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March, 2012

Jerzy Kaczorowski On the Selberg class of L-functions



L-functions
The Selberg class.

The general converse conjecture.
The present state of art (GCC)

What is an L-function?

Jerzy Kaczorowski On the Selberg class of L-functions



L-functions
The Selberg class.

The general converse conjecture.
The present state of art (GCC)

What is an L-function?

“We know one when we see one.”

Jerzy Kaczorowski On the Selberg class of L-functions



L-functions
The Selberg class.

The general converse conjecture.
The present state of art (GCC)

What is an L-function?

“We know one when we see one.”

Dirichlet series, Euler product, functional equation...

Jerzy Kaczorowski On the Selberg class of L-functions



L-functions
The Selberg class.

The general converse conjecture.
The present state of art (GCC)

What is an L-function?

“We know one when we see one.”

Dirichlet series, Euler product, functional equation...

Do we know all interesting L-functions?

Jerzy Kaczorowski On the Selberg class of L-functions



L-functions
The Selberg class.

The general converse conjecture.
The present state of art (GCC)

What is an L-function?

“We know one when we see one.”

Dirichlet series, Euler product, functional equation...

Do we know all interesting L-functions?

We don’t know.

Jerzy Kaczorowski On the Selberg class of L-functions



L-functions
The Selberg class.

The general converse conjecture.
The present state of art (GCC)

What is an L-function?

“We know one when we see one.”

Dirichlet series, Euler product, functional equation...

Do we know all interesting L-functions?

We don’t know.

Automorphic L-functions?
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Definition of S (Selberg, 1989)

F ∈ S if F (s) =
∑∞

n=1
a(n)
ns where

1. the Dirichlet series converges absolutely for σ > 1.

2. (Analytic continuation) There exists an integer
m ≥ 0 such that (s − 1)mF (s) is entire of finite order.
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Definition of S (Selberg, 1989)

F ∈ S if F (s) =
∑∞

n=1
a(n)
ns where

1. the Dirichlet series converges absolutely for σ > 1.

2. (Analytic continuation) There exists an integer
m ≥ 0 such that (s − 1)mF (s) is entire of finite order.

3. (Functional equation)

Φ(s) = ωΦ(1− s),

where

Φ(s) = Qs
∏r

j=1 Γ(λjs + µj)F (s) = γ(s)F (s), and
r ≥ 0, Q > 0, λj > 0, <µj ≥ 0, |ω| = 1.
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Definition of S , continuation

4. (Ramanujan hypothesis) For every ε > 0 we have
a(n)� nε.

5. (Euler product) For σ > 1 we have

log F (s) =
∑
n

b(n)n−s ,

where b(n) = 0 unless n = pm and b(n)� nθ for
some θ < 1/2.
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1. Remark: r = 0 is possible — the functional equation
takes form

QsF (s) = ωQ1−sF (1− s).

2. The extended Selberg class S# consists of F (s) not
identically zero satisfying axioms (1), (2) and (3).

3. γ(s) = Qs
∏r

j=1 Γ(λjs + µj) — the gamma factor of

F ∈ S ].
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EXAMPLES

1. The Riemann zeta function ζ(s)

2. Shifted Dirichlet L-functions L(s + iθ, χ), where χ is
a primitive Dirichlet character (modq), q > 1, and θ
is a real number

3. ζK (s), Dedekind zeta function of an algebraic
number field K

4. LK (s, χ), Hecke L-function to a primitive Hecke
character χ(modf), f is an ideal of the ring of
integers of K
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EXAMPLES, continuation

5. L-function associated with a holomorphic newform of
a congruence subgroup of SL2(Z) (after suitable
normalization)

6. Rankin-Selberg convolution of any two normalized
holomorphic newforms.

7. F ,G ∈ S implies FG ∈ S (the same for S#)

8. If F ∈ S is entire then the shift Fθ(s) = F (s + iθ) is
in S for every real θ

Jerzy Kaczorowski On the Selberg class of L-functions



L-functions
The Selberg class.

The general converse conjecture.
The present state of art (GCC)

Definition.
Examples.
Motivations

Conditional examples

1. Artin L-functions for irreducible representations of
Galois groups (modulo Artin’s conjecture:
holomorphy is missing).

2. L-functions associated with nonholomorphic
newforms (Ramanujan hypothesis is missing,
exceptional eigenvalue problem).
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Conditional examples, continuation

3. Symmetric powers (for normalized holomorphic
newforms, say):

L(s) =
∏
p

(
1− ap

ps

)−1(
1− bp

ps

)−1

r -th symmetric power:

Lr (s) =
∏
p

r∏
j=0

(1− ajpb
r−j
p p−s)−1

(modulo Langlands functoriality conjecture).

4. In general: GLn(K ) automorphic L functions
(Ramanujan hypothesis is missing).
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Examples, continuation

General examples of L-functions from the extended
Selberg class: linear combinations of solutions of the
same functional equation as for instance the
Davenport-Heilbronn L-function.

L(s) = λL(s, χ1) + λL(s, χ1),

χ1(mod5) such that χ1(2) = i ,

λ = 1
2

(
1 + i

√
10−2

√
5−2√

5−1

)
.

Functional equation(π
5

) s
2

Γ

(
s + 1

2

)
L(s) =

(π
5

) 1−s
2

Γ

(
2− s

2

)
L(1−s).
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MERTENS:
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p ∼ log log x
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EXAMPLE 1: General prime number theorem.

MERTENS:
∑

p≤x
1
p ∼ log log x

PNT: π(x) ∼ x
log x

Jerzy Kaczorowski On the Selberg class of L-functions



L-functions
The Selberg class.

The general converse conjecture.
The present state of art (GCC)

Definition.
Examples.
Motivations

MOTIVATIONS

EXAMPLE 1: General prime number theorem.

MERTENS:
∑

p≤x
1
p ∼ log log x

PNT: π(x) ∼ x
log x

? There is no simple way to deduce PNT from
Mertens’ Theorem.
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MOTIVATIONS

NC: if F ∈ S has degree dF > 0 then∑
p≤x

|a(p)|2

p
∼ nF log log x x →∞

with some constant nF > 0, and nF ≤ 1 if F (s) is
primitive.
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NC: if F ∈ S has degree dF > 0 then∑
p≤x

|a(p)|2

p
∼ nF log log x x →∞

with some constant nF > 0, and nF ≤ 1 if F (s) is
primitive.

? MERTENS =⇒ NC is true for F = ζ.
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MOTIVATIONS

NC: if F ∈ S has degree dF > 0 then∑
p≤x

|a(p)|2

p
∼ nF log log x x →∞

with some constant nF > 0, and nF ≤ 1 if F (s) is
primitive.

? MERTENS =⇒ NC is true for F = ζ.

?? THEOREM: NC =⇒ PNT for S
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EXAMPLE 2: Impact on concrete L-function.

Non-Vanishing Conjecture: For every entire L-function G
belonging to the Selberg class we have G (1) 6= 0.
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EXAMPLE 2: Impact on concrete L-function.

Non-Vanishing Conjecture: For every entire L-function G
belonging to the Selberg class we have G (1) 6= 0.

THEOREM Suppose NVC. Then for every entire F ∈ S , every
algebraic number field K , and every positive N there
exists a non-trivial zero ρ of the Dedekind zeta
function ζK (s) of K such that m(ρ, ζK ) > Nm(ρ,F ).
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COROLLARY Assume NVC, and let for a fixed algebraic number
field K with the class number hK > 1,

EK (x) =
∑

N(aOK )≤x

1− 1

2πi

∫
C
ζK (s,MK )

x s

s
ds

denote the remainder term in the asymptotic formula
for the number of irreducible elements of OK with
norms ≤ x counted modulo units. Then

EK (x) = Ω

(√
x

(log log x)DK−1

log x

)
as x →∞.
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REMARK Unconditionally we know only

EK (x) = Ω(
√
x(log x)−BK ),

where BK is a positive constant depending on K .

Jerzy Kaczorowski On the Selberg class of L-functions



L-functions
The Selberg class.

The general converse conjecture.
The present state of art (GCC)

Invariants
Formulation.
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Invariants

Theorem: For F ∈ S ] the gamma factor

γF (s) = Qs
r∏

j=1

Γ(λjs + µj)

is unique up to a multiplicative constant.
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Invariants

Theorem: For F ∈ S ] the gamma factor

γF (s) = Qs
r∏

j=1

Γ(λjs + µj)

is unique up to a multiplicative constant.

Remark: The shape of functional equation is NOT unique.
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Invariants
Formulation.
The case of generalized Dirichlet series.
A measure theoretic approach.

Invariants

Theorem: For F ∈ S ] the gamma factor

γF (s) = Qs
r∏

j=1

Γ(λjs + µj)

is unique up to a multiplicative constant.

Remark: The shape of functional equation is NOT unique.

Main invariants: 1. degree: dF := 2
∑r

j=1 λj
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Invariants
Formulation.
The case of generalized Dirichlet series.
A measure theoretic approach.

Invariants

Theorem: For F ∈ S ] the gamma factor

γF (s) = Qs
r∏

j=1

Γ(λjs + µj)

is unique up to a multiplicative constant.

Remark: The shape of functional equation is NOT unique.

Main invariants: 1. degree: dF := 2
∑r

j=1 λj

2. conductor: qF := (2π)dFQ2
∏r

j=1 λ
2λj
j
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Invariants
Formulation.
The case of generalized Dirichlet series.
A measure theoretic approach.

The general converse conjecture

For d ≥ 0 let

Sd := {F ∈ S : dF = d}

S ]d := {F ∈ S ] : dF = d}
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Invariants
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The case of generalized Dirichlet series.
A measure theoretic approach.

The general converse conjecture

For d ≥ 0 let

Sd := {F ∈ S : dF = d}

S ]d := {F ∈ S ] : dF = d}

General Converse Conjecture (GCC):
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Invariants
Formulation.
The case of generalized Dirichlet series.
A measure theoretic approach.

The general converse conjecture

For d ≥ 0 let

Sd := {F ∈ S : dF = d}

S ]d := {F ∈ S ] : dF = d}

General Converse Conjecture:

1. DEGREE CONJECTURE:
d 6∈ N ∪ {0} =⇒ S#

d = Sd = ∅.
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The case of generalized Dirichlet series.
A measure theoretic approach.

The general converse conjecture

For d ≥ 0 let

Sd := {F ∈ S : dF = d}

S ]d := {F ∈ S ] : dF = d}

General Converse Conjecture:

1. DEGREE CONJECTURE:
d 6∈ N ∪ {0} =⇒ S#

d = Sd = ∅.
2. d ∈ N ∪ {0}, F ∈ Sd =⇒

F − automorphic L− function.
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Invariants
Formulation.
The case of generalized Dirichlet series.
A measure theoretic approach.

THEOREM Let Q > 0, λj > 0, µj ∈ C, <(µj) ≥ 0, (j=1,. . . ,r),
and ω ∈ C, |ω| = 1 be arbitrary. Moreover, put

γ(s) = Qs
r∏

j=1

Γ(λjs + µj).

Then the functional equation

γ(s)F (s) = ωγ(1− s)F (s)

has uncountably many linearly independent solutions
in the set of generalized Dirichlet series

∞∑
n=1

a(n)e−θns (θn > 0).
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Invariants
Formulation.
The case of generalized Dirichlet series.
A measure theoretic approach.

THEOREM Let Q > 0, λj > 0, µj ∈ C, <(µj) ≥ 0, (j=1,. . . ,r),
and ω ∈ C, |ω| = 1 be arbitrary. Moreover, put

γ(s) = Qs
r∏

j=1

Γ(λjs + µj).

Then the functional equation

γ(s)F (s) = ωγ(1− s)F (s)

has uncountably many linearly independent solutions
in the set of generalized Dirichlet series

∞∑
n=1

a(n)e−θns (θn > 0).

Corollary GCC badly fails in case of the general D-series.
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A measure theoretic approach to the degree conjecture
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Invariants
Formulation.
The case of generalized Dirichlet series.
A measure theoretic approach.

A measure theoretic approach to the degree conjecture

THEOREM The sets of degrees of L-functions from S and S ]

d(S) = {dF : F ∈ S}

d(S ]) = {dF : F ∈ S ]}

are Lebesgue measurable. Moreover, meas(d(S)) = 0
or the set d(S) contains a half-line. The same holds
for d(S ]).
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Invariants
Formulation.
The case of generalized Dirichlet series.
A measure theoretic approach.

A measure theoretic approach to the conductor conjecture

CC: F ∈ S =⇒ qF ∈ N

Jerzy Kaczorowski On the Selberg class of L-functions



L-functions
The Selberg class.

The general converse conjecture.
The present state of art (GCC)

Invariants
Formulation.
The case of generalized Dirichlet series.
A measure theoretic approach.

A measure theoretic approach to the conductor conjecture

CC: F ∈ S =⇒ qF ∈ N
THEOREM The set

q(S) = {qF : F ∈ S}

has Lebesgue measure 0 or contains a half-line. The
same holds for q(S ]).
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The present state of art (GCC)

1. GCC TRUE for 0 ≤ d < 2
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The present state of art (GCC)

1. GCC TRUE for 0 ≤ d < 2

2. UNKNOWN for d ≥ 2.
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The present state of art (GCC)

THEOREM 1 S ] = ∅ if 0 < d < 1

Many authors including Richert, Bochner,
Conrey-Ghosh, Molteni, J.K.&A.P ...
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The present state of art (GCC)

THEOREM 2 F ∈ S , dF = 1 =⇒ F (s) = L(s + iθ, χ)

(χ primitive)

J.K.& A.P. Acta Mathematica 182 (1999), no. 2,
207–241
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The present state of art (GCC)

Main tool in the proof: the standard non-linear twist

F ∈ S#
d , d > 0, α > 0, σ > 1

Fd(s, α) =
∞∑
n=1

a(n)

ns
e(−n1/dα).

(e(θ) := exp(2πiθ))
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The present state of art (GCC)

THEOREM 3 S ] = ∅ if 1 < d < 2

J.K.& A.P. Ann. of Math. (2) 173 (2011), no. 3,
1397–1441
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The present state of art (GCC)

Main tool in the proof: multidimensional twists

∞∑
n=1

aF (n)

ns
exp(−2πi

N∑
ν=0

ανn
κν )

κ0 > κ1 > . . . > κN

α1, . . . , αN ∈ R, α1 > 0
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Next step d = 2
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The general converse conjecture.
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Next step d = 2

Big challenge!
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Th(a, n) = k(s)!
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