Old and new on the exceptional Lie group G_{2}

Prof. Dr. habil. Ilka Agricola

Philipps-Universität Marburg

March 2012, Braniewo
Literature: Notices of the AMS 55 (2008), 922-929

A mathematical expedition. . .

to the oeuvre of Killing, Engel, and others 1880-1900

- the mathematical world: was projective, and almost always complex; hence, $\mathfrak{R}_{5}=\mathbb{C} \mathbb{P}^{5}$
- linear algebra was brand new, for example:
[Alten, 4000 Jahre Algebra]
-1868: Karl Weierstraß publishes theory of 'elementary divisors' for matrices (Elementarteiler)
-1872: Camille Jordan describes the 'Jordan normal form'
-1874: Leopold Kronecker proves the equivalence of normal forms of Weierstraß and Jordan
- no clear difference between Lie group and Lie algebra
- Lie groups were not objects on their own right, but transformation groups with transitive actions on interesting spaces:
„I find your point of view very interesting that to each transformation group should belong a particular ('besonders beschaffener') space."
letter nr. 3 from F. Engel to W. Killing, 9.11.1885
- the world being projective, the spaces of interest were mostly flag manifolds

Killing's goal (1884): Classification of all 'space forms' \rightsquigarrow classif. of complex simple Lie algebras

In this talk:

- History of the discovery and realisation of G_{2}
- What was known about G_{2} by the 'old masters' ?
- Role (\& life) of Killing, Engel, and his Ph. D. student Walter Reichel
- Significance for modern differential geometry
,,Moreover, we hereby obtain a direct definition of our 14-dimensional simple group
[G_{2}] which is as elegant as one can wish for." Friedrich Engel, 1900.
,Zudem ist hiermit eine direkte Definition unsrer vierzehngliedrigen einfachen Gruppe gegeben, die an Eleganz nichts zu wünschen übrig lässt."

Friedrich Engel, 1900.

Friedrich Engel in a note to his talk at the Royal Saxonian Academy of Sciences on June 11, 1900.

Wilhelm Killing (1847-1923)

- 1872 thesis in Berlin on
'Flächenbündel 2. Ordnung' (advisor:
K. Weierstraß)
- 1882-1892 professor, later rector at the Lyceum Hosianum in Braunsberg (now Braniewo/PL)
- 1884 Programmschrift [Studium der Raumformen über ihre infinitesimalen Bewegungen]
- 1892-1919 professor in Münster (rector 18897-98)
- W. Killing, Die Zusammensetzung der stetigen endlichen Transformationsgruppen, Math. Ann. 33 (1889), 1-48.

Lyceum Hosianum Braunsberg (1565-1945)

- founded 1565 as a Jesuit collegium by Stanislaus Hosius, cardinal \& princebishop of Warmia (Ermland) - one of the biggest in Europe
- consisted of a gymnasium and a seminary for catholic priests; attempts to turn it into a regular university up to the 18th ct.
- 1821: foundation of a theological and a philosophical faculty and awarded same rights as a university
- K. Weierstraß: teacher at the gymnasium 1848-1856, recommended Killing as professor (. . . with extremely low salary)

Wir Wilhelm, von Gottes Gnaden König von Preußen etc.
thun kund und fügen hiermit zu wissen, daß wir allergnädigst geruht haben, den bisherigen Oberlehrer an dem Gymnasium zu Brilon, Dr. Wilhelm Killing zum ordentlichen Professor in der philosophischen Fakultät des Lyceum Hosianum in Braunsberg zu ernennen. Es ist dies in dem Vertrauen geschehen, daß derselbe Uns und Unserem kngl. Hause in unverbrüchlicher Treue ergeben bleiben und die Pflichten des ihm übertragenen Amtes in ihrem ganzen Umfange mit stets regem Eifer erfüllen und insbesondere alle halbe Jahre [. . .] Vorlesungen in seinen Fächern ankündigen werde [. . .]. Gegeben Schloß Babelsberg den 17ten August 1882

1880-1885: simple complex Lie algebras $\mathfrak{s o}(n, \mathbb{C})$ and $\mathfrak{s l}(n, \mathbb{C})$ were wellknown; Lie and Engel knew about $\mathfrak{s p}(n, \mathbb{C})$, but nothing was published

In 1885, Wilhelm Killing starts a correspondence with Felix Klein, Sophus Lie and, most importantly, Friedrich Engel

April 1886: Killing conjectures that $\mathfrak{s o}(n, \mathbb{C})$ and $\mathfrak{s l}(n, \mathbb{C})$ are the only simple complex Lie algebras (though Engel had told him that more simple algebras could occur as isotropy groups)

March 1887: Killing discovers the root system of G_{2} and claims that it should have a 5 -dimensional 'space form'

October 1887: Killing obtains the full classification, prepares a paper after strong encouragements by Engel

Thm (W. Killing, 1887). The only complex simple Lie algebras are $\mathfrak{s o}(n, \mathbb{C}), \mathfrak{s p}(n, \mathbb{C}), \mathfrak{s l}(n, \mathbb{C})$ as well as five exceptional Lie algebras,

$$
\mathfrak{g}_{2}:=\mathfrak{g}_{2}^{14}, \mathfrak{f}_{4}^{52}, \mathfrak{e}_{6}^{78}, \mathfrak{e}_{7}^{133}, \mathfrak{e}_{8}^{248}
$$

(upper index: dimension, lower index: rank)
Killing's proof contains some gaps and mistakes. In his thesis (1894), Élie Cartan gave a completely revised and polished presentation of the classification, which has therefore become the standard reference for the result.

Notations:

- G_{2}, \mathfrak{g}_{2} : complex Lie group resp. Lie algebra
- $G_{2}^{c}, \mathfrak{g}_{2}^{c}$: real compact form of G_{2}, \mathfrak{g}_{2}
- $G_{2}^{*}, \mathfrak{g}_{2}^{*}$: real non compact form of G_{2}, \mathfrak{g}_{2}

Cartan's thesis

Last section: derives from weight lattice the lowest dimensional irreducible representation of each simple complex Lie algebra

Result. \mathfrak{g}_{2} admits an irreducible representation on \mathbb{C}^{7}, and it has a \mathfrak{g}_{2}-invariant scalar product

$$
\beta:=x_{0}^{2}+x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

Interpreted as a real scalar product, it has signature $(4,3)$: Cartan's representation restricts to an irred. \mathfrak{g}_{2}^{*} representation inside $\mathfrak{s o}(4,3)$.

Problem: direct construction of \mathfrak{g}_{2} and its real forms $\mathfrak{g}_{2}^{*}, \mathfrak{g}_{2}^{c}$?

First step: Engel \& Cartan, 1893

In 1893, Engel \& Cartan publish simultaneously a note in C. R. Acad. Sc. Paris. They give the following construction:
Consider \mathbb{C}^{5} and the 2-planes $\pi_{a} \subset$ $T_{a} \mathbb{C}^{5}$ defined by

$$
\begin{aligned}
d x_{3} & =x_{1} d x_{2}-x_{2} d x_{1}, \\
d x_{4} & =x_{2} d x_{3}-x_{3} d x_{2}, \\
d x_{5} & =x_{3} d x_{1}-x_{1} d x_{3} .
\end{aligned}
$$

The 14 vector fields whose (local) flows map the planes π_{a} to each other satisfy the commutator relations of \mathfrak{g}_{2} !

Both give a second, non equivalent realisation of \mathfrak{g}_{2} :

- Engel: through a contact transformation from the first
- Cartan: as symmetries of solution space of the 2 nd order pde's $(f=f(x, y))$

$$
f_{x x}=\frac{4}{3}\left(f_{y y}\right)^{3}, f_{x y}=\left(f_{y y}\right)^{2}
$$

Root system of \mathfrak{g}_{2} (II)

For a modern interpretation of the Cartan/Engel result, we need:

$\alpha_{1,2}$: simple roots
$\omega_{1,2}$: fundamental weights ($\omega_{1}: 7$-dim. rep., ω_{2} : adjoint rep.)
$\mathcal{W}:$ Weyl chamber $=$ cone spanned by ω_{1}, ω_{2}

Parabolic subalgebras of \mathfrak{g}_{2}

$\mathfrak{p}_{1}:$ contains $-\alpha_{1}$

Every parabolic subalgebra contains all positive roots and (eventually) some negative simple roots:

$$
\begin{array}{lr}
\mathfrak{p}_{1}=\mathfrak{h} \oplus \mathfrak{g}_{-\alpha_{1}} \oplus \mathfrak{g}_{\alpha_{2}} \oplus \mathfrak{g}_{\beta_{2}} \oplus \mathfrak{g}_{\omega_{2}} \oplus \mathfrak{g}_{\omega_{1}} \oplus \mathfrak{g}_{\beta_{1}} \oplus \mathfrak{g}_{\alpha_{1}} & \text { [9-dimensional] } \\
\mathfrak{p}_{2}=\mathfrak{h} \oplus \mathfrak{g}_{\alpha_{2}} \oplus \mathfrak{g}_{\beta_{2}} \oplus \mathfrak{g}_{\omega_{2}} \oplus \mathfrak{g}_{\omega_{1}} \oplus \mathfrak{g}_{\beta_{1}} \oplus \mathfrak{g}_{\alpha_{1}} \oplus \mathfrak{g}_{-\alpha_{2}} & \text { [9-dimensional] } \\
\mathfrak{p}_{1} \cap \mathfrak{p}_{2}=\mathfrak{h} \oplus \mathfrak{g}_{\alpha_{2}} \oplus \mathfrak{g}_{\beta_{2}} \oplus \mathfrak{g}_{\omega_{2}} \oplus \mathfrak{g}_{\omega_{1}} \oplus \mathfrak{g}_{\beta_{1}} \oplus \mathfrak{g}_{\alpha_{1}} & \text { [8-dim. Borel alg.] }
\end{array}
$$

Modern interpretation

The complex Lie group G_{2} has two maximal parabolic subgroups P_{1} and P_{2} (with Lie algebras \mathfrak{p}_{1} and \mathfrak{p}_{2})
$\Rightarrow G_{2}$ acts on the two 5 -dimensional compact homogeneous spaces

- $M_{1}^{5}:=G_{2} / P_{1}=\overline{G \cdot\left[v_{\omega_{1}}\right]} \subset \mathbb{P}\left(\mathbb{C}^{7}\right)=\mathbb{C P}^{6}$: a quadric
- $M_{2}^{5}:=G_{2} / P_{2}=\overline{G \cdot\left[v_{\omega_{2}}\right]} \subset \mathbb{P}\left(\mathbb{C}^{14}\right)=\mathbb{C P}{ }^{13}$ 'adjoint homogeneous variety' where $v_{\omega_{1}}, v_{\omega_{2}}$ are $h . w$. vectors of the reps. with highest weight ω_{1}, ω_{2}.

Cartan and Engel described the action of \mathfrak{g}_{2} on some open subsets of M_{i}^{5}.
Real situation: To $P_{i} \subset G_{2}$ corresponds a real subgroup $P_{i}^{*} \subset G_{2}^{*}$, hence the split form G_{2}^{*} has two real compact 5 -dimensional homogeneous spaces on which it acts.

However, G_{2}^{c} has no 9-dim. subgroups! (max. subgroup: 8-dim. $\mathrm{SU}(3) \subset G_{2}$)
Q: Direct realisation of G_{2}^{c} ?

Élie Cartan (1869-1951)

- 1894 thesis at ENS (Paris), Sur la structure des groupes de transformations finis et continus.
- 1894-1912 maître de conférences in Montpellier, Nancy, Lyon, Paris
- 1912-1940 Professor in Paris
- É. Cartan, Sur la structure des groupes simples finis et continus, C. R. Acad. Sc. 116 (1893), 784-786.
- É. Cartan, Nombres complexes, Encyclop. Sc. Math. 15, 1908, 329-468.
- É. Cartan, Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre, Ann. Éc. Norm. 27 (1910), 109-192.

Friedrich Engel (1861-1941)

- 1883 thesis in Leipzig on contact transformations
- 1885-1904 Privatdozent in Leipzig
- 1904-1913 Professor in Greifswald, since 1913 in Gießen
- F. Engel, Sur un groupe simple à quatorze paramètres, C. R. Acad. Sc. 116 (1893), 786-788.
- F. Engel, Ein neues, dem linearen Complexe analoges Gebilde, Leipz. Ber. 52 (1900), 63-76, 220-239.
- editor of the complete works of S. Lie and H. Grassmann

G_{2} and 3 -forms in 7 variables

Non-degenerate 2 -forms are at the base of symplectic geometry and define the Lie groups $\operatorname{Sp}(n, \mathbb{C})$.

Q: Is there a geometry based on 3-forms ?

- Generic 3 -forms (i. e. with dense $\operatorname{GL}(n, \mathbb{C})$ orbit inside $\Lambda^{3} \mathbb{C}^{n}$) exist only for $n \leq 8$.
- To do geometry, we need existence of a compatible inner product, i.e. we want for generic $\omega \in \Lambda^{3} \mathbb{C}^{n}$

$$
G_{\omega}:=\left\{g \in \mathrm{GL}(n, \mathbb{C}) \mid \omega=g^{*} \omega\right\} \subset \mathrm{SO}(n, \mathbb{C})
$$

This implies (dimension count!) $n=7,8$.
And indeed: for $n=7: G_{\omega}=G_{2}$, for $n=8: G_{\omega}=\operatorname{SL}(3, \mathbb{C})$.

In fact, Engel had had this idea already in 1886. From a letter to Killing (8.4.1886):
"There seem to be relatively few simple groups. Thus first of all, the two types mentioned by you $[\mathrm{SO}(n, \mathbb{C})$ and $\mathrm{SL}(n, \mathbb{C}]$. If I am not mistaken, the group of a linear complex in space of $2 n-1$ dimensions $(n>1)$ with $(2 n+1) 2 n / 2$ parameters $[\operatorname{Sp}(n, \mathbb{C})]$ is distinct from these. In 3 -fold space $\left[\mathbb{C P}^{3}\right]$ this group $[\operatorname{Sp}(4, \mathbb{C})]$ is isomorphic to that $[\mathrm{SO}(5, \mathbb{C})]$ of a surface of second degree in 4 -fold space. I do not know whether a similar proposition holds in 5 -fold space. The projective group of 4 -fold space $\left[\mathbb{C P}^{4}\right]$ that leaves invariant a trilinear expression of the form

$$
\sum_{i j k}^{1 \ldots 5} a_{i j k}\left|\begin{array}{ccc}
x_{i} & y_{i} & z_{i} \\
x_{k} & y_{k} & z_{k} \\
x_{j} & y_{j} & z_{j}
\end{array}\right|=0
$$

will probably also be simple. This group has 15 parameters, the corresponding group in 5 -fold space has 16 , in 6 -fold space $\left[\mathbb{C P}^{6}\right]$ has 14 , in 7 -fold space $\left[\mathbb{C P}^{7}\right]$ has 8 parameters. In 8 -fold space there is no such group. These numbers are already interesting. Are the corresponding groups simple? Probably this is worth investigating. But also Lie, who long ago thought about similar things, has not yet done so."

Thm (Engel, 1900). A generic complex 3-form has precisely one GL(7, $\mathbb{C})$ orbit. One such 3 -form is

$$
\omega_{0}:=\left(e_{1} e_{4}+e_{2} e_{5}+e_{3} e_{6}\right) e_{7}-2 e_{1} e_{2} e_{3}+2 e_{4} e_{5} e_{6}
$$

Every generic complex 3 -form $\omega \in \Lambda^{3}\left(\mathbb{C}^{7}\right)^{*}$ satisfies:

1) The isotropy group G_{ω} is isomorphic to the simple group G_{2};
2) ω defines a non degenerate symmetric BLF β_{ω}, which is cubic in the coefficients of ω and the quadric M_{1}^{5} is its isotropic cone in $\mathbb{C P}^{6}$. In particular, G_{ω} is contained in some $\operatorname{SO}(7, \mathbb{C})$.
3) There exists a G_{2}-invariant polynomial $\lambda_{\omega} \neq 0$, which is of degree 7 in the coefficients of ω.
"Zudem ist hiermit eine direkte Definition unsrer vierzehngliedrigen einfa-
chen Gruppe gegeben, die an Eleganz nichts zu wünschen übrig lässt."
F. Engel, 1900

In modern notation: Set $V=\mathbb{C}^{7}$. Then

$$
\left.\left.\beta_{\omega}: V \times V \rightarrow \Lambda^{7} V^{*}, \quad \beta_{\omega}(X, Y):=(X\lrcorner \omega\right) \wedge(Y\lrcorner \omega\right) \wedge \omega
$$

is a symmetric BLF with values in the 1 -dim. space $\Lambda^{7}\left(\mathbb{C}^{7}\right)^{*} \quad[\mathrm{R}$. Bryant, 1987] Hence β_{ω} defines a map $K_{\omega}: V \rightarrow V^{*} \otimes \Lambda^{7} V^{*}$, and

$$
\operatorname{det} K_{\omega} \in\left(\Lambda^{7} V\right)^{*} \otimes \Lambda^{7}\left(V^{*} \otimes \Lambda^{7} V^{*}\right)=\Lambda^{9}\left(\Lambda^{7} V^{*}\right)
$$

Assume V is oriented \Rightarrow fix an element $\left(\operatorname{det} K_{\omega}\right)^{1 / 9} \in \Lambda^{7} V^{*}$ and set

$$
\begin{aligned}
& g_{\omega}:=\frac{\beta_{\omega}}{\left(\operatorname{det} K_{\omega}\right)^{1 / 9}}: \text { this is a true scalar product, and } g_{\omega}=g_{-\omega} . \\
& \operatorname{det} g_{\omega}:=\lambda_{\omega}^{3} \text { for an element of 'order' } 7 \text { in } \omega
\end{aligned}
$$

$$
\lambda_{\omega} \neq 0 \Leftrightarrow \omega \text { is generic } \Leftrightarrow g_{\omega} \text { is nondegenerate }
$$

This allows a more concise description of the 2 nd homogeneous space G_{2} / P_{2} :
Consider
$G_{0}^{7}(2,7)=\left\{\pi^{2} \subset \mathbb{C}^{7}:\left.\beta_{\omega}\right|_{\pi^{2}}=0\right\} \subset G^{10}(2,7) \subset \mathbb{P}\left(\Lambda^{2} \mathbb{C}^{7}\right)$ (Plücker emb.)
Then $\left.G_{2} / P_{2}=\left\{\pi^{2} \subset G_{0}^{7}(2,7): \pi^{2}\right\lrcorner \omega=0\right\}$
On the other hand, we know that

$$
G_{2} / P_{2}=\overline{G \cdot\left[v_{\omega_{2}}\right]} \subset \mathbb{P}\left(\mathfrak{g}^{2}\right) \subset \mathbb{P}\left(\Lambda^{2} V\right)\left(\text { because } \Lambda^{2} V=\mathfrak{g}_{2} \oplus V\right)
$$

\rightarrow turns out: $G_{2} / P_{2}=G^{10}(2,7) \cap \mathbb{P}\left(\mathfrak{g}^{2}\right)$ inside $\mathbb{P}\left(\Lambda^{2} V\right)$
[Landsberg-Manivel, 2002/04]

Facts:

- G_{2} / P_{2} has degree 18
- a smooth complete intersection of G_{2} / P_{2} with 3 hyperplanes is a K3 surface of genus 10 .

Walter Reichel's thesis (Greifswald, 1907)

- complete system of invariants for complex 3 -forms in 6 und 7 variables through Study's symbolic method
- normal forms for 3 -forms under $\mathrm{GL}(6, \mathbb{C}), \mathrm{GL}(7, \mathbb{C})$.
$n=7$: vanishing of λ_{ω} for non generic 3 -forms and rank of β_{ω} play a decisice role
- Lie-Algebra \mathfrak{g}_{ω} for any 3 -form ω expressed in terms of its coefficients

Diss - $1907 / 509$
 [T.Ex.]

UBER TRILINEARE ALTERNIERENDE FORMEN
IN SECHS UND SIEBEN verAivderlichen und die durgil sie definierten geouetrisohèn gebilde

INALQURALDISSERTATION
ZUR ERLANGUNG DER PHILOSOPHISCHEN DOKTORWCRDE
DER HOHLN PIILOSOH H SOHEN VAKULTÄT
DER KÖNIGLICITEN UNIVIERSITÄT GREITSWALD
voroclegt von

WALTER REICHRL
aug gatadekititi in gomibstan

Over \mathbb{R}, there are two $\mathrm{GL}(7, \mathbb{R})$ orbits of generic 3 -forms!
\Rightarrow Reichel's formulas allow to compute the isotropy Lie group on both orbits, and indeed:

- one isotropy group is G_{2}^{*}, and the scalar product β_{ω} has signature $(4,3)$
- the other isotropy group is G_{2}^{c}, and the scalar product β_{ω} is positive definite.

Hence, Walter Reichel's thesis establishes for the first time a geometric realisation of G_{2}^{c} - in fact, the one which explains its importance in modern geometry.

N.B. G_{2}^{c} and the octonians:

- 1908 and 1914, É. Cartan: observes that $G_{2}^{c} \cong \operatorname{Aut(O)}$
- this approach becomes popular by the work of H. Freudenthal (after 1951)

In fact, the 3 -form approach and the the octonian picture are equivalent (a third equivalent description is through 'vector cross products')

G_{2} and spinors

The projective point of view lead Engel to further deep insights:
$l=[x: y]_{6}:=\left[x_{0}: \ldots: x_{3}: y_{1}: \ldots: y_{3}\right]$ homogeneous coords. of $\mathbb{C P}^{6}$,
$M_{1}^{5}=\left\{l \in \mathbb{C P}^{6} \mid \beta_{\omega}(l, l)=0\right\}=\left\{[x: y]_{6} \in \mathbb{C P}^{6} \mid x_{0}^{2}+x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}=0\right\}$
Prop. A smooth quadric of $\operatorname{dim} .2 n+1$ contains an irred. $\frac{(n+1)(n+2)}{2}$-dim. family of n-planes.
[Griffiths-Harris, Ch.6]
$\Rightarrow M_{1}^{5}$ contains a 6-dim. family of 2-planes, check:
$\forall[a: b]_{6} \in M_{1}^{5}$, the 8 eqs. $(i, j, k$ cyclic perm. of $1,2,3)$
$b_{i} y_{k}-b_{k} y_{i}+a_{0} x_{j}-a_{j} x_{0}=0, \quad a_{0} x_{0}+a_{1} y_{1}+a_{2} y_{2}+a_{3} y_{3}=0$
$a_{i} x_{k}-a_{k} x_{i}+a_{0} y_{j}-b_{j} x_{0}=0, \quad a_{0} x_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}=0$
define a 2-plane $\pi_{a, b} \subset M_{1}^{5}$ invariant under G_{2}.

Now introduce a further coord. y_{0} and homog. coords. on $\mathbb{C P}^{7}$

$$
[x: y]_{7}:=\left[x_{0}: \ldots: x_{3}: y_{0}: y_{1}: \ldots: y_{3}\right]
$$

Every plane $\pi_{a, b}$ defines a unique point $[a: b]_{7} \in \mathbb{C P}^{7}$ by
$a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=0$ and the 8 eqs.
$b_{i} y_{k}-b_{k} y_{i}+a_{0} x_{j}-a_{j} x_{0}=0, \quad a_{0} x_{0}+a_{1} y_{1}+a_{2} y_{2}+a_{3} y_{3}=0$
$a_{i} x_{k}-a_{k} x_{i}+b_{0} y_{j}-b_{j} x_{0}=0, \quad b_{0} x_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}=0$
To conclude: $g:\left\{\pi_{a, b} \mid[a: b]_{6} \in M_{1}^{5}\right\} \longrightarrow \mathbb{C P}^{7}, \quad \pi_{a, b} \longmapsto[a: b]_{7} \in \mathbb{C P}^{7}$, and $\operatorname{im} g$ is a smooth quadric $Q^{6} \subset \mathbb{C P}^{7}$.

Thm. (Engel, 1900)

1) The map g is $\mathfrak{s o}(7)$-equivariant, and extends to an irreducible $\mathfrak{s o}(7)$ representation on $\mathbb{C P}^{7}$;
2) The stabilizer of $\left[a_{0}: 0: 0: 0:-a_{0}: 0: 0: 0\right]\left(\right.$ not on $\left.Q^{6}\right)$ is G_{2}.

Modern description

Consider spin representation $\kappa^{\mathbb{C}}: \operatorname{Spin}(7) \rightarrow \operatorname{End}\left(\Delta_{7}^{\mathbb{C}}\right), \quad \Delta_{7}^{\mathbb{C}} \cong \mathbb{C}^{8}$. In dim.7, this turns out to be complexification of 8 -dim. real rep.,

$$
\kappa: \operatorname{Spin}(7) \rightarrow \operatorname{End}\left(\Delta_{7}\right), \quad \Delta_{7} \cong \mathbb{R}^{8} .
$$

and for a generic spinor $\psi \in \Delta_{7}: G_{2}^{c}=\{A \in \operatorname{Spin}(7) \mid A \psi=\psi\}$
\Rightarrow explains physicists' interest in G_{2}^{c}.
The work of Engel, Killing, and Reichel on G_{2} and the description of G_{2}^{c}

- as a stabilizer of a generic 3 -form $\in \Lambda^{3}\left(\mathbb{R}^{7}\right)$
- as a stabilizer of a generic spinor in Δ_{7}
was forgotten for more than 60 years.
Work in progress: Engel sketches how the algebraic geometry of $Q^{6} \subset \mathbb{C} \mathbb{P}^{7}$ gives an analogon of Plücker's line complexes $\left(\mathbb{C P}^{3} \supset \pi^{1} \longmapsto l \in Q \subset \mathbb{C P}^{5}\right.$, Q : Klein quadric, 2-forms \cong Plücker coords.)

Holonomy group of a connection ∇

Thm (Berger [\& Simons], \geq 1955). The reduced holonomy $\operatorname{Hol}_{0}\left(M ; \nabla^{g}\right)$ of the LC connection ∇^{g} is either that of a symmetric space or $\operatorname{Sp}(n) \operatorname{Sp}(1)[q K], \mathrm{U}(n)[\mathrm{K}], \mathrm{SU}(n)[\mathrm{CY}]$, $\operatorname{Sp}(n)[\mathrm{hK}], G_{2}^{c}, \operatorname{Spin}(7)$.

However, Berger missed that
[Bonan, 1966]

- manifolds with holonomy G_{2}^{c} have a ∇^{g}-parallel 3-form,
- manifolds with holonomy $\operatorname{Spin}(7)$ have a ∇^{g}-parallel 4 -form, and, in consequence, both have to be Ricci-flat.

This is-up to our knowledge-the first reappearance of the 3-form defining a G_{2}^{c} structure after Engel and Reichel.

Weak holonomy (A. Gray, 1971):

Idea: Enlarge the successful holonomy concept to wider classes of manifolds (contact manifolds, almost Hermitian manifolds etc.)

Dfn. 'nearly parallel G_{2}^{c}-manifold': has structure group G_{2}^{c}, but 3-form ω is not parallel, but rather satisfies

$$
d \omega=\lambda * \omega \text { for some } \lambda \neq 0
$$

Fernandez-Gray, 1982: Show that there are 4 basic classes of manifolds with G_{2}^{c}-structure and construct first examples:
$S^{7}=\operatorname{Spin}(7) / G_{2}^{c}, \quad \mathrm{SU}(3) / S^{1} \quad$ (Aloff-Wallach sp.), ext. of Heisenberg groups. . .

Progress in the parallel G_{2}^{c} case:

- 1987-89, R. Bryant and S. Salamon: local complete metrics with Riemannian holonomy G_{2}^{c}
- 1996, D. Joyce: existence of compact Riemannian 7-dimensional manifolds with Riemannian holonomy G_{2}^{c}

Today's general philosophy:

Given a mnfd M^{n} with G-structure $(G \subset S O(n))$, replace ∇^{g} by a metric connection ∇ with torsion that preserves the geometric structure!

$$
\text { torsion: } T(X, Y, Z):=g\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y], Z\right)
$$

Special case: require $T \in \Lambda^{3}\left(M^{n}\right)\left(\Leftrightarrow\right.$ same geodesics as $\left.\nabla^{g}\right)$

$$
\Rightarrow g\left(\nabla_{X} Y, Z\right)=g\left(\nabla_{X}^{g} Y, Z\right)+\frac{1}{2} T(X, Y, Z)
$$

- representation theory yields
- a clear answer which G-structures admit such a connection; if existent, it's unique and called the 'characteristic connection'
- a classification scheme for G-structures with characteristic connection: $T_{x} \in \Lambda^{3}\left(T_{x} M\right) \stackrel{G}{=} V_{1} \oplus \ldots \oplus V_{p}$
- study Dirac operator $\not D$ of the metric connection with torsion $T / 3$: 'characteristic Dirac operator' (generalizes the Dolbeault operator, Kostant's cubic Dirac operator)

G_{2}^{c}-manifolds

Dfn: mnfds with reduction of the frame bundle to G_{2}; reduction induces 3 -form and hence a metric, automatically spin

- \exists char. connection $\nabla \Leftrightarrow \exists \mathrm{VF} \beta$ s.t. $\delta \omega=-\beta\lrcorner \omega$, torsion:

$$
\begin{equation*}
T=-* d \omega-\frac{1}{6}(d \omega, * \omega) \omega+*(\beta \wedge \omega) \tag{TF-Ivanov,2002}
\end{equation*}
$$

- $\nabla \omega^{3}=0$, at least on spinor field with $\nabla \psi=0$ and $\operatorname{Hol}_{0}(\nabla) \subset G_{2} \subset \mathrm{SO}(7)$

Superstring theory:
torsion \cong field, $\quad \nabla$-parallel spinor \cong supersymmetry transformation.
Duality:
$\underline{T=0}$: 'vacuum solutions' of superstring theory \longrightarrow algebraic geometry (K3 surfaces, Calabi-Yau manifolds. . .)
$T \neq 0$: 'non vacuum solutions' of superstring theory \longrightarrow differential geometry, connections with torsion

Exceptional G_{2}^{c}-manifolds-the flat case

Suppose (M, g) Riemannian, ∇ metric with torsion $T \in \Lambda^{3}(M)$
Q: What are the manifolds with a flat metric connection with skew torsion?
$\Rightarrow(M, g)$ is parallelisable (and therefore spin): take any frame in $p \in M$ and transport it to all other points

Example 1: Lie groups

Let $M=G$ be a connected Lie group, g a biinvariant metric
Ansatz: T proportional to [,], i. e. $\nabla_{X} Y:=\lambda[X, Y]$

- torsion: $T^{\nabla}(X, Y)=(2 \lambda-1)[X, Y]\left(T \in \Lambda^{3}(G) \Leftrightarrow g\right.$ biinv. $), \nabla T=0$
- curvature:
$\mathcal{R}^{\nabla}(X, Y) Z=\lambda(1-\lambda)[Z,[X, Y]]=\left\{\begin{array}{lc}\frac{1}{4}[Z,[X, Y]] & \text { for LC conn. }\left(\lambda=\frac{1}{2}\right) \\ 0 & \text { for } \lambda=0,1\end{array}\right.$

Example 2: S^{7}

- only parallelisable sphere that is not a Lie group (but almost. . .)

Consider spin representation $\kappa: \operatorname{Spin}(7) \rightarrow \operatorname{End}\left(\Delta_{7}\right), \quad \Delta_{7} \cong \mathbb{R}^{8}$
κ is in fact a repr. of the Clifford algebra over $\mathbb{R}^{7}\left(\operatorname{Spin}(7) \subset \mathrm{Cl}\left(\mathbb{R}^{7}\right)!\right)$,

$$
\kappa: \mathbb{R}^{7} \subset \operatorname{Cl}\left(\mathbb{R}^{7}\right) \rightarrow \operatorname{End}\left(\Delta_{7}\right)
$$

Choose e_{1}, \ldots, e_{7} an ON basis of \mathbb{R}^{7}, and set $\kappa_{i}=\kappa\left(e_{i}\right)$.

- Embed $S^{7} \subset \Delta_{7}$ as spinors of length 1 ,
- the VFs $V_{i}(x)=\kappa_{i} \cdot x$ for all $x \in S^{7} \subset \Delta^{7}$ realize ON trivialization of S^{7}
- the connection ∇ defined by $\nabla V_{i}=0$ is metric, flat, and with torsion

$$
T\left(V_{i}, V_{j}, V_{k}\right)(x)=-\left\langle\left[V_{i}, V_{j}\right], V_{k}\right\rangle=2\left\langle\kappa_{i} \kappa_{j} \kappa_{k} x, x\right\rangle \in \Lambda^{3}\left(S^{7}\right)
$$

- $\nabla T \neq 0$ (check that T does not have constant coefficients)
- ∇ is a G_{2} connection of Fernandez-Gray type $\mathcal{X}_{1} \oplus \mathcal{X}_{3} \oplus \mathcal{X}_{4}$

Classification

Goal: Show that any irreducible, complete, and simply connected M with a flat, metric connection with antisymmetric torsion $T \in \Lambda^{3}(M)$ is one of these examples.

- 1926: Cartan-Schouten "On manifolds with absolute parallelism" - wrong proof.
- 1968: d'Atri-Nickerson "On the existence of special orthonormal frames" when does (M, g) admit an ONF of Killing vectors?

This is mainly an equivalent problem:

$$
\begin{equation*}
V \text { is Killing VF } \Leftrightarrow g\left(\nabla_{X}^{g} V, Y\right)+g\left(X, \nabla_{Y} V\right)=0 \tag{*}
\end{equation*}
$$

If V is parallel for ∇ with torsion T, then $\nabla_{X}^{g} V=-\frac{1}{2} T(X, V)$, hence

$$
(*) \Leftrightarrow g(T(X, V), Y)+g(X, T(Y, V))=0 \Leftrightarrow T \in \Lambda^{3}(M)
$$

- 1972: J. Wolf "On the geometry and classification of absolute parallelisms"
- 2 long papers in J. Diff.Geom.

Q: Both proofs rely on classification of symmetric spaces. Direct proof?

Sketch of proof

(1) General identities:

- $\operatorname{Ric}^{g}(X, Y)=\frac{1}{4} \sum_{i}\left\langle T\left(X, e_{i}\right), T\left(Y, e_{i}\right)\right\rangle,\left(\Rightarrow \operatorname{Ric}^{g}(X, X) \geq 0\right)$
- $K^{g}(X, Y)=\frac{\|T(X, Y)\|^{2}}{4\left[\|X\|^{2}\|Y\|^{2}-\langle X, Y\rangle^{2}\right]} \geq 0$ (sectional curvature)
- $\delta T=0$ ($=$ antisymmetric part of $\operatorname{Ric}^{\nabla}$)
(2) General tools: $\left.\left.\sigma_{T}=\frac{1}{2} \sum_{i}\left(e_{i}\right\lrcorner T\right) \wedge\left(e_{i}\right\lrcorner T\right) \in \Lambda^{4}(M)$ satisfies
- $T^{2}=-2 \sigma_{T}+\|T\|^{2}$ (as endomorphisms on Δ_{7})
- $\nabla T=0$ implies $d T=2 \sigma_{T}$ [recall: true for G, wrong for S^{7}]
- All spinors with constant coeff. are parallel $\Rightarrow 3 d T=2 \sigma_{T}$ (SL formula)
- Bianchi I:

$$
\stackrel{X, Y, Z}{\mathfrak{S}} \mathcal{R}(X, Y, Z, V)=d T(X, Y, Z, V)-\sigma^{T}(X, Y, Z, V)+\left(\nabla_{V} T\right)(X, Y, Z)
$$

(3) Rescaling of connection:

Consider the rescaled connection $\nabla^{1 / 3}$,

$$
\nabla^{1 / 3}{ }_{X} Y=\nabla_{X}^{g} Y+\frac{1}{6} T(X, Y)
$$

$-\nabla^{1 / 3}$ plays a prominent role for Dirac operators with torsion
Thm.

- $\left.\left.\nabla^{1 / 3} T=0 \quad\left(\Leftrightarrow \nabla_{V} T=-\frac{1}{3} V\right\lrcorner \sigma_{T} \Leftrightarrow \nabla_{V}^{g} T=\frac{1}{6} V\right\lrcorner \sigma_{T}\right)$

In particular, $\|T\|$ and the scalar curvature are constant, and for any tensor field \mathcal{T} polynomial in T :

$$
\nabla \mathcal{T}=-2 \nabla^{g} \mathcal{T} ; \text { in particular: } \nabla \mathcal{T}=0 \Leftrightarrow \nabla^{g} \mathcal{T}=0
$$

- $\nabla^{1 / 3} \mathcal{R}^{g}=0$

By the Ambrose-Singer Thm, M is a naturally reductive space (in particular, homogeneous).

(4) Splitting principle:

Thm. Let $M=M_{1} \times M_{2}$ be a mnfd with a flat metric connection ∇ with torsion $T \in \Lambda^{3}(M)$. Then $T=T_{1}+T_{2}$ with $T_{i} \in \Lambda^{3}\left(M_{i}\right)$.
(5) Type of M :

Thm. Let e_{1}, \ldots, e_{n} be a ONF of ∇-parallel VFs. Then:

- $\mathcal{R}^{g}\left(e_{i}, e_{j}\right) e_{k}=-\frac{1}{4}\left[\left[e_{i}, e_{j}\right], e_{k}\right][\Rightarrow M$ is Einstein $]$
- $e_{m}\left\langle\left[e_{i}, e_{j}\right], e_{k}\right\rangle=-\left(\nabla_{e_{m}} T\right)\left(e_{i}, e_{j}, e_{k}\right)=-\frac{1}{3} \sigma_{T}\left(e_{i}, e_{j}, e_{k}, e_{m}\right)$

Cor. $e_{i}\left(R_{j k l m}\right)=0$, hence $\nabla^{g} \mathcal{R}^{g}=0$ and, by (2), $\nabla \mathcal{R}^{g}=0$ and

$$
\begin{equation*}
\left.\left(\nabla_{X}-\nabla_{X}^{g}\right) \mathcal{R}^{g}=[X\lrcorner T, \mathcal{R}^{g}\right]=0 \tag{**}
\end{equation*}
$$

Cor. (M, g) is a compact symmetric Einstein space.
1st case: $\sigma_{T}=0 .(*) \Rightarrow$ all $\left\langle\left[e_{i}, e_{j}\right], e_{k}\right\rangle=$ const $\Rightarrow M$ is Lie group

2nd case: $\sigma_{T} \neq 0(n>4)$. Consider the Lie algebra

$$
\mathfrak{g}_{T}(p):=\operatorname{Lie}\langle X\lrcorner T\left|X \in T_{p} M\right\rangle \subset \Lambda^{2} T_{p} M \cong \mathfrak{s o}\left(T_{p} M\right) .
$$

By the splitting principle, may assume: $\mathfrak{g}_{T}(p)$ acts irreducibly on $T_{p} M$.
Idea: Let $G_{T}(p)$ be a Lie group with Lie algebra $\mathfrak{g}_{T}(p)$ and consider its action on unit sphere $S \subset T_{p} M$.

Thm (Skew holonomy theorem). There are only two possible cases:
(1) $G_{T}(p)$ does not act not transitively on S :
$T(X, Y)=:[X, Y]$ defines a Lie bracket and M is a Lie group,
(2) or $G_{T}(p)$ acts transitively on S :
$\mathfrak{g}_{T}(p)=\mathfrak{s o}\left(T_{p} M\right)$.
dfn of $\mathfrak{g}_{T}(p)$: AF. (1): Olmos-Reggiani;
(2): AF indirectly if one uses the classification of transitive sphere actions, except for the qK case (OR); or OR for a more systematic proof.

Cor. If M is not a Lie group, $\mathfrak{g}_{T}(p)=\mathfrak{s o}\left(T_{p} M\right)$ and

$$
(* *) \Rightarrow \mathcal{R}^{g}=c \cdot \operatorname{Id} \Rightarrow K^{g}(X, Y)=c \cdot \operatorname{Id}
$$

$\Rightarrow M$ is a sphere
\Rightarrow formula for $K^{g}(X, Y)$ states that T defines a vector cross product

$$
\Rightarrow \quad M=S^{7}
$$

