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Holonomy group of the Levi-Civita connection

• ∇ metric, γ: closed path through p

• Pγ : TpM → TpM parallel transport
(∇ metric ⇒ Pγ isometry)

• C0(p): null-homotopic γ’s

Hol0(M ;∇) := {Pγ | γ ∈ C0(p)}
⊂ SO(n)

p

TpMPγ

γ
M

Theorem (Berger / Simons, ≥ 1955). Let Mn be an irreducible,
non-symmetric Riemannian manifold. Then the holonomy Hol0(M ;∇g)
group of the LC connection ∇g is either SO(n) (generic case) or

Sp(n)Sp(1) qK, U(n) K,SU(n) CY, Sp(n) hK, G2, Spin(7)
︸ ︷︷ ︸

Ric=0

.
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Examples of non-integrable geometries

Example 1:

• (S6, gcan): S6 ⊂ R
7 has an almost

complex structure J (J2 = −id)
inherited from the ”cross product” on
R

7.

• J is not integrable, ∇gJ 6= 0

• Problem (Hopf): Does S6 admit an
(integrable) complex structure ?

x TxS2

v
J(v) = x × v

S2

J is an example of a nearly Kähler structure: ∇g
XJ(X) = 0 (⇒ Einstein)

Example 2: (M, J) compact complex mnfd, b1(M) odd (S3 × S1. . . )

⇒ (M,J) cannot carry a Kähler metric (Hodge theory), but it has many
(almost) Hermitian metrics.
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Example 3: Contact metric
geometries

• (M2n+1, g, η) contact mnfd, η
- 1-form (∼= vector field)

• On 〈η〉⊥ exists an almost
complex structure J which is
compatible with the metric g

η

J = −∇gη

TxM

〈η〉⊥

• Contact condition: η ∧ (dη)n 6= 0 ⇒ ∇gη 6= 0, i. e. contact structures
are never integrable !

Example 4: Mnfds with G2- or Spin(7)-structure (dim = 7, 8).

Example 5: Homogeneous reductive non-symmetric spaces G/H.
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Type II string equations

A. Strominger, 1986: (Mn, g, T, Ψ,Φ) a Riemannian manifold,

T – a 3-form , Ψ – a spinor field , Φ – a function .

• Bosonic equations: δ(e−2ΦT) = 0, Rg
ij − 1

4
TimnTjmn +2 ·∇g

i ∂jΦ = 0

• Fermionic equations:
(
∇g

X + 1

4
X T

)
· Ψ = 0,

(
2 · dΦ − T

)
· Ψ = 0

Geometric interpretation

The 3-form T is the torsion form of some metric connection ∇ with
totally skew symmetric torsion,

T(X,Y,Z) = g(∇XY − ∇Y X − [X,Y ] , Z)
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Then we obtain

Rg
ij − 1

4
TimnTjmn = Ric∇ij

and the equations now read as (a, b, µ are constants)

• Fermionic equations:

∇Ψ = 0 , T · Ψ = b · dΦ · Ψ + µ · Ψ .

• Conservation law: δ(T) = a ·
(
dΦ T

)
.

Integrable geometric structures T = 0, ∇ = ∇g

• Calabi-Yau manifolds in dimension 6,

• parallel G2-structures in dimension 7,

• parallel Spin(7)-structures in dimension 8.
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Basic Idea:

Non-integrable G-structures of special geometric type yield solutions of
the equations for type II string theory.

Results:

• For contact geometries (in particular n = 5).

• For almost complex manifolds (in partic. n = 6).

• In dimension n = 7 for the subgroup G2 and

• in dimension n = 8 for Spin(7).
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Types of Metric Connections

(Mn , g , ∇) - a metric connection, ∇ g = 0. Compare ∇ with the
Levi-Civita connection

∇XY = ∇g
XY + A(X,Y ) .

Then g(A(X,Y ) , Z) = − g(A(X,Z) , Y ), A ∈ R
n ⊗ Λ2(Rn) .

Decompose under the action of the orthogonal group (E. Cartan 1922 -
1925):

R
n ⊗ Λ2(Rn) = R

n ⊕ Λ3(Rn) ⊕ T .

A connection is of type Λ3 if and only if its torsion is totally skew-
symmetric. In this case we have

∇XY = ∇g
XY +

1

2
· T(X,Y,−) .
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The characteristic connection of a geometric structure

• Let G ⊂ SO(n) be a compact subgroup.

• Decompose the Lie algebra so(n) = g ⊕ m.

• Define Θ : Λ3(Rn) → R
n ⊗ m,

Θ(T3) :=
n∑

i=1

ei ⊗ prm(ei T3) .

Consider an oriented Riemannian manifold (Mn, g) and denote by F(Mn)
its frame bundle. A geometric structure is G-principal sub-bundle of the
frame bundle, R ⊂ F(Mn).

• The Levi-Civita connection Z : TF → so(n).
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• We split the restriction

Z|R = Z∗ ⊕ Γ : TR → g ⊕ m .

• Then Γ is a 1-form defined on the manifold Mn with values in m,
Γ ∈ R

n ⊗ m (intrinsic torsion).

The types of geometric structures R ⊂ F(Mn) correspond – via Γ – to
the irreducible components of the G-representation R

n ⊗ m.

Proposition: A geometric structure R ⊂ F(Mn) admits a connection
with totally skew symmetric torsion T if and only if Γ belongs to the
image of

Θ : Λ3(Mn) → T∗(Mn) ⊗ m .

Definition: A G-connection with totally skew symmetric torsion of a
geometric structure R ⊂ F(Mn) is called a characteristic connection.
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Torsion forms and special geometries

• Consider G2 ⊂ SO(7).

• Decompose so(7) = g2 ⊕ m7 = g2 ⊕ R
7.

• Then R
7 ⊗ m7 = R

1 ⊕ S0(R
7) ⊕ g2 ⊕ R

7.

• Consequence: Four basic classes of G2-structures.

• Λ3(R7) = R
1 ⊕ R

7 ⊕ S0(R
7).

Theorem: A 7-dimensional Riemannian manifold (M7, g, ω) with a
fixed G2-structure admits a characteristic connection if and only if
δg(ω) = − (β ω) . In this case, the connection is unique and its
torsion form is given by

T = − ∗ dω − 1

6
· (dω, ∗ω) · ω + ∗(β ∧ ω) .



12

• Consider Spin(7) ⊂ SO(8) = SO(∆7).

• Decompose so(8) = spin(7) ⊕ m7 = spin(7) ⊕ R
7.

• Then R
8⊗m7 = ∆7⊗R

7 splits into 2 irreducible components (Clifford
multiplication).

• Consequence: Two basic classes of Spin(7)-structures.

• Λ3(R8) = R
8 ⊗ m7.

Theorem: Any 8-dimensional Riemannian manifold equipped with a
Spin(7)-structure admits a unique characteristic connection.

A formula for the characteristic torsion is known.
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Theorem: An almost metric contact manifold (M2k+1, g, ξ, η, φ) admits
a connection ∇ with skew-symmetric torsion and preserving the structure
if and only if ξ is a Killing vector field and the tensor N(X,Y,Z) :=
g(N(X,Y ), Z) is totally skew-symmetric. In this case, the connection is
unique, and its torsion form is given by the formula

T = η ∧ dη + dφF + N − η ∧ ξ N .

Theorem: An almost complex manifold (M2k, g,J ) admits a connection
with skew-symmetric torsion if and only if the Nijenhuis tensor
N(X,Y,Z) := g

(
N(X,Y ), Z

)
is skew-symmetric. In this case,

the connection is unique, and its torsion form is given by the formula

T(X,Y, Z) = − dΩ(JX,J Y,JZ) + N(X,Y, Z) .

Folklore: Any reductive Riemannian manifold G/H admits a 1-parameter
family of invariant connections with skew-symmetric torsion.
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Geometric structures with parallel characteristic torsion

• Naturally reductive space (K/G,∇c,Tc):

∇cTc = 0 , ∇cRc = 0 .

A larger category:

(Mn, g,R,∇c) – Riemannian manifolds with a geometric structure
admitting a characteristic connection such that ∇cTc = 0.

• The condition ∇cTc = 0 implies the conservation law of string theory,
δ(Tc) = 0.

First example:

(M2k+1, g, η, ξ, ϕ) - Sasakian manifold. It admits a characteristic
connection and

Tc = η ∧ dη , ∇cTc = 0 .
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Second example:

Any nearly parallel G2-manifold (M7, g, ω3) satisfies this condition.

Theorem: (Matsumoto/Takamatsu/
Gray/Kirichenko, 1970 - 1978)

Any nearly Kähler manifold admits a characteristic connection with
∇cTc = 0.

• In dimension n = 6 this result implies:

1. Any nearly Kähler M6 is Einstein.

2. Any nearly Kähler M6 is spin.

3. The first Chern class c1(M
6) = 0 vanishes.

Problem: Describe all almost hermitian manifolds manifolds (n = 6)
or G2-manifolds (n = 7) admitting a characteristic connection ∇c such
that ∇cTc = 0.
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Metric connections with parallel torsion

• T – a 3-form on a Riemannian manifold (Mn, g).

• The connection ∇ :

∇XY := ∇g
XY +

1

2
T(X, Y, ∗)

• ∇T = 0 implies δ(T) = 0 and

dT =
n∑

i=1

(ei T) ∧ (ei T) .

• If Ψ is a ∇-parallel spinor field, then

2 Ric∇(X) · Ψ =
(
X dT

)
· Ψ .
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∇Ric∇ = 0 , div
(
Ric∇

)
= 0 .

T2 · Ψ =
1

4
(2 Scalg + ||T||2) · Ψ .

• Solutions of the equations for the common sector of type II superstring
theory,

∇Ψ = 0 , T · Ψ = a · Ψ , δ(T) = 0 , ∇Ric∇ = 0

•
(D

1/3

T
)2 = ∆T +

1

4
Scalg +

1

8
||T||2 − 1

4
T2 .

In particular, the endomorphism T commutes with the square of the

Dirac operator (D
1/3

T
)2.

• Eigenvalue estimates for (D
1/3

T
)2 – see I. Agricola at el 2008-2012.
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Results and Examples:

• n = 6 : B. Alexandrov, Th. Friedrich, N. Schoemann, J. Geom. Phys.
53 (2005), 1-30 and J. Geom. Phys. 57 (2007), 2187-2212.

• n = 7 : Th. Friedrich, Diff. Geom. Appl. 25 (2007), 632-648.

• n = 8 : C. Puhle, Comm. Math. Phys. 291 (2009), 303-320.
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Cocalibrated G2-manifolds

Definition: A G2-manifold (M7, g, ϕ) is called cocalibrated if the 3-form
ϕ satisfies the differential equation

d ∗ ϕ = 0.

• There exists a unique connection ∇c preserving the G2-structure
with totally skew-symmetric torsion, the characteristic connection
(Friedrich/Ivanov 2002),

Tc =
1

6
(dϕ , ∗ϕ) · ϕ − ∗ dϕ.

• There exists at least one ∇c-parallel spinor field Ψ.

• If ∇cTc = 0, Tc 6= 0 and if (M7, g, ϕ) is not nearly parallel (dϕ = ∗ϕ),
then the holonomy algebra hol(∇c) ⊂ g2 is a proper subalgebra.
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Result: Classification of cocalibrated G2-manifolds with parallel
characteristic torsion and non-abelian holonomy hol(∇c) 6= g2.

Method: There are 8 non-abelian subalgebra of g2 (Dynkin 1952). We
compute explicitely the family of admissible torsion forms for any of these
algebras. Then we study the corresponding geometry using the formulas
for the torsion forms.
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The non-abelian subalgebras of g2

• g2 ⊂ so(7) is the subalgebra preserving one spinor.

• su(3) ⊂ g2 is the subalgebra preserving two spinors.

• u(2) ⊂ su(3) ⊂ g2 . Two spinors are preserved.

• su(2) ⊂ g2 is the subalgebra preserving four spinors.

• su(2)c ⊂ g2 - the centralizer of the subalgebra su(2) ⊂ g2.

• R1 ⊕ su(2)c ⊂ g2. One spinor is preserved.

• su(2) ⊕ su(2)c ⊂ g2 . One spinor is preserved.

• so(3) ⊂ su(3) ⊂ g2. Two spinors are preserved.



22

• so(3)ir ⊂ g2 , the irreducible 7-dimensional representation of so(3).
One spinor is preserved.

G2-manifolds with parallel torsion and hol(∇c) = soir(3)

Theorem: A complete, simply-connected and cocalibrated G2-manifold
with parallel characteristic torsion and hol(∇c) = soir(3) is isometric to
the nearly parallel G2-manifold SO(5)/SOir(3).
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G2-manifolds with parallel torsion and hol(∇c) = suc(2)

Theorem: There exists a unique simply-connected, complete,
cocalibrated G2-manifold with

∇cTc = 0, hol(∇c) = suc(2).

The manifold is homogeneous naturally reductive.

Remark:
M7 = G/SUc(2) is a homogeneous space with an 10-dimensional
automorphism group G. Its Lie algebra g contains a 7-dimensional
nilpotent radical r and g/r = suc(2) is isomorphic to the holonomy
algebra.

Theorem: All simply-connected, complete, cocalibrated G2-manifolds
with parallel characteristic torsion and holonomy R1⊕suc(2) are naturally
reductive. Up to a scaling, the family depends on one parameter.
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G2-manifolds with parallel torsion and hol(∇c) = so(3)

• A cocalibrated G2-manifold with characteristic holonomy hol(∇c) =
so(3) admits two ∇c-parallel spinor fields Ψ1,Ψ2. The torsion form
Tc may act on it by the same eigenvalue or by opposite eigenvalues.
Consequently, we have to discuss two cases.

Theorem: A simply-connected, complete, cocalibrated G2-manifold
with characteristic holonomy hol(∇c) = so(3) such that Tc acts with
the same eigenvalue on the parallel spinors is isometric to the Stiefel
manifold SO(5)/SO(3). The metric is a Riemannian submersion over
the Grassmanian manifold G5,2.

Theorem: A simply-connected, complete, cocalibrated G2-manifold with
characteristic holonomy hol(∇c) = so(3) such that Tc acts with opposite
eigenvalues on the parallel spinors splits into the Riemannian product
Y 6×R

1, where Y 6 is an almost Hermitian manifold of Gray-Hervella-type
W1 ⊕W3 with characteristic holonomy so(3) ⊂ su(3).
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G2-manifolds with parallel torsion and hol(∇c) = su(3)

Theorem: Any cocalibrated G2-manifold such that the characteristic
torsion acts on both ∇c-parallel spinors by the same eigenvalue and

∇cTc = 0 , Tc 6= 0 , hol(∇c) = su(3)

holds is homothetic to an η-Einstein Sasakian manifold. Its Ricci tensor
is given by the formula

Ricg = 10 · g − 4 · e7 ⊗ e7 .

Conversely, a simply-connected η-Einstein Sasakian manifold with Ricci
tensor Ricg = 10 ·g − 4 · e7⊗e7 admits a cocalibrated G2-structure with
parallel characteristic torsion and characteristic holonomy contained in
su(3).
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Theorem: A complete, simply-connected cocalibrated G2-manifold such
that the characteristic torsion acts on ∇c-parallel spinors by opposite
eigenvalues and

∇cTc = 0, Tc 6= 0, hol(∇c) = su(3)

holds is isometric the the product of a nearly Kähler 6-manifold by R.
Conversely, any such product admits a cocalibrated G2-structure with
parallel torsion and holonomy contained in su(3).
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G2-manifolds with parallel torsion and hol(∇c) = u(2)

Theorem: Let (M7, g, ϕ) be a complete, cocalibrated G2-manifold such
that

∇cTc = 0, hol(∇c) = u(2)

and suppose that Tc acts with opposite eigenvalues ±7 c 6= 0 on the
∇c-parallel spinors Ψ1 , Ψ2. Moreover, suppose that M7 is regular.
Then M7 is a principal S1-bundle and a Riemannian submersion over
the projective space CP3 or the flag manifold F(1, 2) equipped with their
standard nearly Kähler structure coming from the twistor construction.
The Chern class of the fibration π : M7 −→ CP3 , F(1, 2) is proportional
to the Kähler form. Conversely, any of these fibrations admits a G2-
structure with parallel characteristic torsion and characteristic holonomy
contained in u(2).
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Theorem: Let (M7, g, ϕ) be a complete, cocalibrated G2-manifold such
that

∇cTc = 0, hol(∇c) = u(2)

and suppose that Tc acts with eigenvalue − 7 c 6= 0 on the ∇c-parallel
spinors Ψ1,Ψ2. Moreover, suppose that M7 is regular. Then M7 is a
principal S1-bundle and a Riemannian submersion over a Kähler manifold
X̃6. This manifold has the following properties:

1. The universal covering of X̃6 splits into a 4-dimensional Kähler-
Einstein manifold and a 2-dimensional surface with constant curvature.

2. The scalar curvature S̃ = S̃1 + S̃2 > 0 is positive.

3. The Kähler forms Ω̃1 and Ω̃2 are globally defined on X̃6.

The bundle π : M7 −→ X̃6 is defined by a connection form. Its
curvature is proportional to the Ricci form of X̃6. Finally, the flat
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bundle Λ3
2(X̃

6)⊗Gk admits a parallel section. Conversely, any S1-bundle
resulting from this construction admits a cocalibrated G2-structure such
that the characteristic torsion is parallel and the characteristic holonomy
is contained in u(2).

Example: Let Ỹ1 be a simply-connected Kähler-Einstein manifold with
negative scalar curvature S̃1 = −1, for example a hypersurface of degree
d ≥ 5 in CP3. For the second factor we choose the round sphere
normalized by the condition S̃2 = +2. Then the product X̃6 = Ỹ1 × Ỹ2

is simply-connected and the S1-bundle defined by the Ricci form admits
a cocalibrated G2-structure with parallel torsion. Since the product
X̃6 = Ỹ1 × Ỹ2 is simply-connected, the flat bundle Λ3

2(X̃
6) ⊗ G1 admits

a parallel section σ.
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Theorem: Let (M7, g, ϕ) be a complete G2-manifold of pure type W3

such that
∇cTc = 0, Tc 6= 0, hol(∇c) = u(2).

Moreover, suppose that M7 is regular. Then M7 is a principal S1-bundle
and a Riemannian submersion over a Ricci-flat Kähler manifold X̃6. This
manifold has the following properties:

1. The universal covering of X̃6 splits into a 4-dimensional Ricci-flat
Kähler manifold and the 2-dimensional flat space R

2.

2. The Kähler forms Ω̃1 and Ω̃2 are globally defined on X̃6.

3. There exists a parallel form Σ ∈ Λ3
2(X̃

6).

The bundle π : M7 −→ X̃6 is defined by a connection form. Its curvature
is proportional to the form

Ω̃1 − 2 Ω̃2.
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Conversely, any S1-bundle resulting from this construction admits a G2-
structure of pure type W3 such that the characteristic torsion is parallel
and the characteristic holonomy is contained in u(2).

Example: Consider a K3-surface and denote by Ω̃1 its Kähler form.
Then there exist two parallel forms η1, η2 in Λ2

+(K3) being orthogonal

to Ω̃1. Let e5 and e6 be a parallel frame on the torus T 2. The product
X̃6 = K3 × T 2 satisfies the conditions of the latter Theorem. Indeed,
we can construct the following parallel form

Σ = η1 ∧ e5 + η2 ∧ e6.

Moreover, the cohomology class of Ω̃1−2Ω̃2 has to be proportional to an
integral class. This implies the condition that Ω̃1/vol(T 2) ∈ H2(K3; Q)
is a rational cohomology class.
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G2-manifolds with parallel torsion and
hol(∇c) = su(2) ⊕ suc(2)

Example: Starting with a 3-Sasakian manifold and rescaling its metric
along the three-dimensional bundle spanned by e5, e6, e7, one obtains a
family (M7, gs, ϕs) of cocalibrated G2-manifold such that

d ∗s ϕs = 0, Tc
s =

[
2

s
− 10

]

e∗567 + 2sϕs, ∇cTc
s = 0.

The characteristic connection preserves the splitting of the tangent
bundle and, consequently, its holonomy is hol(∇c) = su(2) ⊕ suc(2). If
s = 1/

√
5, the structure is nearly parallel (type W1). Since (Tc

s, ϕs) =
4s + 2/s > 0, these structures are never of pure type W3.
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Remark: A G2-structure with characteristic holonomy su(2)⊕suc(2) has
not to be naturally reductive. However, the naturally reductive structures
are classified.

Theorem: Up to scaling there exists a one-parameter family of naturally
reductive homogeneous G2-manifolds with hol(∇c) = su(2) ⊕ suc(2).
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The general case:

• We do not know the complete classification.

• Some necessary conditions can be derived.

Theorem: M7 admits a 3-dimensional foliation. The leaves are totally
geoedesic and have constant, non-negative sectional curvature. If the
space of leaves is smooth, then it is an Einstein space.

Final Remark: Any nearly parallel G2-manifold different from
SO(5)/SOir(3) and N(1, 1) = (SU(3) × SU(2))/(S1 × SU(2)) has
characteristic holonomy su(2) ⊕ suc(2) or g2.

Even the classification of all nearly parallel G2-manifolds with
characteristic holonomy su(2) ⊕ suc(2) seems to be not known.


