Loop Groups with Infinite Dimensional Targets and their Unitary Representations

Karl-Hermann Neeb

Department of Mathematics, FAU Erlangen-Nürnberg

Third W. Killing and K. Weierstraß Colloquium (Braniewo) 28-30 March 2012

< □ > < @ > < 注 > < 注 > ... 注

Outline

- 1 Hilbert-Lie groups
- 2 Loop groups
- 3 Bounded and semibounded representations
- 4 Bounded representations of Hilbert–Lie groups
- 5 Semibounded representations of Kac–Moody groups
- 6 Semibounded projective representations of Hilbert-Lie groups
- 7 Semibounded projective representations of Kac–Moody groups
- 8 Conclusion

Definition (Hilbert–Lie algebra)

A Hilbert-Lie algebra is a Lie algebra \mathfrak{k} which is a real Hilbert space whose scalar product is invariant: ([x, y], z) = (x, [y, z]). A Lie group K is a Hilbert-Lie group if $L(K) = \mathfrak{k}$ is a Hilbert-Lie algebra.

Finite dimensional Hilbert-Lie algebras are the compact Lie algebras.

Theorem (Schue, 1960/61; Structure of Hilbert–Lie algebrs)

 \mathfrak{k} is an orthogonal direct sum $\mathfrak{k} = \mathfrak{z}(\mathfrak{k}) \oplus \bigoplus_{j \in J} \mathfrak{k}_j$, where \mathfrak{k}_j is simple. If \mathfrak{k} is inf. dim. simple, then $\mathfrak{k} \cong \mathfrak{u}_2(\mathcal{H})$ (skew-herm. Hilbert–Schmidt ops) for a Hilbert space \mathcal{H} over \mathbb{R} , \mathbb{C} or \mathbb{H} with $(x, y) = \operatorname{tr}_{\mathbb{R}}(xy^*) = -\operatorname{tr}_{\mathbb{R}}(xy)$.

Example

 $\begin{array}{l} U_2(\mathcal{H}) = \{g \in U(\mathcal{H}) \colon \|\mathbf{1} - g\|_2 < \infty\} \text{ is a Hilbert-Lie group with Lie} \\ \text{algebra } \mathsf{L}(U_2(\mathcal{H})) = \mathfrak{u}_2(\mathcal{H}). \text{ Here } \|X\|_2 = \sqrt{\operatorname{tr}(X^*X)}. \end{array}$

1.2. Root data of simple Hilbert-Lie algebras

 \mathfrak{k} simple Hilbert–Lie algebra $\mathfrak{t} \subseteq \mathfrak{k}$ maximal abelian (Cartan subalgebra), $\mathfrak{t} \cong \ell^2(J, \mathbb{R})$ $\mathfrak{k}_{\mathbb{C}} = \mathfrak{t}_{\mathbb{C}} \oplus \widehat{\bigoplus}_{\alpha \in \Delta} \mathfrak{k}_{\mathbb{C}}^{\alpha}$ (root decomposition), orthogonal direct sum $\Delta = \Delta(\mathfrak{k}, \mathfrak{t})$ is a locally finite root system.

Theorem (Stumme '99, Classif. of infinite locally finite root systems)

$$A_{J} = \{\varepsilon_{i} - \varepsilon_{j} : i \neq j \in J\}, \qquad B_{J} = \{\pm\varepsilon_{i}, \pm\varepsilon_{i} \pm \varepsilon_{j} : i \neq j \in J\}$$
$$C_{J} = \{\pm2\varepsilon_{i}, \pm\varepsilon_{i} \pm \varepsilon_{j} : i \neq j \in J\}, \qquad D_{J} = \{\pm\varepsilon_{i} \pm \varepsilon_{j} : i \neq j \in J\}.$$

 \Rightarrow 4 iso-classes of pairs ($\mathfrak{k}, \mathfrak{t}$) (for each cardinality |J|):

$$\begin{array}{ll} A_{J} \colon & \mathbb{K} = \mathbb{C}, \quad \mathfrak{k} = \mathfrak{u}_{2}(\mathcal{H}) \\ B_{J}, D_{J} \colon & \mathbb{K} = \mathbb{R}, \quad \mathfrak{k} = \mathfrak{u}_{2}(\mathcal{H}) =: \mathfrak{o}_{2}(\mathcal{H}), \ \text{dim}(\text{ker}(\mathfrak{t})) \in \{1, 0\} \\ C_{J} \colon & \mathbb{K} = \mathbb{H}, \quad \mathfrak{k} = \mathfrak{u}_{2}(\mathcal{H}) =: \mathfrak{sp}_{2}(\mathcal{H}). \end{array}$$

 $\mathfrak{k} = \mathfrak{o}_2(\mathcal{H})$ has two conjugacy classes of Cartan subalgebras under $\operatorname{Aut}(\mathfrak{k})$.

2.1. Loop groups and twisted loop groups

Definition (Twisted loop groups)

For a Hilbert–Lie group K,

$$\mathcal{L}(\mathcal{K}) := \{f \in C^{\infty}(\mathbb{R},\mathcal{K}) \colon (\forall t \in \mathbb{R}) f(t+2\pi) = f(t)\}$$

is called the corresponding loop group. For an automorphism $\varphi \in {
m Aut}({\mathcal K})$,

$$\mathcal{L}_arphi(\mathcal{K}) := \{f \in \mathcal{C}^\infty(\mathbb{R},\mathcal{K}) \colon (orall t \in \mathbb{R}) \, f(t+2\pi) = arphi^{-1}(f(t)) \}$$

is called the corresponding twisted loop group.

 $\mathcal{L}_{\varphi}(K)$ is a Fréchet–Lie group with Lie algebra

$$\mathcal{L}_{\varphi}(\mathfrak{k}) := \{\xi \in C^{\infty}(\mathbb{R}, \mathfrak{k}) \colon (\forall t \in \mathbb{R}) \, \xi(t+2\pi) = \mathsf{L}(\varphi)^{-1}\xi(t) \}.$$

Note: $\mathcal{L}_{\varphi}(K)$ is the group of smooth sections of a *K*-Lie group bundle $\mathcal{K} = (\mathbb{R} \times K) / \sim \text{over } \mathbb{S}^1 \cong \mathbb{R}/2\pi\mathbb{Z}$, where $(t + 2\pi, k) \sim (t, \varphi(k))$.

5 / 21

2.2. Loop groups with Hilbert targets

K-Lie group bundles over \mathbb{S}^1 correspond to $\operatorname{Aut}(K)$ principal bundles, hence are classified by

 $\pi_0(\operatorname{Aut}(K))/\operatorname{conj}.$

Note: $Aut(K) \cong Aut(\mathfrak{k})$ if K is 1-connected.

Theorem

The automorphism groups of the infinite dimensional simple Hilbert–Lie algebras are given by the connected groups

 $\operatorname{Aut}(\mathfrak{o}_2(\mathcal{H}))\cong \operatorname{O}(\mathcal{H})/\{\pm 1\},\quad \operatorname{Aut}(\mathfrak{sp}_2(\mathcal{H}))\cong \operatorname{Sp}(\mathcal{H})/\{\pm 1\}$

(real and quaternionic case) and the 2-component group (complex case)

 $\operatorname{Aut}(\mathfrak{u}_2(\mathcal{H})) = \operatorname{PU}(\mathcal{H}) \rtimes \{\mathbf{1}, \sigma\}, \quad \sigma \colon \mathcal{H} \to \mathcal{H} \text{ antilin. isom. involution.}$

We thus obtain 4 iso-classes of twisted loop algebras

 $\mathcal{L}(\mathfrak{o}_2(\mathcal{H})), \quad \mathcal{L}(\mathfrak{u}_2(\mathcal{H})), \quad \mathcal{L}(\mathfrak{sp}_2(\mathcal{H})) \quad \text{and} \quad \mathcal{L}_{\sigma}(\mathfrak{u}_2(\mathcal{H})).$

Karl-Hermann Neeb (ENZ/FAU)

Definition (Double extensions)

For a Lie algebra \mathfrak{g} with invariant symmetric bilinear form κ (quadratic Lie algebra) and a κ -skew-symmetric derivation D on \mathfrak{g} , the corresponding double extension is the quadratic Lie algebra $(\hat{\mathfrak{g}}, \hat{\kappa})$, where

 $\widehat{\mathfrak{g}} := \mathbb{R} imes \mathfrak{g} imes \mathbb{R}$

$$\begin{split} [(z_1, x_1, t_1), (z_2, x_2, t_2)] &:= (\kappa(Dx_1, x_2), t_1 Dx_2 - t_2 Dx_1 + [x_1, x_2], 0) \\ &\widehat{\kappa}((z_1, x_1, t_1), (z_2, x_2, t_2)) := z_1 t_2 + z_2 t_1 + \kappa(x_1, x_2). \end{split}$$

Note: $\widetilde{\mathfrak{g}} := \mathbb{R} \times \mathfrak{g}$ is a central ext. with cocycle $\omega_D(x_1, x_2) := \kappa(Dx_1, x_2)$. $\widehat{\mathfrak{g}} \cong \widetilde{\mathfrak{g}} \rtimes_{\widetilde{D}} \mathbb{R}$ for $\widetilde{D}(z, x) := (0, Dx)$.

Ex: $\mathfrak{g} = \mathfrak{u}_2(\mathcal{H}), Dx = [T, x], T \in \mathfrak{u}(\mathcal{H}), \kappa(Dx, y) = -\operatorname{tr}(T[x, y])$

Rem: \mathfrak{k} Hilbert–Lie algebra \Rightarrow Any 2-cocycle ω can be written as $\omega(x, y) = (Dx, y)$ with $D \in \operatorname{der}(\mathfrak{k}) \Rightarrow$ double extension $\widehat{\mathfrak{k}}_{D, \underline{s}}$.

2.4. Affine Kac-Moody groups

If \mathfrak{k} is a Hilbert–Lie algebra and $\varphi \in \operatorname{Aut}(\mathfrak{k})$, then the loop algebra $\mathcal{L}_{\varphi}(\mathfrak{k})$ carries the scalar product $(\xi, \eta) := \int_{0}^{2\pi} (\xi(t), \eta(t)) dt$ and the derivation $D\xi = \xi'$ is skew-symmetric. This leads to the double extension

 $\widehat{\mathcal{L}}_{arphi}(\mathfrak{k}) = \mathbb{R} \oplus \mathcal{L}_{arphi}(\mathfrak{k}) \oplus \mathbb{R}$

 $[(z_1,\xi_1,t_1),(z_2,\xi_2,t_2)] := ((\xi_1',\xi_2),t_1\xi_2'-t_2\xi_1'+[\xi_1,\xi_2],0)$

Theorem (N., '02, N./Wockel '09; Integrability Theorem)

If \mathfrak{k} is simple, then there exists a simply connected Fréchet–Lie group $\widehat{\mathcal{L}}_{\varphi}(K)$ with Lie algebra $\widehat{\mathcal{L}}_{\varphi}(\mathfrak{k})$ and center \mathbb{T} .

Definition

We call $\widehat{\mathcal{L}}_{\varphi}(K)$ the corresponding (affine) Kac–Moody group.

Goal: Understand unitary rep's of
$$\widehat{\mathcal{L}}_{arphi}(\mathcal{K}) \Rightarrow$$
 We need root data

Karl-Hermann Neeb (ENZ/FAU)

2.5. Root systems for Kac-Moody groups

Here are the candidates for root systems of $\widehat{\mathcal{L}}_{\varphi}(\mathfrak{k})$:

Theorem (Y. Yoshii, 2006)

The irreducible reduced locally affine root systems of infinite rank are the following $X_J^{(1)} := X_J \times \mathbb{Z}$ for $X_J \in \{A_J, B_J, C_J, D_J\}$, J an infinite set, and $B_J^{(2)} := (B_J \times 2\mathbb{Z})\dot{\cup}((B_J)_{sh} \times (2\mathbb{Z} + 1))$, where $(B_J)_{sh} = \{\pm \varepsilon_j : j \in J\}$. $C_J^{(2)} := (C_J \times 2\mathbb{Z})\dot{\cup}(D_J \times (2\mathbb{Z} + 1))$ $BC_J^{(2)} := (B_J \times 2\mathbb{Z})\dot{\cup}(BC_J \times (2\mathbb{Z} + 1))$, $BC_J := B_J \cup C_J$.

These root systems contain no root bases \Rightarrow No Dynkin diagrams. To obtain root decompositions of $\widehat{\mathcal{L}}_{\varphi}(\mathfrak{k})$, we **assume:** \mathfrak{k} is simple, $\varphi \in \operatorname{Aut}(\mathfrak{k})$ involution,

$$\mathfrak{t} \subseteq \mathfrak{k}^{\varphi} := \{ x \in \mathfrak{k} \colon \varphi(x) = x \} \quad \text{is maximal abelian}.$$

Then $\hat{\mathfrak{t}} := \mathbb{R} \times \mathfrak{t} \times \mathbb{R} \subseteq \widehat{\mathcal{L}}_{\varphi}(\mathfrak{k})$ is maximal abelian. For $\alpha : \mathfrak{t} \to i\mathbb{R}$ and $n \in \mathbb{Z}$ we define $(\alpha, n) : \hat{\mathfrak{t}} \to i\mathbb{R}$ by

$$(\alpha, n)(z, x, t) := \alpha(x) + int.$$

Then the (anisotropic) root system $\widehat{\Delta} := \Delta(\widehat{\mathcal{L}}_{\varphi}(\mathfrak{k}), \widehat{\mathfrak{t}})$ is

$$\widehat{\Delta} = (\Delta_+ imes 2\mathbb{Z}) \dot{\cup} (\Delta_- imes (2\mathbb{Z}\!+\!1)) \hspace{0.5cm} ext{with} \hspace{0.5cm} \Delta_\pm := \Delta(\mathfrak{k}^{\pm arphi}, \mathfrak{t}) \hspace{0.5cm} ext{t-(weights)}.$$

Theorem (Realization of the 7 locally affine root systems)

For $\Delta(\mathfrak{k},\mathfrak{t}) = X_J$ we obtain $\widehat{\Delta} = \Delta(\widehat{\mathcal{L}}(\mathfrak{k}), \widehat{\mathfrak{t}}) = X_J^{(1)}$, and $\widehat{\Delta} = \Delta(\widehat{\mathcal{L}}_{\varphi}(\mathfrak{k}), \widehat{\mathfrak{t}}) = X_J^{(2)}$ is obtained for $\varphi(x) = \sigma x \sigma^{-1}$ as follows: $B_J^{(2)}$ for $\mathfrak{k} = \mathfrak{o}_2(\mathcal{H})$, σ orth. reflection in a hyperplane, \mathfrak{t} of type B_J . $C_J^{(2)}$ for $\mathfrak{k} = \mathfrak{u}_2(\mathcal{H})$, σ antilinear with $\sigma^2 = -1$. $BC_J^{(2)}$ for $\mathfrak{k} = \mathfrak{u}_2(\mathcal{H})$, σ antilinear with $\sigma^2 = 1$ and ker $(\mathfrak{t}) \neq \{0\}$.

Three root systems for $\widehat{\mathcal{L}}(\mathfrak{o}_2(\mathcal{H})) \cong \widehat{\mathcal{L}}_{\varphi}(\mathfrak{o}_2(\mathcal{H}))$: $B_J^{(1)}, D_J^{(1)}$ and $B_J^{(2)}$. Two root systems for $\widehat{\mathcal{L}}_{\sigma}(\mathfrak{u}_2(\mathcal{H}))$ (σ antilinear): $C_J^{(2)}$ and $BC_J^{(2)}$.

Karl-Hermann Neeb (ENZ/FAU)

3.1. Bounded and semibounded representations

Definition

A unitary representation $\pi: G \to U(\mathcal{H})$ is called smooth if the space $\mathcal{H}^{\infty} := \{ v \in \mathcal{H} : G \to \mathcal{H}, g \mapsto \pi(g)v \text{ smooth} \}$ of smooth vectors is dense.

The derived representation: $d\pi(x)v = \frac{d}{dt}|_{t=0}\pi(\exp tx)v$, $v \in \mathcal{H}^{\infty}, x \in \mathfrak{g}$.

The support function: $s_{\pi} \colon \mathfrak{g} \to \mathbb{R} \cup \{\infty\}, s_{\pi}(x) := \sup \operatorname{Spec}(i d\pi(x))$

Cone of semiboundedness: $W_{\pi} := \{x \in \mathfrak{g} : s_{\pi} \text{ bounded in a nbhd of } x\}.$

Definition

A smooth representation is called semibounded if $W_{\pi} \neq \emptyset$. It is called bounded if $W_{\pi} = \mathfrak{g}$.

Theorem (N. '08)

 π bounded iff $d\pi : \mathfrak{g} \to \mathfrak{u}(\mathcal{H})$ continuous iff $\pi : G \to U(\mathcal{H})$ norm-cont.

Example

If K is compact, then every continuous unitary representation is a direct sum of irreducible ones and irreducible reps are bounded.

Remark

- (a) If π is semibounded, then W_{π} is an open Ad(G)-invariant convex cone in \mathfrak{g} .
- (b) If all open invariant cones in $\mathfrak{g}/\mathfrak{z}(\mathfrak{g})$ are trivial, then every semibounded irreducible representation of G is bounded.
- (c) All open invariant cones in $\mathfrak{g}/\mathfrak{z}(\mathfrak{g})$ are trivial iff all open invariant cones in \mathfrak{g} intersect $\mathfrak{z}(\mathfrak{g})$ (=fixed points of Ad(G)).

Examples

Karl-Hermann Neeb (ENZ/FAU)

Lie algebras \mathfrak{g} for which open invariant cones in $\mathfrak{g}/\mathfrak{z}(\mathfrak{g})$ are trivial: (a) \mathfrak{g} semisimple Hilbert–Lie algebra (Bruhat–Tits Fixed Point Thm) (b) $\mathfrak{u}(\mathcal{H})$, \mathcal{H} Hilbert space over $\mathbb{R}, \mathbb{C}, \mathbb{H}$.

Loop Groups with Infinite Dim. Targets

Killing and Weierstraß Coll

12 / 21

4. Bounded representations of Hilbert-Lie groups

 \mathfrak{t} simple Hilbert–Lie algebra, $\mathfrak{t} \subseteq \mathfrak{t}$ maximal abelian, Δ corresp. roots Coroots: $\check{\alpha} \in i\mathfrak{t} \cap [\mathfrak{t}^{\alpha}_{\mathbb{C}}, \mathfrak{t}^{-\alpha}_{\mathbb{C}}]$ with $\alpha(\check{\alpha}) = 2$, for $\alpha \in \Delta$ K the 1-connected Lie group with Lie algebra \mathfrak{t} ; $T := \exp(\mathfrak{t})$ $\mathcal{P}_T := \{\lambda \in i\mathfrak{t}' : (\forall \alpha \in \Delta) \lambda(\check{\alpha}) \in \mathbb{Z}\} \cong \operatorname{Hom}(T, \mathbb{T}) \subseteq i\mathfrak{t}' (T\text{-weights})$ Weyl group: $\mathcal{W} = \langle r_{\alpha} : \alpha \in \Delta \rangle \subseteq \operatorname{GL}(\mathfrak{t}_{\mathbb{C}}), r_{\alpha}(x) = x - \alpha(x)\check{\alpha}.$

Theorem (Classification Theorem, N. '98, '11)

Bounded unitary representations of K are direct sums of irreducible ones. The irreducible bounded reps π_{λ} are characterized by their T-weight set

 $\operatorname{conv}(\mathcal{W}\lambda) \cap (\lambda + \mathcal{Q}), \quad \mathcal{Q} = \langle \Delta \rangle_{\operatorname{grp}} \subseteq \mathcal{P}_{\mathcal{T}} \text{ (root group).}$

Classification of bounded irreps by $\mathcal{P}_T / \mathcal{W}$ *(every* $\lambda \in \mathcal{P}_T$ *occurs).*

Remark

(a) Bounded reps of K behave like reps of a compact group.(b) The continuous representation theory of K is not type I (Boyer '80)

13 / 21

Karl-Hermann Neeb (ENZ/FAU) Loop Groups with Infinite Dim. Targets Killing and Weierstraß Coll.

5.Semibounded representations of Kac–Moody groups

- $G = \widehat{\mathcal{L}}_{\varphi}(K)$ (1-connected) as above (7 types), $d := (0, 0, -i) \in i \widehat{\mathcal{L}}_{\varphi}(\mathfrak{k})$
 - π irreducible semibounded rep of $G \Rightarrow i \cdot d \in W_{\pi} \cup -W_{\pi}$ (positive/negative energy representations if $\pm d\pi(d)$ bounded below).
 - We use that \mathfrak{k}^φ is simple, hence all its open inv. cones are trivial.
 - On the minimal/maximal eigenspace of $d\pi(d)$ we find a bounded irreducible representation ρ_{λ} of $Z_G(d) \cong \mathbb{T} \times K^{\varphi} \times \mathbb{R}$

Theorem (Classification Theorem, Part 1)

Irreducible semibounded representations π_{λ} of $\widehat{\mathcal{L}}_{\varphi}(K)$ are extremal weight representations characterized by their $\widehat{\mathfrak{t}}$ -weight set

$$\mathcal{P}_{\lambda} := \operatorname{conv}(\widehat{\mathcal{W}}\lambda) \cap (\lambda + \widehat{\mathcal{Q}}) \quad \textit{with} \quad \operatorname{Ext}(\operatorname{conv}(\mathcal{P}_{\lambda})) = \widehat{\mathcal{W}}\lambda$$

 $(\widehat{\mathcal{W}} \text{ is the Weyl group of } \widehat{\Delta})$. The set of occurring extremal weights λ is

$$\mathcal{P}^{\pm} := \{ \mu \in \mathcal{P}_{\widehat{\mathcal{T}}^{\varphi}} \colon \pm (\widehat{\mathcal{W}} \mu)(d) \text{ bounded from below} \}.$$

Let $\mathcal{P}_d^{\pm} \subseteq \mathcal{P}^{\pm}$ denote those elements μ for which $\mu(d)$ is minimal/maximal in $\widehat{\mathcal{W}}\mu$. With $c := \mu(i, 0, 0)$ (central charge), the elements $\mu \in \mathcal{P}_d^+$ are characterized by:

$$c\geq 0, \hspace{1em} |\mu(\check{lpha})|\leq rac{2c}{(lpha,lpha)}, \hspace{1em} |\mu(\check{eta})|\leq rac{4c}{(eta,eta)} \hspace{1em} ext{for} \hspace{1em} (lpha,1), (eta,2)\in \widehat{\Delta}.$$

Theorem (Classification Theorem, Part 2)

Classification of semibounded irreps: $\mathcal{P}^{\pm}/\widehat{\mathcal{W}} \cong \mathcal{P}_{d}^{\pm}/\mathcal{W}$.

Methods:

- Convex geometry of $\widehat{\mathcal{W}}$ -orbits (local Coxeter theory).
- Complex geometry: Realization of π_λ in holomorphic sections of a complex Hilbert bundle with fiber representation ρ_λ of Z_G(d) over the complex manifold G/Z_G(d) ≅ L_φ(K)/K^φ (holomorphic induction).
- Harmonic analysis: Locally defined operator-valued analytic positive definite functions; automatic extension.

6. Semibounded projective reps of Hilbert-Lie groups

Problem: Boundedness of representations of a Hilbert–Lie group K is rather restrictive. It excludes important representations like "infinite wedge representations". These lead to projective representations, hence to central extensions and further to double extensions.

Setup: \mathfrak{k} simple Hilbert–Lie algebra, $\mathfrak{t} \subseteq \mathfrak{k}$ maximal abelian, $\check{\Delta} \subseteq i\mathfrak{t}$ coroots A t-invariant continuous cocycle $\omega(x, y)$ on \mathfrak{k} can be represented by $D \in \operatorname{der}(\mathfrak{k})$ via $\omega(x, y) = (Dx, y)$ and there exists a linear functional $\lambda \colon \mathfrak{t} \cap [\mathfrak{k}, \mathfrak{k}] \to i\mathbb{R}$ with

$$\omega(x,y) = i\lambda([x,y]) \quad \text{ for } \quad x,y \in \mathfrak{k}.$$

We call λ a bounded weight if $\lambda(\check{\alpha}) \in \mathbb{Z}$ for $\alpha \in \Delta$; \mathcal{P}_b set of bd weights.

Definition

For $\lambda \in \mathcal{P}_b$ we write $\hat{\mathfrak{k}}_{\lambda} = \mathbb{R} \oplus \mathfrak{k} \oplus \mathbb{R}$ for the corresp. double extension. $\hat{\mathfrak{t}} := \mathbb{R} \oplus \mathfrak{t} \oplus \mathbb{R} \subseteq \hat{\mathfrak{k}}_{\lambda}$ is maximal abelian. $\widehat{\mathcal{K}}_{\lambda}$ is the corresponding 1-connected group; $\widehat{\mathcal{T}} := \exp \hat{\mathfrak{t}} \subseteq \widehat{\mathcal{K}}_{\lambda}$. $\mathcal{P}_{\widehat{\mathcal{T}}} \subseteq \operatorname{Hom}(\hat{\mathfrak{t}}, i\mathbb{R})$ (group of $\widehat{\mathcal{T}}$ -weights).

16 / 21

Karl-Hermann Neeb (ENZ/FAU) Loop Groups with Infinite Dim. Targets Killing and Weierstraß Coll.

Theorem (Classification Theorem, N. '11)

Irreducible semibounded representations π_{μ} of \widehat{K}_{λ} are extremal weight representations characterized by their $\hat{\mathfrak{t}}$ -weight set

 $\mathcal{P}_{\mu} := \operatorname{conv}(\mathcal{W}\mu) \cap (\mu + \mathcal{Q}) \quad \textit{with} \quad \operatorname{Ext}(\operatorname{conv}(\mathcal{P}_{\mu})) = \mathcal{W}\mu.$

Put $d := (0, 0, -i) \in i\hat{t}$. The set of occurring extremal weights is

 $\mathcal{P}^{\pm} := \{ \mu \in \mathcal{P}_{\widehat{\mathcal{T}}} \colon \pm (\mathcal{W}\mu)(d) \text{ bounded from below} \}.$

By minimizing/maximizing, we get the d-extremal weights

$$\mathcal{P}_d^{\pm} = \{ \mu \in \mathcal{P}_{\widehat{\mathcal{T}}} \colon (orall lpha \in \Delta) \, \lambda(\check{lpha}) > \mathsf{0} \Rightarrow \pm \mu(\check{lpha}) \geq \mathsf{0} \}.$$

Classification: $\mathcal{P}^{\pm}/\mathcal{W} \cong \mathcal{P}_{d}^{\pm}/\mathcal{W}_{\lambda}$, where $\mathcal{W}_{\lambda} \subseteq \mathcal{W}$ is the stabilizer of λ .

Remark: (a) Representations of \widehat{K}_{λ} are projective representations of K. (b) For $K = U_2(\mathcal{H})$ we cover in particular infinite wedge representations.

7. Semibounded projective reps of Kac-Moody groups

Again, projective representations of $\widehat{\mathcal{L}}_{\varphi}(\mathcal{K})$ lead to double extensions of $\mathfrak{g} = \widehat{\mathcal{L}}_{\varphi}(\mathfrak{k})$, hence to iterated double extensions $\widehat{\widehat{\mathcal{L}}}_{\varphi}(\mathfrak{k})$. Here the cocycle is of the form

$$\omega((z_1,\xi_1,t_1),(z_2,\xi_2,t_2)) := \frac{1}{2\pi} \int_0^{2\pi} i\lambda([\xi_1(t),\xi_2(t)]) dt$$

for some bounded weight $\lambda \in \mathcal{P}_b$ for $(\mathfrak{k}, \mathfrak{t})$. Corresponding Lie groups $\widehat{\hat{\mathcal{L}}}_{\varphi}(\mathcal{K})$ exist, and for $d = (0, 0, -i) \in i \widehat{\mathcal{L}}_{\varphi}(\mathfrak{k})$ we have

$$Z_{\mathfrak{g}}(d) = \mathbb{R} \oplus (\mathbb{R} \oplus \mathfrak{k}^{arphi} \oplus \mathbb{R}) \oplus \mathbb{R} = \mathbb{R} \oplus \widehat{\mathfrak{k}}_{\lambda}^{arphi} \oplus \mathbb{R}.$$

Semibounded representations of $\widehat{\widehat{\mathcal{L}}}_{\varphi}(K)$ now lead to semibounded representations of the double extension $(\widehat{K^{\varphi}})_{\lambda}$. These representations are classified!

Conjecture

Irreducible semibounded representations π_{μ} of $\widehat{\hat{\mathcal{L}}}_{\varphi}(K)$ are extremal weight representations characterized by their $\widehat{\hat{\mathfrak{t}}}$ -weight set

 $\mathcal{P}_{\mu} := \operatorname{conv}(\widehat{\widehat{\mathcal{W}}}_{\mu}) \cap (\mu + \widehat{\widehat{\mathcal{Q}}}) \quad \textit{with} \quad \operatorname{Ext}(\operatorname{conv}(\mathcal{P}_{\mu})) = \widehat{\widehat{\mathcal{W}}}_{\mu}.$

The set of occurring extremal weights is

 $\mathcal{P}^{\pm} := \{ \mu \in \mathcal{P}_{\widehat{T}} : \pm (\widehat{\widehat{\mathcal{W}}} \mu)(d) \text{ bounded from below} \}.$

By minimizing/maximizing, we get the d-extremal weights \mathcal{P}_d^{\pm} . Classification of semibounded irreps: $\mathcal{P}^{\pm}/\widehat{\mathcal{W}} \cong \mathcal{P}_d^{\pm}/\widehat{\mathcal{W}}_d$.

Problems: (a) The complex geometric Banach methods (holomorphic induction) break down because the representations of \hat{K}_{λ} are unbounded. We need a weaker notion of a complex Hilbert bundle. (b) The iterated double extension creates 2 "*d*-elements", but semiboundedness should be controlled by the first one. This requires refined information on convexity properties of coadjoint orbits.

Positive energy vs. semiboundedness

- Semiboundedness is stronger than the positive energy condition dπ(d) bd. below. It is crucial that semiboundedness implies boundedness of the K-representation on the minimal energy space. This is automatic if K is compact. In general K has many irreducible unbounded representations which are harder to control, f.i., Boyer's factor representations of U₂(H). We do not expect that the positive energy condition implies semiboundedness in general.
- Semiboundedness is intrinsic, it does not refer to the specification of an element $d \in \mathfrak{g}$, such as the positive energy condition. It also does not refer to a specific Cartan subalgebra.
- Our classification results hold for each of the 7 types of root systems of the 4 classes of Lie algebras. For different root systems, resp., conjugacy classes of Cartan subalgebras, we obtain different parameters for the same representations.

Concluding remarks

- Non-connected loop groups: π₀(L(K)) ≅ π₁(K) is non-trivial in general. Which semibounded representations extend to non-connected groups?
- Describe the automorphism group of $\mathcal{L}_{\varphi}(\mathfrak{k})$.
- Are there also semibounded representations for double extensions of mapping groups C[∞](M, K), where dim M > 1? The corresponding derivations should correspond to divergence free vector fields on M. Possibly one has to consider *n*-fold iterated double extensions, where n = dim M. Here M = T² is the natural testing case.
- For K = U₂(H), H complex, we have Aut(K)₀ ≅ PU(H), so that K-group bundles with this structure group over X are classified by their Dixmier–Douady classes in

$$[X, B \operatorname{PU}(\mathcal{H})] = [X, K(\mathbb{Z}, 3)] \cong H^3(X, \mathbb{Z}).$$