Loop Groups with Infinite Dimensional Targets and their Unitary Representations

Karl-Hermann Neeb

Department of Mathematics, FAU Erlangen-Nürnberg

Third W. Killing and K. Weierstraß Colloquium (Braniewo)
28-30 March 2012

Emmy-Noether-Zentrum
Outline

1. Hilbert–Lie groups
2. Loop groups
3. Bounded and semibounded representations
4. Bounded representations of Hilbert–Lie groups
5. Semibounded representations of Kac–Moody groups
6. Semibounded projective representations of Hilbert–Lie groups
7. Semibounded projective representations of Kac–Moody groups
8. Conclusion
1.1. From compact groups to Hilbert–Lie groups

Definition (Hilbert–Lie algebra)

A Hilbert–Lie algebra is a Lie algebra \(\mathfrak{k} \) which is a real Hilbert space whose scalar product is invariant: \(([x, y], z) = (x, [y, z]) \).

A Lie group \(K \) is a **Hilbert–Lie group** if \(L(K) = \mathfrak{k} \) is a Hilbert–Lie algebra.

Finite dimensional Hilbert–Lie algebras are the **compact** Lie algebras.

Theorem (Schue, 1960/61; Structure of Hilbert–Lie algebras)

\(\mathfrak{k} \) is an orthogonal direct sum \(\mathfrak{k} = \mathfrak{z}(\mathfrak{k}) \oplus \bigoplus_{j \in J} \mathfrak{k}_j \), where \(\mathfrak{k}_j \) is simple.

If \(\mathfrak{k} \) is inf. dim. simple, then \(\mathfrak{k} \cong \mathfrak{u}_2(\mathcal{H}) \) (skew-herm. Hilbert–Schmidt ops) for a Hilbert space \(\mathcal{H} \) over \(\mathbb{R}, \mathbb{C} \) or \(\mathbb{H} \) with \((x, y) = \text{tr}_{\mathbb{R}}(xy^*) = -\text{tr}_{\mathbb{R}}(xy) \).

Example

\(U_2(\mathcal{H}) = \{ g \in U(\mathcal{H}) : \| 1 - g \|_2 < \infty \} \) is a Hilbert–Lie group with Lie algebra \(L(U_2(\mathcal{H})) = \mathfrak{u}_2(\mathcal{H}) \).

Here \(\| X \|_2 = \sqrt{\text{tr}(X^*X)} \).
1.2. Root data of simple Hilbert–Lie algebras

\(\mathfrak{t} \) simple Hilbert–Lie algebra
\(\mathfrak{t} \subseteq \mathfrak{t} \) maximal abelian (Cartan subalgebra), \(\mathfrak{t} \cong \ell^2(J, \mathbb{R}) \)

\[\mathfrak{t}_\mathbb{C} = \mathfrak{t}_\mathbb{C} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{t}_\mathbb{C}^\alpha \]
(root decomposition), orthogonal direct sum

\(\Delta = \Delta(\mathfrak{t}, \mathfrak{t}) \) is a locally finite root system.

Theorem (Stumme ’99, Classif. of infinite locally finite root systems)

\[A_J = \{ \varepsilon_i - \varepsilon_j : i \neq j \in J \}, \quad B_J = \{ \pm \varepsilon_i, \pm \varepsilon_i \pm \varepsilon_j : i \neq j \in J \} \]
\[C_J = \{ \pm 2\varepsilon_i, \pm \varepsilon_i \pm \varepsilon_j : i \neq j \in J \}, \quad D_J = \{ \pm \varepsilon_i \pm \varepsilon_j : i \neq j \in J \}. \]

\(\Rightarrow 4 \) iso-classes of pairs \((\mathfrak{t}, \mathfrak{t}) \) (for each cardinality \(|J| \)):

- **A\(_J\)**: \(\mathbb{K} = \mathbb{C}, \quad \mathfrak{t} = \mathfrak{u}_2(\mathcal{H}) \)
- **B\(_J\), D\(_J\)**: \(\mathbb{K} = \mathbb{R}, \quad \mathfrak{t} = \mathfrak{u}_2(\mathcal{H}) := \mathfrak{o}_2(\mathcal{H}), \dim(\ker(\mathfrak{t})) \in \{1, 0\} \)
- **C\(_J\)**: \(\mathbb{K} = \mathbb{H}, \quad \mathfrak{t} = \mathfrak{u}_2(\mathcal{H}) := \mathfrak{sp}_2(\mathcal{H}) \).

\(\mathfrak{t} = \mathfrak{o}_2(\mathcal{H}) \) has **two conjugacy classes** of Cartan subalgebras under \(\text{Aut}(\mathfrak{t}) \).
2.1. Loop groups and twisted loop groups

Definition (Twisted loop groups)

For a Hilbert–Lie group \(K \),

\[
\mathcal{L}(K) := \{ f \in C^\infty(\mathbb{R}, K) : (\forall t \in \mathbb{R}) f(t + 2\pi) = f(t) \}
\]

is called the corresponding loop group. For an automorphism \(\varphi \in \text{Aut}(K) \),

\[
\mathcal{L}_\varphi(K) := \{ f \in C^\infty(\mathbb{R}, K) : (\forall t \in \mathbb{R}) f(t + 2\pi) = \varphi^{-1}(f(t)) \}
\]

is called the corresponding twisted loop group.

\(\mathcal{L}_\varphi(K) \) is a Fréchet–Lie group with Lie algebra

\[
\mathcal{L}_\varphi(\mathfrak{k}) := \{ \xi \in C^\infty(\mathbb{R}, \mathfrak{k}) : (\forall t \in \mathbb{R}) \xi(t + 2\pi) = L(\varphi)^{-1}\xi(t) \}.
\]

Note: \(\mathcal{L}_\varphi(K) \) is the group of smooth sections of a \(K \)-Lie group bundle \(\mathcal{K} = (\mathbb{R} \times K)/\sim \) over \(S^1 \cong \mathbb{R}/2\pi\mathbb{Z} \), where \((t + 2\pi, k) \sim (t, \varphi(k)) \).
2.2. Loop groups with Hilbert targets

K-Lie group bundles over \(S^1 \) correspond to \(\text{Aut}(K) \) principal bundles, hence are classified by

\[\pi_0(\text{Aut}(K))/\text{conj}. \]

Note: \(\text{Aut}(K) \simeq \text{Aut}(\mathfrak{k}) \) if \(K \) is 1-connected.

Theorem

The automorphism groups of the infinite dimensional simple Hilbert–Lie algebras are given by the connected groups

\[
\text{Aut}(\mathfrak{o}_2(\mathcal{H})) \cong O(\mathcal{H})/\{\pm \mathbf{1}\}, \quad \text{Aut}(\mathfrak{sp}_2(\mathcal{H})) \cong \text{Sp}(\mathcal{H})/\{\pm \mathbf{1}\}
\]

(real and quaternionic case) and the 2-component group (complex case)

\[
\text{Aut}(\mathfrak{u}_2(\mathcal{H})) = \text{PU}(\mathcal{H}) \rtimes \{1, \sigma\}, \quad \sigma : \mathcal{H} \to \mathcal{H} \text{ antilin. isom. involution.}
\]

We thus obtain 4 iso-classes of twisted loop algebras

\[
\mathcal{L}(\mathfrak{o}_2(\mathcal{H})), \quad \mathcal{L}(\mathfrak{u}_2(\mathcal{H})), \quad \mathcal{L}(\mathfrak{sp}_2(\mathcal{H})) \quad \text{and} \quad \mathcal{L}_\sigma(\mathfrak{u}_2(\mathcal{H})).
\]
2.3. Double extensions

Definition (Double extensions)

For a Lie algebra \(\mathfrak{g} \) with invariant symmetric bilinear form \(\kappa \) (quadratic Lie algebra) and a \(\kappa \)-skew-symmetric derivation \(D \) on \(\mathfrak{g} \), the corresponding double extension is the quadratic Lie algebra \((\widehat{\mathfrak{g}}, \widehat{\kappa})\), where

\[
\widehat{\mathfrak{g}} := \mathbb{R} \times \mathfrak{g} \times \mathbb{R}
\]

\[
[(z_1, x_1, t_1), (z_2, x_2, t_2)] := (\kappa(Dx_1, x_2), t_1 Dx_2 - t_2 Dx_1 + [x_1, x_2], 0)
\]

\[
\widehat{\kappa}((z_1, x_1, t_1), (z_2, x_2, t_2)) := z_1 t_2 + z_2 t_1 + \kappa(x_1, x_2).
\]

Note: \(\widetilde{\mathfrak{g}} := \mathbb{R} \times \mathfrak{g} \) is a central ext. with cocycle \(\omega_D(x_1, x_2) := \kappa(Dx_1, x_2) \).

\(\widehat{\mathfrak{g}} \cong \widetilde{\mathfrak{g}} \times \widetilde{D} \mathbb{R} \) for \(\widetilde{D}(z, x) := (0, Dx) \).

Ex: \(\mathfrak{g} = u_2(\mathcal{H}), \quad Dx = [T, x], \quad T \in u(\mathcal{H}), \quad \kappa(Dx, y) = -\text{tr}(T[x, y]) \)

Rem: \(\mathfrak{k} \) Hilbert–Lie algebra \(\Rightarrow \) Any 2-cocycle \(\omega \) can be written as \(\omega(x, y) = (DX, y) \) with \(D \in \text{der}(\mathfrak{k}) \) \(\Rightarrow \) double extension \(\widehat{\mathfrak{k}}_D \).
2.4. Affine Kac–Moody groups

If \(k \) is a Hilbert–Lie algebra and \(\varphi \in \text{Aut}(k) \), then the loop algebra \(\mathcal{L}_\varphi(k) \) carries the scalar product \((\xi, \eta) := \int_0^{2\pi} (\xi(t), \eta(t)) \, dt \) and the derivation \(D\xi = \xi' \) is skew-symmetric. This leads to the double extension

\[
\hat{\mathcal{L}}_\varphi(k) = \mathbb{R} \oplus \mathcal{L}_\varphi(k) \oplus \mathbb{R}
\]

\[
[(z_1, \xi_1, t_1), (z_2, \xi_2, t_2)] := ((\xi'_1, \xi'_2), t_1 \xi'_2 - t_2 \xi'_1 + [\xi_1, \xi_2], 0)
\]

Theorem (N., ’02, N./Wockel ’09; Integrability Theorem)

If \(k \) is simple, then there exists a simply connected Fréchet–Lie group \(\hat{\mathcal{L}}_\varphi(K) \) with Lie algebra \(\hat{\mathcal{L}}_\varphi(k) \) and center \(\mathbb{T} \).

Definition

We call \(\hat{\mathcal{L}}_\varphi(K) \) the corresponding (affine) Kac–Moody group.

Goal: Understand unitary rep’s of \(\hat{\mathcal{L}}_\varphi(K) \) ⇒ We need root data.
2.5. Root systems for Kac–Moody groups

Here are the candidates for root systems of $\hat{\mathcal{L}}_\varphi(\mathfrak{k})$:

Theorem (Y. Yoshii, 2006)

The irreducible reduced locally affine root systems of infinite rank are the following $X_J^{(1)} := X_J \times \mathbb{Z}$ for $X_J \in \{A_J, B_J, C_J, D_J\}$, J an infinite set, and $B_J^{(2)} := (B_J \times 2\mathbb{Z}) \cup ((B_J)_{sh} \times (2\mathbb{Z} + 1))$, where $(B_J)_{sh} = \{\pm \varepsilon_j : j \in J\}$.

$C_J^{(2)} := (C_J \times 2\mathbb{Z}) \cup (D_J \times (2\mathbb{Z} + 1))$

$BC_J^{(2)} := (B_J \times 2\mathbb{Z}) \cup (BC_J \times (2\mathbb{Z} + 1))$, $BC_J := B_J \cup C_J$.

These root systems contain no root bases \Rightarrow No Dynkin diagrams.
To obtain root decompositions of $\hat{\mathcal{L}}_\varphi(\mathfrak{k})$, we assume:

\mathfrak{k} is simple, $\varphi \in \text{Aut}(\mathfrak{k})$ involution,

$\mathfrak{t} \subseteq \mathfrak{k}^\varphi := \{x \in \mathfrak{k} : \varphi(x) = x\}$ is maximal abelian.
Then \(\hat{\mathfrak{t}} := \mathbb{R} \times \mathfrak{t} \times \mathbb{R} \subseteq \hat{\mathcal{L}}_\varphi(\mathfrak{t}) \) is maximal abelian.

For \(\alpha : \mathfrak{t} \to i\mathbb{R} \) and \(n \in \mathbb{Z} \) we define \((\alpha, n) : \hat{\mathfrak{t}} \to i\mathbb{R} \) by

\[
(\alpha, n)(z, x, t) := \alpha(x) + \text{int}.
\]

Then the (anisotropic) root system \(\hat{\Delta} := \Delta(\hat{\mathcal{L}}_\varphi(\mathfrak{t}), \hat{\mathfrak{t}}) \) is

\[
\hat{\Delta} = (\Delta_+ \times 2\mathbb{Z}) \cup (\Delta_- \times (2\mathbb{Z} + 1)) \quad \text{with} \quad \Delta_\pm := \Delta(\mathfrak{t}^\pm, \mathfrak{t}) \quad \mathfrak{t}-(\text{weights}).
\]

Theorem (Realization of the 7 locally affine root systems)

For \(\Delta(\mathfrak{k}, \mathfrak{t}) = X_J \) we obtain \(\hat{\Delta} = \Delta(\hat{\mathcal{L}}(\mathfrak{k}), \hat{\mathfrak{t}}) = X_J^{(1)} \),
and \(\hat{\Delta} = \Delta(\hat{\mathcal{L}}_\varphi(\mathfrak{t}), \hat{\mathfrak{t}}) = X_J^{(2)} \) is obtained for \(\varphi(x) = \sigma x \sigma^{-1} \) as follows:

- \(B_J^{(2)} \) for \(\mathfrak{k} = \mathfrak{o}_2(\mathcal{H}) \), \(\sigma \) orth. reflection in a hyperplane, \(\mathfrak{t} \) of type \(B_J \).
- \(C_J^{(2)} \) for \(\mathfrak{k} = \mathfrak{u}_2(\mathcal{H}) \), \(\sigma \) antilinear with \(\sigma^2 = -1 \).
- \(BC_J^{(2)} \) for \(\mathfrak{k} = \mathfrak{u}_2(\mathcal{H}) \), \(\sigma \) antilinear with \(\sigma^2 = 1 \) and \(\ker(\mathfrak{t}) \neq \{0\} \).

Three root systems for \(\hat{\mathcal{L}}(\mathfrak{o}_2(\mathcal{H})) \cong \hat{\mathcal{L}}_\varphi(\mathfrak{o}_2(\mathcal{H})) \): \(B_J^{(1)}, D_J^{(1)} \) and \(B_J^{(2)} \).
Two root systems for \(\hat{\mathcal{L}}_\sigma(\mathfrak{u}_2(\mathcal{H})) \) (\(\sigma \) antilinear): \(C_J^{(2)} \) and \(BC_J^{(2)} \).
3.1. Bounded and semibounded representations

Definition
A unitary representation $\pi : G \to U(\mathcal{H})$ is called \textbf{smooth} if the space $\mathcal{H}_\infty := \{ v \in \mathcal{H} : G \to \mathcal{H}, g \mapsto \pi(g)v \text{ smooth} \}$ of smooth vectors is dense.

The derived representation: $d\pi(x)v = \frac{d}{dt}|_{t=0}\pi(\exp tx)v, \quad v \in \mathcal{H}_\infty, x \in \mathfrak{g}$.

The support function: $s_\pi : \mathfrak{g} \to \mathbb{R} \cup \{\infty\}, s_\pi(x) := \sup \text{Spec}(id\pi(x))$

Cone of semiboundedness: $W_\pi := \{ x \in \mathfrak{g} : s_\pi \text{ bounded in a nbhd of } x \}$.

Definition
A smooth representation is called \textbf{semibounded} if $W_\pi \neq \emptyset$.
It is called \textbf{bounded} if $W_\pi = \mathfrak{g}$.

Theorem (N. ’08)
π bounded iff $d\pi : \mathfrak{g} \to u(\mathcal{H})$ continuous iff $\pi : G \to U(\mathcal{H})$ norm-cont.
3.2. Automatic boundedness

Example

If K is compact, then every continuous unitary representation is a direct sum of irreducible ones and irreducible reps are bounded.

Remark

(a) If π is semibounded, then W_π is an open $\text{Ad}(G)$-invariant convex cone in g.
(b) If all open invariant cones in $g/\mathfrak{z}(g)$ are trivial, then every semibounded irreducible representation of G is bounded.
(c) All open invariant cones in $g/\mathfrak{z}(g)$ are trivial iff all open invariant cones in g intersect $\mathfrak{z}(g)$ (=$\text{fixed points of Ad}(G)$).

Examples

Lie algebras g for which open invariant cones in $g/\mathfrak{z}(g)$ are trivial:
(a) g semisimple Hilbert–Lie algebra (Bruhat–Tits Fixed Point Thm)
(b) $\mathfrak{u}(\mathcal{H})$, \mathcal{H} Hilbert space over $\mathbb{R}, \mathbb{C}, \mathbb{H}$.
4. Bounded representations of Hilbert–Lie groups

t simple Hilbert–Lie algebra, $t \subseteq \mathfrak{k}$ maximal abelian, Δ corresp. roots

Coroots: $\check{\alpha} \in it \cap [t^\alpha_C, t^{-\alpha}_C]$ with $\alpha(\check{\alpha}) = 2$, for $\alpha \in \Delta$

K the 1-connected Lie group with Lie algebra \mathfrak{k}; $T := \exp(t)$

$\mathcal{P}_T := \{ \lambda \in i t' : (\forall \alpha \in \Delta) \lambda(\check{\alpha}) \in \mathbb{Z} \} \cong \text{Hom}(T, \mathbb{T}) \subseteq i t'$ (T-weights)

Weyl group: $\mathcal{W} = \langle r_\alpha : \alpha \in \Delta \rangle \subseteq \text{GL}(t_C)$, $r_\alpha(x) = x - \alpha(x)\check{\alpha}$.

Theorem (Classification Theorem, N. ’98, ’11)

Bounded unitary representations of K are direct sums of irreducible ones. The irreducible bounded reps π_λ are characterized by their T-weight set

$$\text{conv}(\mathcal{W}\lambda) \cap (\lambda + Q), \quad Q = \langle \Delta \rangle_{\text{grp}} \subseteq \mathcal{P}_T \ (\text{root group}).$$

Classification of bounded irreps by $\mathcal{P}_T / \mathcal{W}$ (every $\lambda \in \mathcal{P}_T$ occurs).

Remark

(a) Bounded reps of K behave like reps of a compact group.
(b) The continuous representation theory of K is not type I (Boyer ’80)
5. Semibounded representations of Kac–Moody groups

\[G = \hat{\mathcal{L}}_\varphi(K) \] (1-connected) as above (7 types), \(d := (0, 0, -i) \in i\hat{\mathcal{L}}_\varphi(\mathfrak{k}) \)

- \(\pi \) irreducible semibounded rep of \(G \) \(\Rightarrow \) \(i \cdot d \in W_\pi \cup -W_\pi \)
 (positive/negative energy representations if \(\pm d\pi(d) \) bounded below).
- We use that \(\mathfrak{k}^\varphi \) is simple, hence all its open inv. cones are trivial.
- On the minimal/maximal eigenspace of \(d\pi(d) \) we find a bounded irreducible representation \(\rho_\lambda \) of \(Z_G(d) \cong \mathbb{T} \times K^\varphi \times \mathbb{R} \)

Theorem (Classification Theorem, Part 1)

Irreducible semibounded representations \(\pi_\lambda \) of \(\hat{\mathcal{L}}_\varphi(K) \) are extremal weight representations characterized by their \(\hat{\mathfrak{t}} \)-weight set

\[\mathcal{P}_\lambda := \text{conv}(\hat{\mathcal{W}}\lambda) \cap (\lambda + \hat{Q}) \quad \text{with} \quad \text{Ext}(\text{conv}(\mathcal{P}_\lambda)) = \hat{\mathcal{W}}\lambda \]

(\(\hat{\mathcal{W}} \) is the Weyl group of \(\hat{\Delta} \)). The set of occurring extremal weights \(\lambda \) is

\[\mathcal{P}^\pm := \{ \mu \in \mathcal{P}_{\hat{\varphi}} : \pm (\hat{\mathcal{W}}\mu)(d) \text{ bounded from below} \} \]
Let $\mathcal{P}^\pm_d \subseteq \mathcal{P}^\pm$ denote those elements μ for which $\mu(d)$ is minimal/maximal in $\hat{\mathcal{W}}\mu$. With $c := \mu(i, 0, 0)$ (central charge), the elements $\mu \in \mathcal{P}^+_d$ are characterized by:

$$c \geq 0, \quad |\mu(\tilde{\alpha})| \leq \frac{2c}{(\alpha, \alpha)}, \quad |\mu(\tilde{\beta})| \leq \frac{4c}{(\beta, \beta)} \quad \text{for} \quad (\alpha, 1), (\beta, 2) \in \hat{\Delta}. \quad \tag{1}$$

\textbf{Theorem (Classification Theorem, Part 2)}

\textit{Classification of semibounded irreps:} $\mathcal{P}^\pm / \hat{\mathcal{W}} \cong \mathcal{P}^\pm_d / \mathcal{W}$.

\textbf{Methods:}

- **Convex geometry** of $\hat{\mathcal{W}}$-orbits (local Coxeter theory).
- **Complex geometry**: Realization of π_λ in holomorphic sections of a complex Hilbert bundle with fiber representation ρ_λ of $Z_G(d)$ over the complex manifold $G/Z_G(d) \cong \mathcal{L}_\varphi(K)/K^\varphi$ (holomorphic induction).
- **Harmonic analysis**: Locally defined operator-valued analytic positive definite functions; automatic extension.
6. Semibounded projective reps of Hilbert–Lie groups

Problem: Boundedness of representations of a Hilbert–Lie group K is rather restrictive. It excludes important representations like “infinite wedge representations”. These lead to projective representations, hence to central extensions and further to double extensions.

Setup: \mathfrak{k} simple Hilbert–Lie algebra, $\mathfrak{t} \subseteq \mathfrak{k}$ maximal abelian, $\check{\Delta} \subseteq i\mathfrak{t}$ coroots

A \mathfrak{t}-invariant continuous cocycle $\omega(x, y)$ on \mathfrak{k} can be represented by $D \in \text{der}(\mathfrak{k})$ via $\omega(x, y) = (Dx, y)$ and there exists a linear functional $\lambda: \mathfrak{t} \cap [\mathfrak{k}, \mathfrak{k}] \rightarrow i\mathbb{R}$ with

$$\omega(x, y) = i\lambda([x, y]) \quad \text{for} \quad x, y \in \mathfrak{k}.$$

We call λ a bounded weight if $\lambda(\check{\alpha}) \in \mathbb{Z}$ for $\alpha \in \Delta$; \mathcal{P}_b set of bd weights.

Definition

For $\lambda \in \mathcal{P}_b$ we write $\hat{\mathfrak{k}}_\lambda = \mathbb{R} \oplus \mathfrak{t} \oplus \mathbb{R}$ for the corresp. double extension. $\hat{\mathfrak{t}} := \mathbb{R} \oplus \mathfrak{t} \oplus \mathbb{R} \subseteq \hat{\mathfrak{k}}_\lambda$ is maximal abelian.

\hat{K}_λ is the corresponding 1-connected group; $\hat{T} := \exp \hat{\mathfrak{t}} \subseteq \hat{K}_\lambda$.

$\mathcal{P}_{\hat{T}} \subseteq \text{Hom}(\hat{\mathfrak{t}}, i\mathbb{R})$ (group of \hat{T}-weights).
Irreducible semibounded representations π_μ of \hat{K}_λ are extremal weight representations characterized by their \hat{t}-weight set

$$P_\mu := \text{conv}(\mathcal{W}_\mu) \cap (\mu + \mathbb{Q}) \quad \text{with} \quad \text{Ext}(\text{conv}(P_\mu)) = \mathcal{W}_\mu.$$

Put $d := (0, 0, -i) \in \hat{t}$. The set of occurring extremal weights is

$$P^\pm := \{\mu \in P_{\hat{t}} : \pm (\mathcal{W}_\mu)(d) \text{ bounded from below}\}.$$

By minimizing/maximizing, we get the d-extremal weights

$$P^\pm_d = \{\mu \in P_{\hat{t}} : (\forall \alpha \in \Delta) \lambda(\check{\alpha}) > 0 \Rightarrow \pm \mu(\check{\alpha}) \geq 0\}.$$

Classification: $P^\pm / \mathcal{W} \cong P^\pm_d / \mathcal{W}_\lambda$, where $\mathcal{W}_\lambda \subseteq \mathcal{W}$ is the stabilizer of λ.

Remark: (a) Representations of \hat{K}_λ are projective representations of K. (b) For $K = U_2(\mathcal{H})$ we cover in particular infinite wedge representations.
Again, projective representations of \(\hat{\mathcal{L}}_{\varphi}(K) \) lead to double extensions of \(g = \hat{\mathcal{L}}_{\varphi}(\mathfrak{k}) \), hence to iterated double extensions \(\hat{\hat{\mathcal{L}}}_{\varphi}(\mathfrak{k}) \). Here the cocycle is of the form

\[
\omega((z_1, \xi_1, t_1), (z_2, \xi_2, t_2)) := \frac{1}{2\pi} \int_0^{2\pi} i\lambda([\xi_1(t), \xi_2(t)]) \, dt
\]

for some bounded weight \(\lambda \in \mathcal{P}_b \) for \((\mathfrak{k}, \mathfrak{t})\). Corresponding Lie groups \(\hat{\hat{\mathcal{L}}}_{\varphi}(K) \) exist, and for \(d = (0, 0, -i) \in i\hat{\mathcal{L}}_{\varphi}(\mathfrak{k}) \) we have

\[
Z_g(d) = \mathbb{R} \oplus (\mathbb{R} \oplus \mathfrak{t}_{\varphi} \oplus \mathbb{R}) \oplus \mathbb{R} = \mathbb{R} \oplus \hat{\mathfrak{t}}_{\lambda} \oplus \mathbb{R}.
\]

Semibounded representations of \(\hat{\hat{\mathcal{L}}}_{\varphi}(K) \) now lead to semibounded representations of the double extension \((\hat{K}_{\varphi})_{\lambda}\). These representations are classified!
Conjecture

Irreducible semibounded representations π_μ of $\hat{L}_\varphi(K)$ are extremal weight representations characterized by their \hat{t}-weight set

$$\mathcal{P}_\mu := \text{conv}(\hat{\mathcal{W}}\mu) \cap (\mu + \hat{Q}) \quad \text{with} \quad \text{Ext}(\text{conv}(\mathcal{P}_\mu)) = \hat{\mathcal{W}}\mu.$$

The set of occurring extremal weights is

$$\mathcal{P}^\pm := \{ \mu \in \mathcal{P}_{\hat{t}} : \pm (\hat{\mathcal{W}}\mu)(d) \text{ bounded from below} \}.$$

By minimizing/maximizing, we get the d-extremal weights \mathcal{P}_d^\pm.

Classification of semibounded irreps: $\mathcal{P}^\pm / \hat{\mathcal{W}} \cong \mathcal{P}_d^\pm / \hat{\mathcal{W}}_d$.

Problems: (a) The complex geometric Banach methods (holomorphic induction) break down because the representations of \hat{K}_λ are unbounded. We need a weaker notion of a complex Hilbert bundle.
(b) The iterated double extension creates 2 “d-elements”, but semiboundedness should be controlled by the first one. This requires refined information on convexity properties of coadjoint orbits.
Positive energy vs. semiboundedness

- **Semiboundedness is stronger than the positive energy condition** $d \pi(d) \text{bd. below.}$ It is crucial that semiboundedness implies boundedness of the K-representation on the minimal energy space. This is automatic if K is compact. In general K has many irreducible unbounded representations which are harder to control, f.i., Boyer's factor representations of $U_2(H)$. We do not expect that the positive energy condition implies semiboundedness in general.

- **Semiboundedness is intrinsic**, it does not refer to the specification of an element $d \in \mathfrak{g}$, such as the positive energy condition. It also does not refer to a specific Cartan subalgebra.

- Our classification results hold for each of the 7 types of root systems of the 4 classes of Lie algebras. For different root systems, resp., conjugacy classes of Cartan subalgebras, we obtain different parameters for the same representations.
Concluding remarks

- **Non-connected loop groups**: \(\pi_0(\mathcal{L}(K)) \cong \pi_1(K) \) is non-trivial in general. Which semibounded representations extend to non-connected groups?

- We need a better understanding of the concept of a Cartan subalgebra for \(\widehat{\mathcal{L}_\varphi}(\mathfrak{k}) \). Are there finitely many conjugacy classes?

- Describe the automorphism group of \(\mathcal{L}_\varphi(\mathfrak{k}) \).

- Are there also semibounded representations for double extensions of mapping groups \(C^\infty(M, K) \), where \(\dim M > 1 \)? The corresponding derivations should correspond to divergence free vector fields on \(M \). Possibly one has to consider \(n \)-fold iterated double extensions, where \(n = \dim M \). Here \(M = \mathbb{T}^2 \) is the natural testing case.

- For \(K = U_2(\mathcal{H}) \), \(\mathcal{H} \) complex, we have \(\text{Aut}(K)_0 \cong \text{PU}(\mathcal{H}) \), so that \(K \)-group bundles with this structure group over \(X \) are classified by their Dixmier–Douady classes in

\[
[X, B \text{PU}(\mathcal{H})] = [X, K(\mathbb{Z}, 3)] \cong H^3(X, \mathbb{Z}).
\]