On the Selberg class of L-functions

Jerzy Kaczorowski

Adam Mickiewicz University, Poznań, Poland

March, 2012

▲ 同 ▶ ▲ 目

What is an *L*-function?

*ロ * * @ * * 注 * * 注 *

What is an *L*-function?

"We know one when we see one."

э

(日) (同) (三) (三)

What is an *L*-function?

"We know one when we see one."

Dirichlet series, Euler product, functional equation...

< 4 ₽ > < 3

What is an L-function?

"We know one when we see one." Dirichlet series, Euler product, functional equation... Do we know all interesting *L*-functions?

< 67 ▶

What is an *L*-function?

"We know one when we see one."

Dirichlet series, Euler product, functional equation...

Do we know all interesting *L*-functions?

We don't know.

< A >

What is an *L*-function?

"We know one when we see one."

Dirichlet series, Euler product, functional equation...

Do we know all interesting *L*-functions?

We don't know.

Automorphic L-functions?

< 67 ▶

Definition. Examples. Motivations

Definition of S (Selberg, 1989)

Jerzy Kaczorowski On the Selberg class of L-functions

(a)

Definition. Examples. Motivations

Definition of S (Selberg, 1989)

$$F \in S$$
 if $F(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s}$

Jerzy Kaczorowski On the Selberg class of L-functions

(a)

Definition. Examples. Motivations

Definition of S (Selberg, 1989)

$$F \in S$$
 if $F(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s}$ where

1. the Dirichlet series converges absolutely for $\sigma > 1$.

(日) (同) (三) (三)

Definition. Examples. Motivations

Definition of S (Selberg, 1989)

$$F \in S$$
 if $F(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s}$ where

- 1. the Dirichlet series converges absolutely for $\sigma > 1$.
- (Analytic continuation) There exists an integer
 m ≥ 0 such that (s − 1)^mF(s) is entire of finite order.

(日) (同) (三) (三)

Definition of S (Selberg, 1989)

$$F \in S$$
 if $F(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s}$ where

- 1. the Dirichlet series converges absolutely for $\sigma > 1$.
- (Analytic continuation) There exists an integer
 m ≥ 0 such that (s − 1)^mF(s) is entire of finite order.
- 3. (Functional equation)

$$\Phi(s) = \omega \overline{\Phi(1-\overline{s})},$$

where

$$\Phi(s) = Q^s \prod_{j=1}^r \Gamma(\lambda_j s + \mu_j) F(s) = \gamma(s) F(s), \text{ and}$$

 $r \ge 0, \ Q > 0, \ \lambda_j > 0, \ \Re \mu_j \ge 0, \ |\omega| = 1.$

・ロト ・同ト ・ヨト ・ヨト

Definition of S, continuation

- (Ramanujan hypothesis) For every ε > 0 we have a(n) ≪ n^ε.
- 5. (*Euler product*) For $\sigma > 1$ we have

$$\log F(s) = \sum_n b(n) n^{-s},$$

where b(n) = 0 unless $n = p^m$ and $b(n) \ll n^{\theta}$ for some $\theta < 1/2$.

(日) (同) (三) (三)

Definition. Examples. Motivations

1. Remark: r = 0 is possible — the functional equation takes form

$$Q^{s}F(s) = \omega Q^{1-s}\overline{F}(1-s).$$

- The extended Selberg class S[#] consists of F(s) not identically zero satisfying axioms (1), (2) and (3).
- 3. $\gamma(s) = Q^s \prod_{j=1}^r \Gamma(\lambda_j s + \mu_j)$ the gamma factor of $F \in S^{\sharp}$.

イロト イポト イヨト イヨト

Definition. Examples. Motivations

EXAMPLES

1. The Riemann zeta function $\zeta(s)$

Jerzy Kaczorowski On the Selberg class of L-functions

*ロ * * @ * * 注 * * 注 *

Definition. Examples. Motivations

EXAMPLES

- 1. The Riemann zeta function $\zeta(s)$
- 2. Shifted Dirichlet *L*-functions $L(s + i\theta, \chi)$, where χ is a primitive Dirichlet character (mod *q*), *q* > 1, and θ is a real number

< □ > < 同 > < 回 >

Definition. Examples. Motivations

EXAMPLES

- 1. The Riemann zeta function $\zeta(s)$
- 2. Shifted Dirichlet *L*-functions $L(s + i\theta, \chi)$, where χ is a primitive Dirichlet character (mod *q*), *q* > 1, and θ is a real number
- ζ_K(s), Dedekind zeta function of an algebraic number field K

<ロト < 同ト < 三ト

Definition. Examples. Motivations

EXAMPLES

- 1. The Riemann zeta function $\zeta(s)$
- 2. Shifted Dirichlet *L*-functions $L(s + i\theta, \chi)$, where χ is a primitive Dirichlet character (mod *q*), *q* > 1, and θ is a real number
- ζ_K(s), Dedekind zeta function of an algebraic number field K
- L_K(s, χ), Hecke L-function to a primitive Hecke character χ(mod f), f is an ideal of the ring of integers of K

・ロト ・同ト ・ヨト ・ヨト

EXAMPLES, continuation

- 5. L-function associated with a holomorphic newform of a congruence subgroup of $SL_2(\mathbb{Z})$ (after suitable normalization)
- 6. Rankin-Selberg convolution of any two normalized holomorphic newforms.
- 7. $F, G \in S$ implies $FG \in S$ (the same for $S^{\#}$)
- 8. If $F \in S$ is entire then the shift $F_{\theta}(s) = F(s + i\theta)$ is in S for every real θ

Definition. Examples. Motivations

Conditional examples

- 1. Artin *L*-functions for irreducible representations of Galois groups (modulo Artin's conjecture: holomorphy is missing).
- 2. *L*-functions associated with nonholomorphic newforms (Ramanujan hypothesis is missing, exceptional eigenvalue problem).

Image: A image: A

Definition. Examples. Motivations

Conditional examples, continuation

3. Symmetric powers (for normalized holomorphic newforms, say):

$$L(s) = \prod_{p} \left(1 - \frac{a_p}{p^s}\right)^{-1} \left(1 - \frac{b_p}{p^s}\right)^{-1}$$

r-th symmetric power:

$$L_r(s) = \prod_p \prod_{j=0}^r (1 - a_p^j b_p^{r-j} p^{-s})^{-1}$$

(modulo Langlands functoriality conjecture).

4. In general: $GL_n(K)$ automorphic L functions (Ramanujan hypothesis is missing).

< E

< 台

Examples, continuation

General examples of L-functions from the extended Selberg class: linear combinations of solutions of the same functional equation as for instance the Davenport-Heilbronn L-function.

$$L(s) = \overline{\lambda}L(s,\chi_1) + \lambda L(s,\overline{\chi}_1),$$

 $\chi_1 \pmod{5}$ such that $\chi_1(2) = i,$
 $\lambda = \frac{1}{2} \left(1 + i \frac{\sqrt{10 - 2\sqrt{5}} - 2}{\sqrt{5} - 1} \right).$

Functional equation

$$\left(\frac{\pi}{5}\right)^{\frac{s}{2}} \Gamma\left(\frac{s+1}{2}\right) L(s) = \left(\frac{\pi}{5}\right)^{\frac{1-s}{2}} \Gamma\left(\frac{2-s}{2}\right) L(1-s).$$

A (1) > A (2) > A

Definition. Examples. Motivations

MOTIVATIONS

Jerzy Kaczorowski On the Selberg class of L-functions

Definition. Examples. Motivations

MOTIVATIONS

Why we are interested in studying S?

Jerzy Kaczorowski On the Selberg class of L-functions

イロト イポト イヨト イヨト

Definition. Examples. Motivations

MOTIVATIONS

Why we are interested in studying S?

1. Elements are very interesting objects

< □ > < 同 > < 回 >

Definition. Examples. Motivations

MOTIVATIONS

Why we are interested in studying S?

1. Elements are very interesting objects (eg. classical analytic number theory)

(日) (同) (三) (三)

Definition. Examples. Motivations

MOTIVATIONS

Why we are interested in studying S?

- 1. Elements are very interesting objects (eg. classical analytic number theory)
- 2. Considering the whole class of *L*-functions is important

< □ > < 同 > < 回 >

< ∃ →

Definition. Examples. Motivations

MOTIVATIONS

Why we are interested in studying S?

- 1. Elements are very interesting objects (eg. classical analytic number theory)
- 2. Considering the whole class of *L*-functions is important

< □ > < 同 > < 回 >

- ₹ 🖬 🕨

Definition. Examples. Motivations

MOTIVATIONS

EXAMPLE 1: General prime number theorem.

(a)

Definition. Examples. Motivations

MOTIVATIONS

EXAMPLE 1: General prime number theorem. MERTENS: $\sum_{p \le x} \frac{1}{p} \sim \log \log x$

(日) (同) (三) (三)

3

Definition. Examples. Motivations

MOTIVATIONS

EXAMPLE 1: General prime number theorem. MERTENS: $\sum_{p \le x} \frac{1}{p} \sim \log \log x$ PNT: $\pi(x) \sim \frac{x}{\log x}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

Definition. Examples. Motivations

MOTIVATIONS

EXAMPLE 1: General prime number theorem.

MERTENS:
$$\sum_{p \le x} \frac{1}{p} \sim \log \log x$$

PNT: $\pi(x) \sim \frac{x}{\log x}$

★ There is no simple way to deduce PNT from Mertens' Theorem.

(日) (同) (三) (三)

Definition. Examples. Motivations

MOTIVATIONS

NC: if $F \in S$ has degree $d_F > 0$ then

$$\sum_{p \le x} \frac{|a(p)|^2}{p} \sim n_F \log \log x \qquad \qquad x \to \infty$$

with some constant $n_F > 0$, and $n_F \le 1$ if F(s) is primitive.

Definition. Examples. Motivations

MOTIVATIONS

NC: if $F \in S$ has degree $d_F > 0$ then

$$\sum_{p \le x} \frac{|a(p)|^2}{p} \sim n_F \log \log x \qquad \qquad x \to \infty$$

with some constant $n_F > 0$, and $n_F \le 1$ if F(s) is primitive.

* MERTENS \implies NC is true for $F = \zeta$.

Definition. Examples. Motivations

MOTIVATIONS

NC: if $F \in S$ has degree $d_F > 0$ then

$$\sum_{p \le x} \frac{|a(p)|^2}{p} \sim n_F \log \log x \qquad \qquad x \to \infty$$

with some constant $n_F > 0$, and $n_F \le 1$ if F(s) is primitive.

* MERTENS \implies NC is true for $F = \zeta$.

****** THEOREM: NC \implies PNT for S

(日) (同) (三) (三)

Definition. Examples. Motivations

MOTIVATIONS

EXAMPLE 2:

Jerzy Kaczorowski On the Selberg class of L-functions

Definition. Examples. Motivations

MOTIVATIONS

EXAMPLE 2: Impact on concrete *L*-function.

Jerzy Kaczorowski On the Selberg class of L-functions

æ

Definition. Examples. Motivations

MOTIVATIONS

EXAMPLE 2: Impact on concrete L-function. Non-Vanishing Conjecture: For every entire L-function G belonging to the Selberg class we have $G(1) \neq 0$.

(日) (同) (三) (三)

Definition. Examples. Motivations

MOTIVATIONS

EXAMPLE 2: Impact on concrete *L*-function.

Non-Vanishing Conjecture: For every entire L-function G belonging to the Selberg class we have $G(1) \neq 0$.

THEOREM Suppose NVC. Then for every entire $F \in S$, every algebraic number field K, and every positive N there exists a non-trivial zero ρ of the Dedekind zeta function $\zeta_K(s)$ of K such that $m(\rho, \zeta_K) > Nm(\rho, F)$.

Image: A = A

Definition. Examples. Motivations

MOTIVATIONS

COROLLARY Assume NVC, and let for a fixed algebraic number field K with the class number $h_K > 1$,

$$E_{\mathcal{K}}(x) = \sum_{N(a\mathcal{O}_{\mathcal{K}}) \leq x} 1 - \frac{1}{2\pi i} \int_{\mathcal{C}} \zeta_{\mathcal{K}}(s, M_{\mathcal{K}}) \frac{x^{s}}{s} ds$$

denote the remainder term in the asymptotic formula for the number of irreducible elements of $\mathcal{O}_{\mathcal{K}}$ with norms $\leq x$ counted modulo units. Then

$$E_{\mathcal{K}}(x) = \Omega\left(\sqrt{x} \frac{(\log \log x)^{D_{\mathcal{K}}-1}}{\log x}\right)$$

as $x \to \infty$.

Definition. Examples. Motivations

MOTIVATIONS

REMARK Unconditionally we know only

$$E_{K}(x) = \Omega(\sqrt{x}(\log x)^{-B_{K}}),$$

where B_K is a positive constant depending on K.

(日) (同) (三) (三)

Invariants Formulation. The case of generalized Dirichlet series. A measure theoretic approach.

Invariants

Theorem: For $F \in S^{\sharp}$ the gamma factor

$$\gamma_F(s) = Q^s \prod_{j=1}^r \Gamma(\lambda_j s + \mu_j)$$

is unique up to a multiplicative constant.

(日) (同) (三) (三)

Invariants Formulation. The case of generalized Dirichlet series. A measure theoretic approach.

Invariants

Theorem: For $F \in S^{\sharp}$ the gamma factor

$$\gamma_F(s) = Q^s \prod_{j=1}^r \Gamma(\lambda_j s + \mu_j)$$

is unique up to a multiplicative constant. Remark: The shape of functional equation is NOT unique.

Invariants Formulation. The case of generalized Dirichlet series. A measure theoretic approach.

Invariants

Theorem: For $F \in S^{\sharp}$ the gamma factor

$$\gamma_F(s) = Q^s \prod_{j=1}^r \Gamma(\lambda_j s + \mu_j)$$

is unique up to a multiplicative constant.

Remark: The shape of functional equation is NOT unique. Main invariants: 1. degree: $d_F := 2 \sum_{j=1}^r \lambda_j$

Invariants Formulation. The case of generalized Dirichlet series. A measure theoretic approach.

Invariants

Theorem: For $F \in S^{\sharp}$ the gamma factor

$$\gamma_F(s) = Q^s \prod_{j=1}^r \Gamma(\lambda_j s + \mu_j)$$

is unique up to a multiplicative constant.

Remark: The shape of functional equation is NOT unique. Main invariants: 1. degree: $d_F := 2 \sum_{j=1}^r \lambda_j$ 2. conductor: $q_F := (2\pi)^{d_F} Q^2 \prod_{j=1}^r \lambda_j^{2\lambda_j}$

Invariants Formulation. The case of generalized Dirichlet series. A measure theoretic approach.

The general converse conjecture

For $d \ge 0$ let

$$S_d := \{F \in S : d_F = d\}$$
$$S_d^{\sharp} := \{F \in S^{\sharp} : d_F = d\}$$

(日) (同) (三) (三)

Invariants Formulation. The case of generalized Dirichlet series. A measure theoretic approach.

The general converse conjecture

For $d \ge 0$ let $S_d := \{F \in S : d_F = d\}$ $S_d^{\sharp} := \{F \in S^{\sharp} : d_F = d\}$

General Converse Conjecture (GCC):

Image: A mathematical states and a mathem

Invariants Formulation. The case of generalized Dirichlet series. A measure theoretic approach.

The general converse conjecture

For $d \ge 0$ let

$$S_d := \{F \in S : d_F = d\}$$

 $S_d^{\sharp} := \{F \in S^{\sharp} : d_F = d\}$

General Converse Conjecture:

1. DEGREE CONJECTURE:

$$d \notin \mathbb{N} \cup \{0\} \implies S_d^{\#} = S_d = \emptyset.$$

< □ > < 同 > < 回 >

Invariants Formulation. The case of generalized Dirichlet series. A measure theoretic approach.

The general converse conjecture

For $d \ge 0$ let

$$egin{aligned} S_d &:= \{F \in S: d_F = d\} \ S^{\sharp}_d &:= \{F \in S^{\sharp}: d_F = d\} \end{aligned}$$

General Converse Conjecture:

1. DEGREE CONJECTURE: $d \notin \mathbb{N} \cup \{0\} \implies S_d^{\#} = S_d = \emptyset.$ 2. $d \in \mathbb{N} \cup \{0\}, F \in S_d \implies$ F - automorphic L - function.

- ▲ 🖓 🕨 - ▲ 🖻

L-functions Invariants The Selberg class. The general converse conjecture. The present state of art (GCC) A measure

Invariants Formulation. **The case of generalized Dirichlet series**. A measure theoretic approach.

THEOREM Let Q > 0, $\lambda_j > 0$, $\mu_j \in \mathbb{C}$, $\Re(\mu_j) \ge 0$, (j=1,...,r), and $\omega \in \mathbb{C}$, $|\omega| = 1$ be arbitrary. Moreover, put

$$\gamma(s) = Q^s \prod_{j=1}^r \Gamma(\lambda_j s + \mu_j).$$

Then the functional equation

$$\gamma(s)F(s) = \omega \overline{\gamma(1-\overline{s})F(\overline{s})}$$

has uncountably many linearly independent solutions in the set of generalized Dirichlet series

$$\sum_{n=1}^{\infty} a(n) e^{-\theta_n s} \qquad (\theta_n > 0).$$

Invariants Formulation. **The case of generalized Dirichlet series**. A measure theoretic approach.

THEOREM Let Q > 0, $\lambda_j > 0$, $\mu_j \in \mathbb{C}$, $\Re(\mu_j) \ge 0$, (j=1,...,r), and $\omega \in \mathbb{C}$, $|\omega| = 1$ be arbitrary. Moreover, put

$$\gamma(s) = Q^s \prod_{j=1}^r \Gamma(\lambda_j s + \mu_j).$$

Then the functional equation

$$\gamma(s)F(s) = \omega \overline{\gamma(1-\overline{s})F(\overline{s})}$$

has uncountably many linearly independent solutions in the set of generalized Dirichlet series

$$\sum_{n=1}^{\infty} a(n) e^{-\theta_n s} \qquad (\theta_n > 0).$$

< A > < 3

Corollary GCC badly fails in case of the general D-series.

L-functions The Selberg class. The general converse conjecture. The present state of art (GCC) A measure theoretic approach.

A measure theoretic approach to the degree conjecture

э

(日) (同) (三) (三)

Invariants Formulation. The case of generalized Dirichlet series. A measure theoretic approach.

A measure theoretic approach to the degree conjecture THEOREM The sets of degrees of L-functions from S and S^{\sharp}

$$d(S) = \{d_F : F \in S\}$$

$$d(S^{\sharp}) = \{d_F : F \in S^{\sharp}\}$$

are Lebesgue measurable. Moreover, meas(d(S)) = 0or the set d(S) contains a half-line. The same holds for $d(S^{\sharp})$.

L-functions The Selberg class. The general converse conjecture. The present state of art (GCC) A measure theoretic approach.

A measure theoretic approach to the conductor conjecture

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

L-functions The Selberg class. The general converse conjecture. The present state of art (GCC) A measure theoretic approach.

A measure theoretic approach to the conductor conjecture CC: $F \in S \implies q_F \in \mathbb{N}$

(日) (同) (三) (三)

 L-functions
 Invariants

 The Selberg class.
 Formulation.

 The general converse conjecture.
 The case of generalized Dirichlet series.

 The present state of art (GCC)
 A measure theoretic approach.

A measure theoretic approach to the conductor conjecture CC: $F \in S \implies q_F \in \mathbb{N}$

THEOREM The set

$$q(S) = \{q_F : F \in S\}$$

has Lebesgue measure 0 or contains a half-line. The same holds for $q(S^{\sharp})$.

(日) (同) (三) (三)

The present state of art (GCC)

Jerzy Kaczorowski On the Selberg class of L-functions

Image: A mathematical states and a mathem

æ

∃ >

The present state of art (GCC)

1. GCC TRUE for $0 \le d < 2$

Jerzy Kaczorowski On the Selberg class of L-functions

- ∢ 🗇 ▶

The present state of art (GCC)

1. GCC TRUE for $0 \le d < 2$

2. UNKNOWN for $d \ge 2$.

- 4 🗗 ▶

The present state of art (GCC)

THEOREM 1 $S^{\sharp} = \emptyset$ if 0 < d < 1

Many authors including Richert, Bochner, Conrey-Ghosh, Molteni, J.K.&A.P ...

< 67 ▶

The present state of art (GCC)

THEOREM 2 $F \in S$, $d_F = 1 \implies F(s) = L(s + i\theta, \chi)$ (χ primitive) J.K.& A.P. Acta Mathematica 182 (1999), no. 2, 207–241

The present state of art (GCC)

Main tool in the proof: the standard non-linear twist $F \in S_d^{\#}$, d > 0, $\alpha > 0$, $\sigma > 1$

$$F_d(s,\alpha) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} e(-n^{1/d}\alpha).$$
$$(e(\theta) := \exp(2\pi i\theta))$$

A D

The present state of art (GCC)

THEOREM 3 $S^{\sharp} = \emptyset$ if 1 < d < 2J.K.& A.P. Ann. of Math. (2) 173 (2011), no. 3, 1397–1441

The present state of art (GCC)

Main tool in the proof: multidimensional twists

$$\sum_{n=1}^{\infty} \frac{a_F(n)}{n^s} \exp(-2\pi i \sum_{\nu=0}^{N} \alpha_{\nu} n^{\kappa_{\nu}})$$

 $\kappa_0 > \kappa_1 > \ldots > \kappa_N$

$$\alpha_1,\ldots,\alpha_N\in\mathbb{R},\quad \alpha_1>0$$

Image: A = A

Next step d = 2

Jerzy Kaczorowski On the Selberg class of L-functions

æ

Next step d = 2Big challenge!

Jerzy Kaczorowski On the Selberg class of L-functions

(日)

문 🛌 문

$T_h(a,n) = k(s)!$

Jerzy Kaczorowski On the Selberg class of L-functions

æ