody.

- Most interesting examples: Margulis (\sim 1980):
 - lacksquare G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $\mathbb{L}(G) \subset O(2,1)$ is isomorphic to G.
 - M³ noncompact complete flat Lorentz 3-manifold.
 - Associated to every Margulis spacetime M^3 is a noncompact complete hyperbolic surface Σ^2 .
 - Closely related to the geometry of M^3 is a *deformation* of the hyperbolic structure on Σ^2 .
- Conjecture: Every Margulis spacetime is diffeomorphic to a solid handlebody.

- Most interesting examples: Margulis (\sim 1980):
 - lacksquare G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $\mathbb{L}(G) \subset O(2,1)$ is isomorphic to G.
 - \blacksquare M^3 noncompact complete flat Lorentz 3-manifold.
 - Associated to every Margulis spacetime M^3 is a noncompact complete hyperbolic surface Σ^2 .
 - Closely related to the geometry of M^3 is a *deformation* of the hyperbolic structure on Σ^2 .
- Conjecture: Every Margulis spacetime is diffeomorphic to a solid handlebody.

- Most interesting examples: Margulis (\sim 1980):
 - lacksquare G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $\mathbb{L}(G) \subset O(2,1)$ is isomorphic to G.
 - \blacksquare M^3 noncompact complete flat Lorentz 3-manifold.
 - Associated to every Margulis spacetime M^3 is a noncompact complete hyperbolic surface Σ^2 .
 - Closely related to the geometry of M^3 is a *deformation* of the hyperbolic structure on Σ^2 .
- Conjecture: Every Margulis spacetime is diffeomorphic to a solid handlebody.

- Most interesting examples: Margulis (\sim 1980):
 - lacksquare G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $\mathbb{L}(G) \subset O(2,1)$ is isomorphic to G.
 - \blacksquare M^3 noncompact complete flat Lorentz 3-manifold.
 - Associated to every Margulis spacetime M^3 is a noncompact complete hyperbolic surface Σ^2 .
 - Closely related to the geometry of M^3 is a *deformation* of the hyperbolic structure on Σ^2 .
- Conjecture: Every Margulis spacetime is diffeomorphic to a solid handlebody.

- Most interesting examples: Margulis (\sim 1980):
 - lacksquare G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $\mathbb{L}(G) \subset O(2,1)$ is isomorphic to G.
 - \blacksquare M^3 noncompact complete flat Lorentz 3-manifold.
 - Associated to every Margulis spacetime M^3 is a noncompact complete hyperbolic surface Σ^2 .
 - Closely related to the geometry of M^3 is a *deformation* of the hyperbolic structure on Σ^2 .
- Conjecture: Every Margulis spacetime is diffeomorphic to a solid handlebody.

- Unlike the 8 geometries of Thurston's Geometrization, affine structures are *not Riemannian*.
 - No obvious metrics.
 - Usual tools (distance, angle, metric convexity, completeness, volume) NOT available.

Conjecture

- An iterated fibration by cells and circles; or
- An open solid handlebody (Margulis, Drumm examples).

- Unlike the 8 geometries of Thurston's Geometrization, affine structures are *not Riemannian*.
 - No obvious metrics.
 - Usual tools (distance, angle, metric convexity, completeness, volume) NOT available.

Conjecture

- An iterated fibration by cells and circles; or
- An open solid handlebody (Margulis, Drumm examples).

- Unlike the 8 geometries of Thurston's Geometrization, affine structures are not Riemannian.
 - No obvious metrics.
 - Usual tools (distance, angle, metric convexity, completeness, volume) NOT available.

Conjecture

- An iterated fibration by cells and circles; or
- An open solid handlebody (Margulis, Drumm examples).

- Unlike the 8 geometries of Thurston's Geometrization, affine structures are *not Riemannian*.
 - No obvious metrics.
 - Usual tools (distance, angle, metric convexity, completeness, volume) NOT available.

Conjecture

- An iterated fibration by cells and circles; or
- An open solid handlebody (Margulis, Drumm examples).

- Unlike the 8 geometries of Thurston's Geometrization, affine structures are not Riemannian.
 - No obvious metrics.
 - Usual tools (distance, angle, metric convexity, completeness, volume) NOT available.

Conjecture:

- An iterated fibration by cells and circles; or
- An open solid handlebody (Margulis, Drumm examples).

- Unlike the 8 geometries of Thurston's Geometrization, affine structures are not Riemannian.
 - No obvious metrics.
 - Usual tools (distance, angle, metric convexity, completeness, volume) NOT available.

Conjecture:

- An iterated fibration by cells and circles; or
- An open solid handlebody (Margulis, Drumm examples).

- Unlike the 8 geometries of Thurston's Geometrization, affine structures are not Riemannian.
 - No obvious metrics.
 - Usual tools (distance, angle, metric convexity, completeness, volume) NOT available.

Conjecture:

- An iterated fibration by cells and circles; or
- An open solid handlebody (Margulis, Drumm examples).

- Unlike the 8 geometries of Thurston's Geometrization, affine structures are not Riemannian.
 - No obvious metrics.
 - Usual tools (distance, angle, metric convexity, completeness, volume) NOT available.

Conjecture:

- An iterated fibration by cells and circles; or
- An open solid handlebody (Margulis, Drumm examples).

- Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"
 - If NO, Mⁿ finitely covered by iterated fibration by cells and circles.
 - Dimension 3: M^3 compact $\Longrightarrow M^3$ finitely covered by T^2 -bundle over S^1 (Fried-G 1983),
 - Geometrizable by **Euc**, **Nil** or **Sol**.

- Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"
 - If NO, Mⁿ finitely covered by iterated fibration by cells and circles.
 - Dimension 3: M^3 compact $\Longrightarrow M^3$ finitely covered by T^2 -bundle over S^1 (Fried-G 1983),
 - Geometrizable by Euc, Nil or Sol.

- Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"
 - If NO, Mⁿ finitely covered by iterated fibration by cells and circles.
 - Dimension 3: M^3 compact $\Longrightarrow M^3$ finitely covered by T^2 -bundle over S^1 (Fried-G 1983),
 - Geometrizable by Euc, Nil or Sol.

- Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"
 - If NO, Mⁿ finitely covered by iterated fibration by cells and circles.
 - Dimension 3: M^3 compact $\Longrightarrow M^3$ finitely covered by T^2 -bundle over S^1 (Fried-G 1983),
 - Geometrizable by Euc, Nil or Sol.

- Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"
 - If NO, Mⁿ finitely covered by iterated fibration by cells and circles.
 - Dimension 3: M^3 compact $\Longrightarrow M^3$ finitely covered by T^2 -bundle over S^1 (Fried-G 1983),
 - Geometrizable by **Euc**, **Nil** or **Sol**.

- Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"
 - If NO, Mⁿ finitely covered by iterated fibration by cells and circles.
 - Dimension 3: M^3 compact $\Longrightarrow M^3$ finitely covered by T^2 -bundle over S^1 (Fried-G 1983),
 - Geometrizable by Euc, Nil or Sol.

Evidence?

Milnor offers the following results as possible "evidence" for a negative answer to this question.

- Connected Lie group G admits a proper affine action $\iff G$ is amenable (compact-by-solvable).
- Every virtually polycyclic group admits a proper affine action.

Evidence?

Milnor offers the following results as possible "evidence" for a negative answer to this question.

- Connected Lie group G admits a proper affine action $\iff G$ is amenable (compact-by-solvable).
- Every virtually polycyclic group admits a proper affine action.

Evidence?

Milnor offers the following results as possible "evidence" for a negative answer to this question.

- Connected Lie group G admits a proper affine action $\iff G$ is amenable (compact-by-solvable).
- Every virtually polycyclic group admits a proper affine action.

- Clearly a geometric problem: free groups act properly by isometries on H^3 hence by diffeomorphisms of \mathbb{E}^3
- These actions are *not* affine.
- Milnor suggests:
 - Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely.
 - However it seems difficult to decide whether the resulting group action is properly discontinuous."

- Clearly a geometric problem: free groups act properly by isometries on H^3 hence by diffeomorphisms of \mathbb{E}^3
- These actions are *not* affine.
- Milnor suggests:
 - Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely.
 - However it seems difficult to decide whether the resulting group action is properly discontinuous."

- Clearly a geometric problem: free groups act properly by isometries on H^3 hence by diffeomorphisms of \mathbb{E}^3
- These actions are *not* affine.
- Milnor suggests:

Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely.

- Clearly a geometric problem: free groups act properly by isometries on H^3 hence by diffeomorphisms of \mathbb{E}^3
- These actions are *not* affine.
- Milnor suggests:

Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely.

- Clearly a geometric problem: free groups act properly by isometries on H^3 hence by diffeomorphisms of \mathbb{E}^3
- These actions are *not* affine.
- Milnor suggests:

Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely.

- Clearly a geometric problem: free groups act properly by isometries on H^3 hence by diffeomorphisms of \mathbb{E}^3
- These actions are *not* affine.
- Milnor suggests:

Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely.

- Clearly a geometric problem: free groups act properly by isometries on H^3 hence by diffeomorphisms of \mathbb{E}^3
- These actions are *not* affine.
- Milnor suggests:

Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely.

 \blacksquare $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} := x_1 x_2 + y_1 y_2 - z_1 z_2$$

- The Lorentz metric tensor is $dx^2 + dy^2 dz^2$.
- Isom($\mathbb{E}^{2,1}$) is the semidirect product of $\mathbb{R}^{2,1}$ (the vector group of translations) with the orthogonal group O(2,1).
- The stabilizer of the origin is the group O(2,1) which preserves the hyperbolic plane

$$H^2 := \{ v \in \mathbb{R}^{2,1} \mid v \cdot v = -1, z > 0 \}$$

 \blacksquare $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} := x_1 x_2 + y_1 y_2 - z_1 z_2$$

- The Lorentz metric tensor is $dx^2 + dy^2 dz^2$.
- Isom($\mathbb{E}^{2,1}$) is the semidirect product of $\mathbb{R}^{2,1}$ (the vector group of translations) with the orthogonal group O(2,1).
- The stabilizer of the origin is the group O(2,1) which preserves the hyperbolic plane

$$H^2 := \{ v \in \mathbb{R}^{2,1} \mid v \cdot v = -1, z > 0 \}.$$

 \blacksquare $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} := x_1 x_2 + y_1 y_2 - z_1 z_2$$

- The Lorentz metric tensor is $dx^2 + dy^2 dz^2$.
- Isom($\mathbb{E}^{2,1}$) is the semidirect product of $\mathbb{R}^{2,1}$ (the vector group of translations) with the orthogonal group O(2,1).
- The stabilizer of the origin is the group O(2,1) which preserves the hyperbolic plane

$$H^2 := \{ v \in \mathbb{R}^{2,1} \mid v \cdot v = -1, z > 0 \}.$$

 \blacksquare $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} := x_1 x_2 + y_1 y_2 - z_1 z_2$$

- The Lorentz metric tensor is $dx^2 + dy^2 dz^2$.
- Isom($\mathbb{E}^{2,1}$) is the semidirect product of $\mathbb{R}^{2,1}$ (the vector group of translations) with the orthogonal group O(2,1).
- The stabilizer of the origin is the group O(2,1) which preserves the hyperbolic plane

$$H^2 := \{ v \in \mathbb{R}^{2,1} \mid v \cdot v = -1, z > 0 \}.$$

 \blacksquare $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} := x_1 x_2 + y_1 y_2 - z_1 z_2$$

- The Lorentz metric tensor is $dx^2 + dy^2 dz^2$.
- Isom($\mathbb{E}^{2,1}$) is the semidirect product of $\mathbb{R}^{2,1}$ (the vector group of translations) with the orthogonal group O(2,1).
- The stabilizer of the origin is the group O(2,1) which preserves the hyperbolic plane

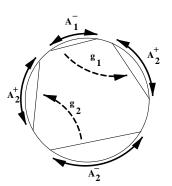
$$\mathsf{H}^2 := \{ v \in \mathbb{R}^{2,1} \mid v \cdot v = -1, z > 0 \}.$$

 \blacksquare $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

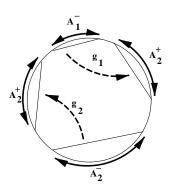
$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} := x_1 x_2 + y_1 y_2 - z_1 z_2$$

- The Lorentz metric tensor is $dx^2 + dy^2 dz^2$.
- Isom($\mathbb{E}^{2,1}$) is the semidirect product of $\mathbb{R}^{2,1}$ (the vector group of translations) with the orthogonal group O(2,1).
- The stabilizer of the origin is the group O(2,1) which preserves the hyperbolic plane

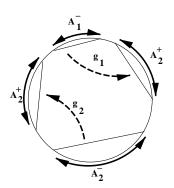
$$\mathsf{H}^2 := \{ v \in \mathbb{R}^{2,1} \mid v \cdot v = -1, z > 0 \}.$$



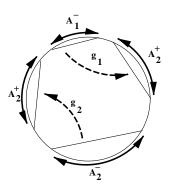
- Generators g_1, g_2 pair half-spaces $A_i^- \longrightarrow \mathsf{H}^2 \setminus A_i^+$.
- \blacksquare g_1, g_2 freely generate discrete group.
- Action proper with fundamental domain $H^2 \setminus \bigcup_{i \in I} A_i^{\pm}$.



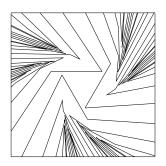
- Generators g_1, g_2 pair half-spaces $A_i^- \longrightarrow \mathsf{H}^2 \setminus A_i^+$.
- \blacksquare g_1, g_2 freely generate discrete group.
- Action proper with fundamental domain $H^2 \setminus \bigcup_{i \in A} A^{\pm}$.

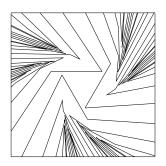


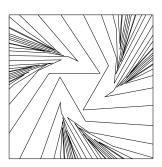
- Generators g_1, g_2 pair half-spaces $A_i^- \longrightarrow \mathsf{H}^2 \setminus A_i^+$.
- \blacksquare g_1, g_2 freely generate discrete group.
- Action proper with fundamental domain $H^2 \setminus \bigcup_{A \neq A} A^{\pm}$.

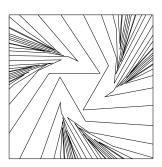


- Generators g_1, g_2 pair half-spaces $A_i^- \longrightarrow \mathsf{H}^2 \setminus A_i^+$.
- \blacksquare g_1, g_2 freely generate discrete group.
- Action proper with fundamental domain $H^2 \setminus \bigcup_i A_i^{\pm}$.









Suppose that $\Gamma \subset \mathsf{Aff}(\mathbb{R}^3)$ acts properly and is not solvable.

- Let $\Gamma \xrightarrow{\mathbb{L}} GL(3,\mathbb{R})$ be the *linear part*.
 - $\mathbb{L}(\Gamma)$ (conjugate to) a *discrete* subgroup of O(2,1);
 - L injective. (Fried-G 1983).
- Homotopy equivalence

$$M^3 := \mathbb{E}^{2,1}/\Gamma \longrightarrow \Sigma := H^2/\mathbb{L}(\Gamma)$$

- Mess (1990): Σ not compact .
- Γ free;
- Milnor's suggestion is the *only way* to construct examples.

Suppose that $\Gamma \subset \mathsf{Aff}(\mathbb{R}^3)$ acts properly and is not solvable.

- \blacksquare Let $\Gamma \xrightarrow{\mathbb{L}} \mathsf{GL}(3,\mathbb{R})$ be the *linear part*.
 - $\mathbb{L}(\Gamma)$ (conjugate to) a *discrete* subgroup of O(2, 1);
 - L injective. (Fried-G 1983).
- Homotopy equivalence

$$M^3 := \mathbb{E}^{2,1}/\Gamma \longrightarrow \Sigma := H^2/\mathbb{L}(\Gamma)$$

- Mess (1990): Σ not compact .
- Γ free;
- Milnor's suggestion is the *only way* to construct examples

Suppose that $\Gamma \subset \mathsf{Aff}(\mathbb{R}^3)$ acts properly and is not solvable.

- \blacksquare Let $\Gamma \xrightarrow{\mathbb{L}} \mathsf{GL}(3,\mathbb{R})$ be the *linear part*.
 - $\mathbb{L}(\Gamma)$ (conjugate to) a *discrete* subgroup of O(2, 1);
 - L injective. (Fried-G 1983).
- Homotopy equivalence

$$M^3 := \mathbb{E}^{2,1}/\Gamma \longrightarrow \Sigma := H^2/\mathbb{L}(\Gamma)$$

- Mess (1990): Σ not compact .
- Γ free;
- Milnor's suggestion is the *only way* to construct examples

Suppose that $\Gamma \subset \mathsf{Aff}(\mathbb{R}^3)$ acts properly and is not solvable.

- Let $\Gamma \xrightarrow{\mathbb{L}} GL(3,\mathbb{R})$ be the *linear part*.
 - $\mathbb{L}(\Gamma)$ (conjugate to) a *discrete* subgroup of O(2, 1);
 - L injective. (Fried-G 1983).
- Homotopy equivalence

$$M^3 := \mathbb{E}^{2,1}/\Gamma \longrightarrow \Sigma := H^2/\mathbb{L}(\Gamma)$$

- Mess (1990): Σ not compact .
- Γ free;
- Milnor's suggestion is the *only way* to construct examples

Suppose that $\Gamma \subset \mathsf{Aff}(\mathbb{R}^3)$ acts properly and is not solvable.

- Let $\Gamma \xrightarrow{\mathbb{L}} GL(3,\mathbb{R})$ be the *linear part*.
 - $\mathbb{L}(\Gamma)$ (conjugate to) a *discrete* subgroup of O(2, 1);
 - L injective. (Fried-G 1983).
- Homotopy equivalence

$$M^3:=\mathbb{E}^{2,1}/\Gamma\ \longrightarrow\ \Sigma:=H^2/\mathbb{L}(\Gamma)$$

- Mess (1990): Σ not compact .
- Γ free;
- Milnor's suggestion is the *only way* to construct examples.

Suppose that $\Gamma \subset \mathsf{Aff}(\mathbb{R}^3)$ acts properly and is not solvable.

- Let $\Gamma \xrightarrow{\mathbb{L}} GL(3,\mathbb{R})$ be the *linear part*.
 - $\mathbb{L}(\Gamma)$ (conjugate to) a *discrete* subgroup of O(2, 1);
 - L injective. (Fried-G 1983).
- Homotopy equivalence

$$M^3:=\mathbb{E}^{2,1}/\Gamma\ \longrightarrow\ \Sigma:=H^2/\mathbb{L}(\Gamma)$$

- Mess (1990): ∑ not compact .
- Γ free:
- Milnor's suggestion is the *only way* to construct examples.

Flat Lorentz manifolds

Suppose that $\Gamma \subset \mathsf{Aff}(\mathbb{R}^3)$ acts properly and is not solvable.

- Let $\Gamma \xrightarrow{\mathbb{L}} GL(3,\mathbb{R})$ be the *linear part*.
 - $\mathbb{L}(\Gamma)$ (conjugate to) a *discrete* subgroup of O(2, 1);
 - L injective. (Fried-G 1983).
- Homotopy equivalence

$$M^3:=\mathbb{E}^{2,1}/\Gamma\ \longrightarrow\ \Sigma:=H^2/\mathbb{L}(\Gamma)$$

where Σ complete hyperbolic surface.

- Mess (1990): Σ not compact .
- Γ free:
- Milnor's suggestion is the *only way* to construct examples.

Flat Lorentz manifolds

Suppose that $\Gamma \subset \mathsf{Aff}(\mathbb{R}^3)$ acts properly and is not solvable.

- Let $\Gamma \xrightarrow{\mathbb{L}} GL(3,\mathbb{R})$ be the *linear part*.
 - $\mathbb{L}(\Gamma)$ (conjugate to) a *discrete* subgroup of O(2, 1);
 - L injective. (Fried-G 1983).
- Homotopy equivalence

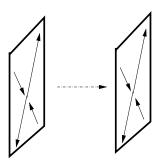
$$M^3 := \mathbb{E}^{2,1}/\Gamma \longrightarrow \Sigma := H^2/\mathbb{L}(\Gamma)$$

where Σ complete hyperbolic surface.

- Mess (1990): Σ not compact .
- Γ free:
- Milnor's suggestion is the *only way* to construct examples.

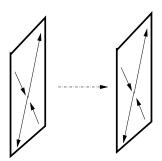
Cyclic groups

■ Most elements $\gamma \in \Gamma$ are *boosts*, affine deformations of hyperbolic elements of O(2,1). A fundamental domain is the *slab* bounded by two parallel planes.



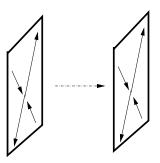
Cyclic groups

■ Most elements $\gamma \in \Gamma$ are *boosts*, affine deformations of hyperbolic elements of O(2,1). A fundamental domain is the *slab* bounded by two parallel planes.



Cyclic groups

■ Most elements $\gamma \in \Gamma$ are *boosts*, affine deformations of hyperbolic elements of O(2,1). A fundamental domain is the *slab* bounded by two parallel planes.



$$\gamma = egin{bmatrix} e^{\ell(\gamma)} & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} egin{bmatrix} 0 \ lpha(\gamma) \ 0 \end{bmatrix}$$

- \bullet $\ell(\gamma) \in \mathbb{R}^+$: geodesic length of γ
- $\alpha(\gamma) \in \mathbb{R}$: (signed) Lorentzian length of γ .
- The unique γ -invariant geodesic C_{γ} inherits a natural orientation and metric and γ translates along C_{γ} by $\alpha(\gamma)$

$$\gamma = egin{bmatrix} e^{\ell(\gamma)} & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} egin{bmatrix} 0 \ lpha(\gamma) \ 0 \end{bmatrix}$$

- \blacksquare $\ell(\gamma) \in \mathbb{R}^+$: geodesic length of γ
- \bullet $\alpha(\gamma) \in \mathbb{R}$: (signed) Lorentzian length of γ .
- The unique γ -invariant geodesic C_{γ} inherits a natural orientation and metric and γ translates along C_{γ} by $\alpha(\gamma)$.

$$\gamma = egin{bmatrix} e^{\ell(\gamma)} & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} egin{bmatrix} 0 \ lpha(\gamma) \ 0 \end{bmatrix}$$

- \bullet $\ell(\gamma) \in \mathbb{R}^+$: geodesic length of γ
- \bullet $\alpha(\gamma) \in \mathbb{R}$: (signed) Lorentzian length of γ .
- The unique γ -invariant geodesic C_{γ} inherits a natural orientation and metric and γ translates along C_{γ} by $\alpha(\gamma)$

$$\gamma = \begin{bmatrix} e^{\ell(\gamma)} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} \begin{bmatrix} 0 \\ \alpha(\gamma) \\ 0 \end{bmatrix}$$

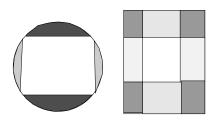
- $\ell(\gamma) \in \mathbb{R}^+$: geodesic length of γ
- \bullet $\alpha(\gamma) \in \mathbb{R}$: (signed) Lorentzian length of γ .
- The unique γ -invariant geodesic C_{γ} inherits a natural orientation and metric and γ translates along C_{γ} by $\alpha(\gamma)$

$$\gamma = \begin{bmatrix} e^{\ell(\gamma)} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} \begin{bmatrix} 0 \\ \alpha(\gamma) \\ 0 \end{bmatrix}$$

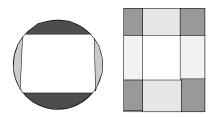
- $\ell(\gamma) \in \mathbb{R}^+$: geodesic length of γ
- \bullet $\alpha(\gamma) \in \mathbb{R}$: (signed) Lorentzian length of γ .
- The unique γ -invariant geodesic C_{γ} inherits a natural orientation and metric and γ translates along C_{γ} by $\alpha(\gamma)$.

$$\gamma = \begin{bmatrix} e^{\ell(\gamma)} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} \begin{bmatrix} 0 \\ \alpha(\gamma) \\ 0 \end{bmatrix}$$

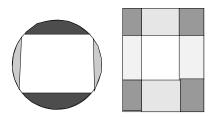
- $\ell(\gamma) \in \mathbb{R}^+$: geodesic length of γ
- $\alpha(\gamma) \in \mathbb{R}$: (signed) Lorentzian length of γ .
- The unique γ -invariant geodesic C_{γ} inherits a natural orientation and metric and γ translates along C_{γ} by $\alpha(\gamma)$.



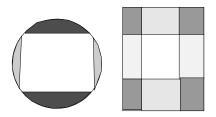
- In H^2 , the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!



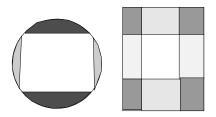
- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!



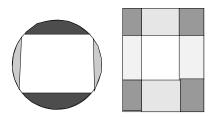
- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!



- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups

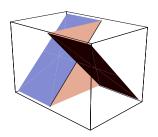


- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups

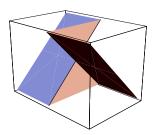


- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

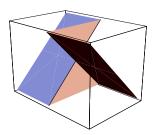
Crooked Planes: Flexible polyhedral surfaces bound fundamental polyhedra for free affine groups.



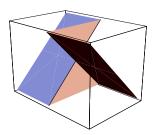
Crooked Planes: Flexible polyhedral surfaces bound fundamental polyhedra for free affine groups.

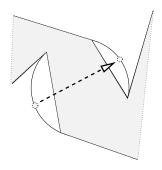


Crooked Planes: Flexible polyhedral surfaces bound fundamental polyhedra for free affine groups.

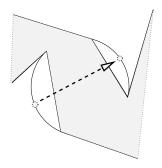


Crooked Planes: Flexible polyhedral surfaces bound fundamental polyhedra for free affine groups.

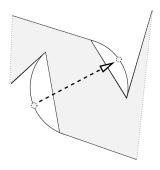




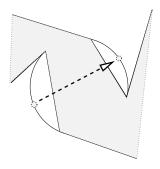
- \blacksquare Start with a hyperbolic slab in H^2 .
- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes.



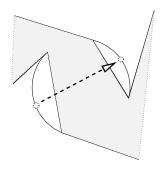
- Start with a *hyperbolic slab* in H².
- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes.



- Start with a *hyperbolic slab* in H².
- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes.

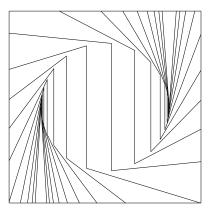


- Start with a *hyperbolic slab* in H².
- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes.



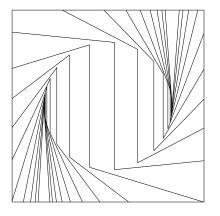
- Start with a hyperbolic slab in H².
- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes.

Images of crooked planes under a linear cyclic group



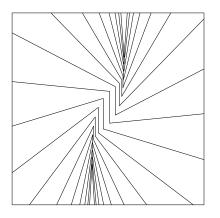
The resulting tesselation for a linear boost.

Images of crooked planes under a linear cyclic group



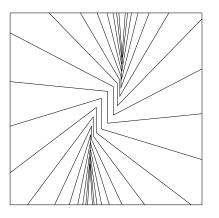
The resulting tesselation for a linear boost.

Images of crooked planes under an affine deformation



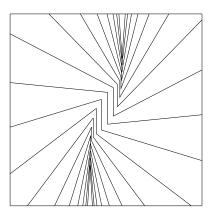
- Adding translations frees up the action
- \blacksquare which is now proper on all of $\mathbb{E}^{2,1}$.

Images of crooked planes under an affine deformation



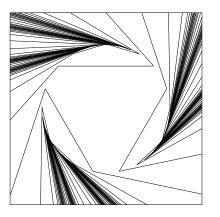
- Adding translations frees up the action
- \blacksquare which is now proper on all of $\mathbb{E}^{2,1}$.

Images of crooked planes under an affine deformation



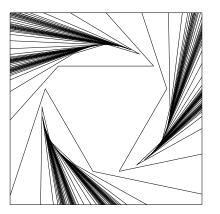
- Adding translations frees up the action
- \blacksquare which is now proper on all of $\mathbb{E}^{2,1}$.

Linear action of Schottky group



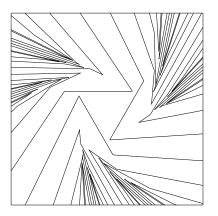
Crooked polyhedra tile H^2 for subgroup of O(2,1)

Linear action of Schottky group



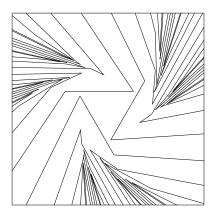
Crooked polyhedra tile H^2 for subgroup of O(2,1).

Affine action of Schottky group



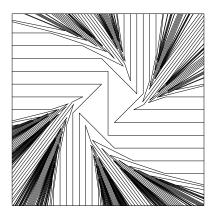
Carefully chosen affine deformation acts properly on $\mathbb{E}^{2,1}$

Affine action of Schottky group



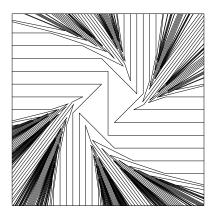
Carefully chosen affine deformation acts properly on $\mathbb{E}^{2,1}$.

Affine action of level 2 congruence subgroup of $GL(2, \mathbb{Z})$



Proper affine deformations exist even for lattices (Drumm)

Affine action of level 2 congruence subgroup of $GL(2, \mathbb{Z})$



Proper affine deformations exist even for lattices (Drumm).

- Mess's theorem (Σ noncompact) is the only obstruction for the existence of a proper affine deformation:
- (Drumm 1990) Let Σ be a *noncompact* complete hyperbolic surface. Then its holonomy group admits a proper affine deformation and M^3 is a solid handlebody.
- BASIC PROBLEM:
 - Classify, both geometrically and topologically, all proper affine deformations of a non-cocompact Fuchsian group.

- Mess's theorem (Σ noncompact) is the only obstruction for the existence of a proper affine deformation:
- (Drumm 1990) Let Σ be a noncompact complete hyperbolic surface. Then its holonomy group admits a proper affine deformation and M^3 is a solid handlebody.
- BASIC PROBLEM:
 - Classify, both geometrically and topologically, all proper affine deformations of a non-cocompact Fuchsian group.

- Mess's theorem (Σ noncompact) is the only obstruction for the existence of a proper affine deformation:
- (Drumm 1990) Let Σ be a *noncompact* complete hyperbolic surface. Then its holonomy group admits a proper affine deformation and M^3 is a solid handlebody.
- BASIC PROBLEM:
 - Classify, both geometrically and topologically, all proper affine deformations of a non-cocompact Fuchsian group.

- Mess's theorem (Σ noncompact) is the only obstruction for the existence of a proper affine deformation:
- (Drumm 1990) Let Σ be a noncompact complete hyperbolic surface. Then its holonomy group admits a proper affine deformation and M^3 is a solid handlebody.
- BASIC PROBLEM:
 - Classify, both geometrically and topologically, all proper affine deformations of a non-cocompact Fuchsian group.

- Mess's theorem (Σ noncompact) is the only obstruction for the existence of a proper affine deformation:
- (Drumm 1990) Let Σ be a noncompact complete hyperbolic surface. Then its holonomy group admits a proper affine deformation and M^3 is a solid handlebody.
- BASIC PROBLEM:
 - Classify, both geometrically and topologically, all proper affine deformations of a non-cocompact Fuchsian group.

- Mess's theorem (Σ noncompact) is the only obstruction for the existence of a proper affine deformation:
- (Drumm 1990) Let Σ be a *noncompact* complete hyperbolic surface. Then its holonomy group admits a proper affine deformation and M^3 is a solid handlebody.
- BASIC PROBLEM:
 - Classify, both geometrically and topologically, all proper affine deformations of a non-cocompact Fuchsian group.

- \forall affine deformation $\Gamma \xrightarrow{\rho = (\mathbb{L}, u)} \mathsf{Isom}(\mathbb{E}^{2,1})^0$, define $\alpha_u(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ -invariant geodesic C_{γ} , when $\mathbb{L}(\gamma)$ is hyperbolic.
- \blacksquare α_u is a class function on Γ ;
- When ρ acts properly, $|\alpha_u(\gamma)|$ is the *Lorentzian length* of the closed geodesic in M^3 corresponding to γ ;
- \blacksquare (Margulis 1983) If ρ acts properly, either
 - $\alpha_u(\gamma) > 0 \ \forall \gamma \neq 1$, or
 - $\alpha_{\mu}(\gamma) < 0 \ \forall \gamma \neq 1.$
- The Margulis invariant $\Gamma \xrightarrow{\alpha} \mathbb{R}$ determines Γ up to conjugacy (Charette-Drumm 2004).

- \forall affine deformation $\Gamma \xrightarrow{\rho=(\mathbb{L},u)} \mathsf{Isom}(\mathbb{E}^{2,1})^0$, define $\alpha_u(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ -invariant geodesic C_{γ} , when $\mathbb{L}(\gamma)$ is hyperbolic.
- \blacksquare α_u is a class function on Γ ;
- When ρ acts properly, $|\alpha_u(\gamma)|$ is the *Lorentzian length* of the closed geodesic in M^3 corresponding to γ ;
- \blacksquare (Margulis 1983) If ρ acts properly, either

 - $\alpha_u(\gamma) < 0 \ \forall \gamma \neq 1.$
- The Margulis invariant $\Gamma \xrightarrow{\alpha} \mathbb{R}$ determines Γ up to conjugacy (Charette-Drumm 2004).

- \forall affine deformation $\Gamma \xrightarrow{\rho=(\mathbb{L},u)} \mathsf{Isom}(\mathbb{E}^{2,1})^0$, define $\alpha_u(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ -invariant geodesic C_{γ} , when $\mathbb{L}(\gamma)$ is hyperbolic.
- \bullet α_u is a class function on Γ ;
- When ρ acts properly, $|\alpha_u(\gamma)|$ is the *Lorentzian length* of the closed geodesic in M^3 corresponding to γ ;
- \blacksquare (Margulis 1983) If ρ acts properly, either
 - $\alpha_u(\gamma) > 0 \ \forall \gamma \neq 1$, or
 - $\alpha_u(\gamma) < 0 \ \forall \gamma \neq 1.$
- The Margulis invariant $\Gamma \xrightarrow{\alpha} \mathbb{R}$ determines Γ up to conjugacy (Charette-Drumm 2004).

- \forall affine deformation $\Gamma \xrightarrow{\rho=(\mathbb{L},u)} \mathsf{Isom}(\mathbb{E}^{2,1})^0$, define $\alpha_u(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ -invariant geodesic C_{γ} , when $\mathbb{L}(\gamma)$ is hyperbolic.
- \bullet α_u is a class function on Γ ;
- When ρ acts properly, $|\alpha_u(\gamma)|$ is the *Lorentzian length* of the closed geodesic in M^3 corresponding to γ ;
- \blacksquare (Margulis 1983) If ρ acts properly, either
 - $\alpha_u(\gamma) > 0 \ \forall \gamma \neq 1$, or
 - $\alpha_u(\gamma) < 0 \ \forall \gamma \neq 1.$
- The Margulis invariant $\Gamma \xrightarrow{\alpha} \mathbb{R}$ determines Γ up to conjugacy (Charette-Drumm 2004).

- \forall affine deformation $\Gamma \xrightarrow{\rho = (\mathbb{L}, u)} \mathsf{Isom}(\mathbb{E}^{2,1})^0$, define $\alpha_u(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ -invariant geodesic C_{γ} , when $\mathbb{L}(\gamma)$ is hyperbolic.
- \blacksquare α_u is a class function on Γ ;
- When ρ acts properly, $|\alpha_u(\gamma)|$ is the *Lorentzian length* of the closed geodesic in M^3 corresponding to γ ;
- \blacksquare (Margulis 1983) If ρ acts properly, either
 - $\alpha_u(\gamma) > 0 \ \forall \gamma \neq 1$, or
 - $\alpha_u(\gamma) < 0 \ \forall \gamma \neq 1.$
- The Margulis invariant $\Gamma \xrightarrow{\alpha} \mathbb{R}$ determines Γ up to conjugacy (Charette-Drumm 2004).

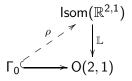
- \forall affine deformation $\Gamma \xrightarrow{\rho = (\mathbb{L}, u)} \mathsf{Isom}(\mathbb{E}^{2,1})^0$, define $\alpha_u(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ -invariant geodesic C_{γ} , when $\mathbb{L}(\gamma)$ is hyperbolic.
- \bullet α_u is a class function on Γ ;
- When ρ acts properly, $|\alpha_u(\gamma)|$ is the *Lorentzian length* of the closed geodesic in M^3 corresponding to γ ;
- (Margulis 1983) If ρ acts properly, either
 - $\alpha_u(\gamma) > 0 \ \forall \gamma \neq 1$, or
 - $\alpha_u(\gamma) < 0 \ \forall \gamma \neq 1.$
- The Margulis invariant $\Gamma \xrightarrow{\alpha} \mathbb{R}$ determines Γ up to conjugacy (Charette-Drumm 2004).

■ Start with a Fuchsian group $\Gamma_0 \subset O(2,1)$. An affine deformation is a representation $\rho = \rho_u$ with image $\Gamma = \Gamma$

$$u \in Z^1(\Gamma_0, \mathbb{R}^{2,1}).$$

- lacktriangle Conjugating ρ by a translation \iff adding a coboundary to u.
- Translational conjugacy classes of affine deformations of Γ_0 form the vector space $H^1(\Gamma_0, \mathbb{R}^{2,1})$.

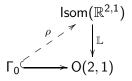
■ Start with a Fuchsian group $\Gamma_0 \subset O(2,1)$. An affine deformation is a representation $\rho = \rho_u$ with image $\Gamma = \Gamma_u$



$$u \in Z^1(\Gamma_0, \mathbb{R}^{2,1}).$$

- \blacksquare Conjugating ρ by a translation \iff adding a coboundary to u.
- Translational conjugacy classes of affine deformations of Γ_0 form the vector space $H^1(\Gamma_0, \mathbb{R}^{2,1})$.

■ Start with a Fuchsian group $\Gamma_0 \subset O(2,1)$. An affine deformation is a representation $\rho = \rho_u$ with image $\Gamma = \Gamma_u$



$$u \in Z^1(\Gamma_0, \mathbb{R}^{2,1}).$$

- Conjugating ρ by a translation \iff adding a coboundary to u.
- Translational conjugacy classes of affine deformations of Γ_0 form the vector space $H^1(\Gamma_0, \mathbb{R}^{2,1})$.

Start with a Fuchsian group $\Gamma_0 \subset O(2,1)$. An affine deformation is a representation $\rho = \rho_u$ with image $\Gamma = \Gamma_u$

$$\operatorname{Isom}(\mathbb{R}^{2,1})$$

$$\downarrow^{\rho} \quad \downarrow^{\mathbb{L}}$$

$$\Gamma_0 \longrightarrow O(2,1)$$

$$u \in Z^1(\Gamma_0, \mathbb{R}^{2,1}).$$

- Conjugating ρ by a translation \iff adding a coboundary to u.
- Translational conjugacy classes of affine deformations of Γ_0 form the vector space $H^1(\Gamma_0, \mathbb{R}^{2,1})$.

- Translational conjugacy classes of affine deformations of Γ_0 \longleftrightarrow infinitesimal deformations of the hyperbolic surface Σ .
 - The Lorentzian vector space $\mathbb{R}^{2,1}$ corresponds to the Lie algebra $\mathfrak{sl}(2,\mathbb{R})$ with the Killing form, and the action of O(2,1) is the adjoint representation.
 - This Lie algebra comprises the *Killing vector fields*, infinitesimal isometries, of H².
- Infinitesimal deformations of the hyperbolic structure on Σ comprise $H^1(\Sigma, \mathfrak{sl}(2,\mathbb{R})) \cong H^1(\Gamma_0, \mathbb{R}^{2,1})$.

- Translational conjugacy classes of affine deformations of Γ_0 \longleftrightarrow infinitesimal deformations of the hyperbolic surface Σ .
 - The Lorentzian vector space $\mathbb{R}^{2,1}$ corresponds to the Lie algebra $\mathfrak{sl}(2,\mathbb{R})$ with the Killing form, and the action of O(2,1) is the adjoint representation.
 - This Lie algebra comprises the Killing vector fields, infinitesimal isometries, of H².
- Infinitesimal deformations of the hyperbolic structure on Σ comprise $H^1(\Sigma, \mathfrak{sl}(2,\mathbb{R})) \cong H^1(\Gamma_0, \mathbb{R}^{2,1})$.

- Translational conjugacy classes of affine deformations of Γ_0 \longleftrightarrow infinitesimal deformations of the hyperbolic surface Σ .
 - The Lorentzian vector space $\mathbb{R}^{2,1}$ corresponds to the Lie algebra $\mathfrak{sl}(2,\mathbb{R})$ with the Killing form, and the action of O(2,1) is the adjoint representation.
 - This Lie algebra comprises the *Killing vector fields*, infinitesimal isometries, of H².
- Infinitesimal deformations of the hyperbolic structure on Σ comprise $H^1(\Sigma, \mathfrak{sl}(2,\mathbb{R})) \cong H^1(\Gamma_0, \mathbb{R}^{2,1})$.

- Translational conjugacy classes of affine deformations of Γ_0 \longleftrightarrow infinitesimal deformations of the hyperbolic surface Σ .
 - The Lorentzian vector space $\mathbb{R}^{2,1}$ corresponds to the Lie algebra $\mathfrak{sl}(2,\mathbb{R})$ with the Killing form, and the action of O(2,1) is the adjoint representation.
 - This Lie algebra comprises the *Killing vector fields*, infinitesimal isometries, of H².
- Infinitesimal deformations of the hyperbolic structure on Σ comprise $H^1(\Sigma, \mathfrak{sl}(2,\mathbb{R})) \cong H^1(\Gamma_0, \mathbb{R}^{2,1})$.

- Translational conjugacy classes of affine deformations of Γ_0 \longleftrightarrow infinitesimal deformations of the hyperbolic surface Σ .
 - The Lorentzian vector space $\mathbb{R}^{2,1}$ corresponds to the Lie algebra $\mathfrak{sl}(2,\mathbb{R})$ with the Killing form, and the action of O(2,1) is the adjoint representation.
 - This Lie algebra comprises the *Killing vector fields*, infinitesimal isometries, of H².
- Infinitesimal deformations of the hyperbolic structure on Σ comprise $H^1(\Sigma, \mathfrak{sl}(2,\mathbb{R})) \cong H^1(\Gamma_0, \mathbb{R}^{2,1})$.

- Suppose $u \in Z^1(\Gamma_0, \mathbb{R}^{2,1})$ defines an *infinitesimal deformation* tangent to a smooth deformation Σ_t of Σ .
 - The marked length spectrum ℓ_t of Σ_t varies smoothly with t.
 - Margulis's invariant $\alpha_u(\gamma)$ represents the derivative

$$\left. \frac{d}{dt} \right|_{t=0} \ell_t(\gamma)$$

- Γ_u is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_t .
- When Σ is homeomorphic to a three-holed sphere, the converse holds. (Jones 2004, Charette-Drumm-G 2009)

- Suppose $u \in Z^1(\Gamma_0, \mathbb{R}^{2,1})$ defines an *infinitesimal deformation* tangent to a smooth deformation Σ_t of Σ .
 - The marked length spectrum ℓ_t of Σ_t varies smoothly with t.
 - Margulis's invariant $\alpha_u(\gamma)$ represents the derivative

$$\left. \frac{d}{dt} \right|_{t=0} \ell_t(\gamma)$$

- Γ_u is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_t .
- When Σ is homeomorphic to a three-holed sphere, the converse holds. (Jones 2004, Charette-Drumm-G 2009)

- Suppose $u \in Z^1(\Gamma_0, \mathbb{R}^{2,1})$ defines an *infinitesimal deformation* tangent to a smooth deformation Σ_t of Σ .
 - The marked length spectrum ℓ_t of Σ_t varies smoothly with t.
 - Margulis's invariant $\alpha_u(\gamma)$ represents the derivative

$$\frac{d}{dt}\Big|_{t=0}\ell_t(\gamma)$$

- Γ_u is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_t .
- When Σ is homeomorphic to a three-holed sphere, the converse holds. (Jones 2004, Charette-Drumm-G 2009)

- Suppose $u \in Z^1(\Gamma_0, \mathbb{R}^{2,1})$ defines an *infinitesimal deformation* tangent to a smooth deformation Σ_t of Σ .
 - The marked length spectrum ℓ_t of Σ_t varies smoothly with t.
 - Margulis's invariant $\alpha_u(\gamma)$ represents the derivative

$$\left. \frac{d}{dt} \right|_{t=0} \ell_t(\gamma)$$

- Γ_u is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_t .
- When Σ is homeomorphic to a three-holed sphere, the converse holds. (Jones 2004, Charette-Drumm-G 2009)

- Suppose $u \in Z^1(\Gamma_0, \mathbb{R}^{2,1})$ defines an *infinitesimal deformation* tangent to a smooth deformation Σ_t of Σ .
 - The marked length spectrum ℓ_t of Σ_t varies smoothly with t.
 - Margulis's invariant $\alpha_u(\gamma)$ represents the derivative

$$\left. \frac{d}{dt} \right|_{t=0} \ell_t(\gamma)$$

- Γ_u is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_t .
- When Σ is homeomorphic to a three-holed sphere, the converse holds. (Jones 2004, Charette-Drumm-G 2009)

- Suppose $u \in Z^1(\Gamma_0, \mathbb{R}^{2,1})$ defines an *infinitesimal deformation* tangent to a smooth deformation Σ_t of Σ .
 - The marked length spectrum ℓ_t of Σ_t varies smoothly with t.
 - Margulis's invariant $\alpha_u(\gamma)$ represents the derivative

$$\left. \frac{d}{dt} \right|_{t=0} \ell_t(\gamma)$$

- Γ_u is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_t .
- When Σ is homeomorphic to a three-holed sphere, the converse holds. (Jones 2004, Charette-Drumm-G 2009).

- \bullet α_u extends to parabolic $\mathbb{L}(\gamma)$. (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore $\alpha_u(\gamma)/\ell(\gamma)$ is *constant* on cyclic (hyperbolic) subgroups of Γ .
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U\Sigma$.
 - The Margulis invariant extends to a continuous functional $\Psi_u(\mu)$ on the space $\mathcal{C}(\Sigma)$ of Φ -invariant probability measures μ on $U\Sigma$. (G-Labourie-Margulis 2009, G-Labourie 2010)
- When $\mathbb{L}(\Gamma)$ is convex cocompact, Γ_u acts properly \iff $\Psi_u(\mu) \neq 0$ for all invariant probability measures μ .
- Since $C(\Sigma)$ is connected, either the $\Psi_u(\mu)$ are all positive or all negative.

- \bullet α_u extends to parabolic $\mathbb{L}(\gamma)$. (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore $\alpha_u(\gamma)/\ell(\gamma)$ is *constant* on cyclic (hyperbolic) subgroups of Γ .
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U\Sigma$.
 - The Margulis invariant extends to a continuous functional $\Psi_u(\mu)$ on the space $\mathcal{C}(\Sigma)$ of Φ -invariant probability measures μ on $U\Sigma$. (G-Labourie-Margulis 2009, G-Labourie 2010)
- When $\mathbb{L}(\Gamma)$ is convex cocompact, Γ_u acts properly \iff $\Psi_u(\mu) \neq 0$ for all invariant probability measures μ .
- Since $C(\Sigma)$ is connected, either the $\Psi_u(\mu)$ are all positive or all negative.

- \bullet α_u extends to parabolic $\mathbb{L}(\gamma)$. (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore $\alpha_u(\gamma)/\ell(\gamma)$ is *constant* on cyclic (hyperbolic) subgroups of Γ .
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U\Sigma$.
 - The Margulis invariant extends to a continuous functional $\Psi_u(\mu)$ on the space $\mathcal{C}(\Sigma)$ of Φ -invariant probability measures μ on $U\Sigma$. (G-Labourie-Margulis 2009, G-Labourie 2010)
- When $\mathbb{L}(\Gamma)$ is convex cocompact, Γ_u acts properly \iff $\Psi_u(\mu) \neq 0$ for all invariant probability measures μ .
- Since $C(\Sigma)$ is connected, either the $\Psi_u(\mu)$ are all positive or all negative.

- \bullet α_u extends to parabolic $\mathbb{L}(\gamma)$. (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore $\alpha_u(\gamma)/\ell(\gamma)$ is *constant* on cyclic (hyperbolic) subgroups of Γ .
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U\Sigma$.
 - The Margulis invariant extends to a continuous functional $\Psi_u(\mu)$ on the space $\mathcal{C}(\Sigma)$ of Φ -invariant probability measures μ on $U\Sigma$. (G-Labourie-Margulis 2009, G-Labourie 2010)
- When $\mathbb{L}(\Gamma)$ is convex cocompact, Γ_u acts properly \iff $\Psi_u(\mu) \neq 0$ for all invariant probability measures μ .
- Since $C(\Sigma)$ is connected, either the $\Psi_u(\mu)$ are all positive or all negative.

- \bullet α_u extends to parabolic $\mathbb{L}(\gamma)$. (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore $\alpha_u(\gamma)/\ell(\gamma)$ is *constant* on cyclic (hyperbolic) subgroups of Γ .
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U\Sigma$.
 - The Margulis invariant extends to a continuous functional $\Psi_u(\mu)$ on the space $\mathcal{C}(\Sigma)$ of Φ -invariant probability measures μ on $U\Sigma$. (G-Labourie-Margulis 2009, G-Labourie 2010)
- When $\mathbb{L}(\Gamma)$ is convex cocompact, Γ_u acts properly \iff $\Psi_u(\mu) \neq 0$ for all invariant probability measures μ .
- Since $C(\Sigma)$ is connected, either the $\Psi_u(\mu)$ are all positive or all negative.

- \bullet α_u extends to parabolic $\mathbb{L}(\gamma)$. (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore $\alpha_u(\gamma)/\ell(\gamma)$ is *constant* on cyclic (hyperbolic) subgroups of Γ .
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U\Sigma$.
 - The Margulis invariant extends to a continuous functional $\Psi_u(\mu)$ on the space $\mathcal{C}(\Sigma)$ of Φ -invariant probability measures μ on $U\Sigma$. (G-Labourie-Margulis 2009, G-Labourie 2010)
- When $\mathbb{L}(\Gamma)$ is convex cocompact, Γ_u acts properly \iff $\Psi_u(\mu) \neq 0$ for all invariant probability measures μ .
- Since $C(\Sigma)$ is connected, either the $\Psi_u(\mu)$ are all positive or all negative.

- \bullet α_u extends to parabolic $\mathbb{L}(\gamma)$. (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore $\alpha_u(\gamma)/\ell(\gamma)$ is *constant* on cyclic (hyperbolic) subgroups of Γ .
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U\Sigma$.
 - The Margulis invariant extends to a continuous functional $\Psi_u(\mu)$ on the space $\mathcal{C}(\Sigma)$ of Φ -invariant probability measures μ on $U\Sigma$. (G-Labourie-Margulis 2009, G-Labourie 2010)
- When $\mathbb{L}(\Gamma)$ is convex cocompact, Γ_u acts properly \iff $\Psi_u(\mu) \neq 0$ for all invariant probability measures μ .
- Since $C(\Sigma)$ is connected, either the $\Psi_u(\mu)$ are all positive or all negative.

- \bullet α_u extends to parabolic $\mathbb{L}(\gamma)$. (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore $\alpha_u(\gamma)/\ell(\gamma)$ is *constant* on cyclic (hyperbolic) subgroups of Γ .
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U\Sigma$.
 - The Margulis invariant extends to a continuous functional $\Psi_u(\mu)$ on the space $\mathcal{C}(\Sigma)$ of Φ -invariant probability measures μ on $U\Sigma$. (G-Labourie-Margulis 2009, G-Labourie 2010)
- When $\mathbb{L}(\Gamma)$ is convex cocompact, Γ_u acts properly \iff $\Psi_u(\mu) \neq 0$ for all invariant probability measures μ .
- Since $C(\Sigma)$ is connected, either the $\Psi_u(\mu)$ are all positive or all negative.

- The deformation space of marked Margulis space-times arising from a topological surface S is a bundle over the Fricke space S(S) of marked hyperbolic structures $S \longrightarrow \Sigma$ on S.
 - The fiber is the subspace of $H^1(\Sigma, \mathbb{R}^{2,1})$ (equivalence classes of *all* affine deformations) consisting of *proper* deformations.
 - $lue{}$ Consists of equivalence classes of proper affine deformations of a fixed hyperbolic surface Σ and is nonempty (Drumm 1990).
 - (G-Labourie-Margulis 2010) Convex domain in $H^1(\Sigma, \mathbb{R}^{2,1})$ defined by the generalized CDM-invariants of measured geodesic laminations on Σ .
- Thus the deformation space is a cell with some boundary components corresponding to the ends of *S*.

- The deformation space of marked Margulis space-times arising from a topological surface S is a bundle over the Fricke space $\mathfrak{F}(S)$ of marked hyperbolic structures $S \longrightarrow \Sigma$ on S.
 - The fiber is the subspace of $H^1(\Sigma, \mathbb{R}^{2,1})$ (equivalence classes of *all* affine deformations) consisting of *proper* deformations.
 - $lue{}$ Consists of equivalence classes of proper affine deformations of a fixed hyperbolic surface Σ and is nonempty (Drumm 1990).
 - (G-Labourie-Margulis 2010) Convex domain in $H^1(\Sigma, \mathbb{R}^{2,1})$ defined by the generalized CDM-invariants of measured geodesic laminations on Σ .
- Thus the deformation space is a cell with some boundary components corresponding to the ends of *S*.

- The deformation space of marked Margulis space-times arising from a topological surface S is a bundle over the Fricke space S(S) of marked hyperbolic structures $S \longrightarrow \Sigma$ on S.
 - The fiber is the subspace of $H^1(\Sigma, \mathbb{R}^{2,1})$ (equivalence classes of *all* affine deformations) consisting of *proper* deformations.
 - $lue{}$ Consists of equivalence classes of proper affine deformations of a fixed hyperbolic surface Σ and is nonempty (Drumm 1990).
 - (G-Labourie-Margulis 2010) Convex domain in $H^1(\Sigma, \mathbb{R}^{2,1})$ defined by the generalized CDM-invariants of measured geodesic laminations on Σ .
- Thus the deformation space is a cell with some boundary components corresponding to the ends of *S*.

- The deformation space of marked Margulis space-times arising from a topological surface S is a bundle over the Fricke space $\mathfrak{F}(S)$ of marked hyperbolic structures $S \longrightarrow \Sigma$ on S.
 - The fiber is the subspace of $H^1(\Sigma, \mathbb{R}^{2,1})$ (equivalence classes of *all* affine deformations) consisting of *proper* deformations.
 - $lue{}$ Consists of equivalence classes of proper affine deformations of a fixed hyperbolic surface Σ and is nonempty (Drumm 1990).
 - (G-Labourie-Margulis 2010) Convex domain in $H^1(\Sigma, \mathbb{R}^{2,1})$ defined by the generalized CDM-invariants of measured geodesic laminations on Σ .
- Thus the deformation space is a cell with some boundary components corresponding to the ends of *S*.

- The deformation space of marked Margulis space-times arising from a topological surface S is a bundle over the Fricke space S(S) of marked hyperbolic structures $S \longrightarrow \Sigma$ on S.
 - The fiber is the subspace of $H^1(\Sigma, \mathbb{R}^{2,1})$ (equivalence classes of *all* affine deformations) consisting of *proper* deformations.
 - $lue{}$ Consists of equivalence classes of proper affine deformations of a fixed hyperbolic surface Σ and is nonempty (Drumm 1990).
 - (G-Labourie-Margulis 2010) Convex domain in $H^1(\Sigma, \mathbb{R}^{2,1})$ defined by the generalized CDM-invariants of measured geodesic laminations on Σ .
- Thus the deformation space is a cell with some boundary components corresponding to the ends of *S*.

- The deformation space of marked Margulis space-times arising from a topological surface S is a bundle over the Fricke space S(S) of marked hyperbolic structures $S \longrightarrow \Sigma$ on S.
 - The fiber is the subspace of $H^1(\Sigma, \mathbb{R}^{2,1})$ (equivalence classes of *all* affine deformations) consisting of *proper* deformations.
 - $lue{}$ Consists of equivalence classes of proper affine deformations of a fixed hyperbolic surface Σ and is nonempty (Drumm 1990).
 - (G-Labourie-Margulis 2010) Convex domain in $H^1(\Sigma, \mathbb{R}^{2,1})$ defined by the generalized CDM-invariants of measured geodesic laminations on Σ .
- Thus the deformation space is a cell with some boundary components corresponding to the ends of *S*.

- Suppose Σ is a three-holed sphere with boundary $\partial_1, \partial_2, \partial_3$.
- CDM-invariants of $\partial \Sigma$ identify the deformation space $H^1(\Gamma_0, \mathbb{R}^{2,1})$ of equivalence classes of all affine deformations with \mathbb{R}^3 .
- If $\alpha(\partial_i) > 0$ for i = 1, 2, 3. then Γ admits a crooked fundamental polyhedron:
 - Γ acts properly;
 - \blacksquare M^3 is a solid handlebody of genus two.
- Corollary (in hyperbolic geometry): If each component of $\partial \Sigma$ lengthens, then *every curve* lengthens under a deformation of the hyperbolic surface Σ .

- Suppose Σ is a three-holed sphere with boundary $\partial_1, \partial_2, \partial_3$.
- CDM-invariants of $\partial \Sigma$ identify the deformation space $H^1(\Gamma_0, \mathbb{R}^{2,1})$ of equivalence classes of all affine deformations with \mathbb{R}^3 .
- If $\alpha(\partial_i) > 0$ for i = 1, 2, 3. then Γ admits a crooked fundamental polyhedron:
 - Γ acts properly;
 - \blacksquare M^3 is a solid handlebody of genus two.
- Corollary (in hyperbolic geometry): If each component of $\partial \Sigma$ lengthens, then *every curve* lengthens under a deformation of the hyperbolic surface Σ .

- Suppose Σ is a three-holed sphere with boundary $\partial_1, \partial_2, \partial_3$.
- CDM-invariants of $\partial \Sigma$ identify the deformation space $H^1(\Gamma_0, \mathbb{R}^{2,1})$ of equivalence classes of all affine deformations with \mathbb{R}^3 .
- If $\alpha(\partial_i) > 0$ for i = 1, 2, 3. then Γ admits a crooked fundamental polyhedron:
 - Γ acts properly;
 - \blacksquare M^3 is a solid handlebody of genus two.
- Corollary (in hyperbolic geometry): If each component of $\partial \Sigma$ lengthens, then *every curve* lengthens under a deformation of the hyperbolic surface Σ .

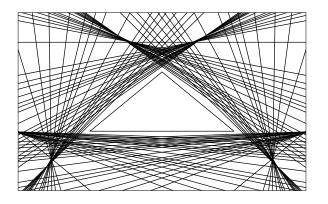
- Suppose Σ is a three-holed sphere with boundary $\partial_1, \partial_2, \partial_3$.
- CDM-invariants of $\partial \Sigma$ identify the deformation space $H^1(\Gamma_0, \mathbb{R}^{2,1})$ of equivalence classes of all affine deformations with \mathbb{R}^3 .
- If $\alpha(\partial_i) > 0$ for i = 1, 2, 3. then Γ admits a crooked fundamental polyhedron:
 - Γ acts properly;
 - \blacksquare M^3 is a solid handlebody of genus two.
- Corollary (in hyperbolic geometry): If each component of $\partial \Sigma$ lengthens, then *every curve* lengthens under a deformation of the hyperbolic surface Σ .

- Suppose Σ is a three-holed sphere with boundary $\partial_1, \partial_2, \partial_3$.
- CDM-invariants of $\partial \Sigma$ identify the deformation space $H^1(\Gamma_0, \mathbb{R}^{2,1})$ of equivalence classes of all affine deformations with \mathbb{R}^3 .
- If $\alpha(\partial_i) > 0$ for i = 1, 2, 3. then Γ admits a crooked fundamental polyhedron:
 - Γ acts properly;
 - \blacksquare M^3 is a solid handlebody of genus two.
- Corollary (in hyperbolic geometry): If each component of $\partial \Sigma$ lengthens, then *every curve* lengthens under a deformation of the hyperbolic surface Σ .

- Suppose Σ is a three-holed sphere with boundary $\partial_1, \partial_2, \partial_3$.
- CDM-invariants of $\partial \Sigma$ identify the deformation space $H^1(\Gamma_0, \mathbb{R}^{2,1})$ of equivalence classes of all affine deformations with \mathbb{R}^3 .
- If $\alpha(\partial_i) > 0$ for i = 1, 2, 3. then Γ admits a crooked fundamental polyhedron:
 - Γ acts properly;
 - lacksquare M^3 is a solid handlebody of genus two.
- Corollary (in hyperbolic geometry): If each component of $\partial \Sigma$ lengthens, then *every curve* lengthens under a deformation of the hyperbolic surface Σ .

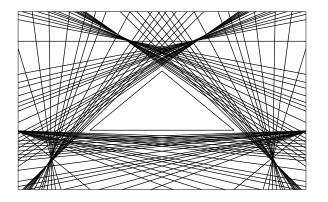
- Suppose Σ is a three-holed sphere with boundary $\partial_1, \partial_2, \partial_3$.
- CDM-invariants of $\partial \Sigma$ identify the deformation space $H^1(\Gamma_0, \mathbb{R}^{2,1})$ of equivalence classes of all affine deformations with \mathbb{R}^3 .
- If $\alpha(\partial_i) > 0$ for i = 1, 2, 3. then Γ admits a crooked fundamental polyhedron:
 - Γ acts properly;
 - lacksquare M^3 is a solid handlebody of genus two.
- Corollary (in hyperbolic geometry): If each component of $\partial \Sigma$ lengthens, then *every curve* lengthens under a deformation of the hyperbolic surface Σ .

Linear functionals $\alpha(\gamma)$ when Σ is a three-holed sphere



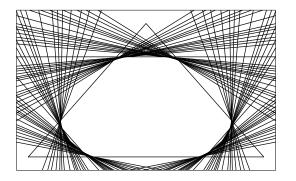
The triangle is bounded by the lines corresponding to $\gamma \subset \partial \Sigma$ Its interior parametrizes proper affine deformations.

Linear functionals $\alpha(\gamma)$ when Σ is a three-holed sphere



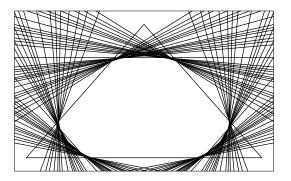
The triangle is bounded by the lines corresponding to $\gamma \subset \partial \Sigma$. Its interior parametrizes proper affine deformations.

Linear functionals $\alpha(\gamma)$ when Σ is a one-holed torus



Properness region bounded by infinitely many intervals, each corresponding to a simple loop on Σ . Boundary points lie on intervals or are points of strict convexity (irrational laminations) (G-Margulis-Minsky).

Linear functionals $\alpha(\gamma)$ when Σ is a one-holed torus



Properness region bounded by infinitely many intervals, each corresponding to a simple loop on Σ . Boundary points lie on intervals or are points of strict convexity (irrational laminations) (G-Margulis-Minsky).

- Does every proper affine deformation admit a crooked fundamental polyhedron?
- Is every nonsolvable complete affine 3-manifold M^3 a solid handlebody?
- Which $\mu \in \mathcal{C}(\Sigma)$ maximize (minimize) the generalized Margulis invariant?
- Can other hyperbolic groups (closed surface, 3-manifold groups) act properly and affinely?
- Lorentzian Kleinian groups: How do affine Schottky groups deform as discrete groups of conformal transformations of Einstein 2 + 1-space?

- Does every proper affine deformation admit a crooked fundamental polyhedron?
- Is every nonsolvable complete affine 3-manifold M^3 a solid handlebody?
- Which $\mu \in \mathcal{C}(\Sigma)$ maximize (minimize) the generalized Margulis invariant?
- Can other hyperbolic groups (closed surface, 3-manifold groups) act properly and affinely?
- Lorentzian Kleinian groups: How do affine Schottky groups deform as discrete groups of conformal transformations of Einstein 2 + 1-space?

- Does every proper affine deformation admit a crooked fundamental polyhedron?
- Is every nonsolvable complete affine 3-manifold M^3 a solid handlebody?
- Which $\mu \in \mathcal{C}(\Sigma)$ maximize (minimize) the generalized Margulis invariant?
- Can other hyperbolic groups (closed surface, 3-manifold groups) act properly and affinely?
- Lorentzian Kleinian groups: How do affine Schottky groups deform as discrete groups of conformal transformations of Einstein 2 + 1-space?

- Does every proper affine deformation admit a crooked fundamental polyhedron?
- Is every nonsolvable complete affine 3-manifold M^3 a solid handlebody?
- Which $\mu \in \mathcal{C}(\Sigma)$ maximize (minimize) the generalized Margulis invariant?
- Can other hyperbolic groups (closed surface, 3-manifold groups) act properly and affinely?
- Lorentzian Kleinian groups: How do affine Schottky groups deform as discrete groups of conformal transformations of Einstein 2 + 1-space?

- Does every proper affine deformation admit a crooked fundamental polyhedron?
- Is every nonsolvable complete affine 3-manifold M^3 a solid handlebody?
- Which $\mu \in \mathcal{C}(\Sigma)$ maximize (minimize) the generalized Margulis invariant?
- Can other hyperbolic groups (closed surface, 3-manifold groups) act properly and affinely?
- Lorentzian Kleinian groups: How do affine Schottky groups deform as discrete groups of conformal transformations of Einstein 2 + 1-space?

- Does every proper affine deformation admit a crooked fundamental polyhedron?
- Is every nonsolvable complete affine 3-manifold M^3 a solid handlebody?
- Which $\mu \in \mathcal{C}(\Sigma)$ maximize (minimize) the generalized Margulis invariant?
- Can other hyperbolic groups (closed surface, 3-manifold groups) act properly and affinely?
- Lorentzian Kleinian groups: How do affine Schottky groups deform as discrete groups of conformal transformations of Einstein 2 + 1-space?