Wreath products as isometry groups of non standard metric products

Bogdana Oliynyk
Kyiv Taras Shevchenko University, Kyiv, Ukraine
Braniewo, March 28, 2012

Let $\left(X_{i}, d_{i}\right), i=1, \ldots, n$, be metric spaces. To define a metric on their cartesian products $X=\prod_{i=1}^{n} X_{i}$ one can use, for instance, one of the following equalities
$d\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=d_{1}\left(x_{1}, y_{1}\right)+\ldots+d_{n}\left(x_{n}, y_{n}\right)$;
$\widetilde{d}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\sqrt{d_{1}^{2}\left(x_{1}, y_{1}\right)+\ldots+d_{n}^{2}\left(x_{n}, y_{n}\right)}$.

There are different generalizations of these constructions. They include f-products (M. Moszynska, 1992), warped products (C.-H. Chen, 1999), μ-products (S. Avgustinovich, D. Fon-Der-Flaass, 2000), etc.

Following A. Bernig, T. Foertsch, V. Schroeder (2003) we consider non standard metric products or Φ-products of metric spaces.

Assume that $\Phi:[0, \infty)^{n} \rightarrow[0, \infty)$ be a function such that the following conditions hold
(A) $\Phi\left(p_{1}, p_{2}, \ldots, p_{n}\right)=0$ iff $p_{1}=p_{2}=\ldots=p_{n}=0$;
(B) for arbitrary $q_{i}, r_{i}, p_{i} \in[0, \infty)$ such that $q_{i} \leq r_{i}+p_{i}$,
$1 \leq i \leq n$, the inequality

$$
\Phi\left(q_{1}, \ldots, q_{n}\right) \leq \Phi\left(r_{1}, \ldots, r_{n}\right)+\Phi\left(p_{1}, \ldots, p_{n}\right)
$$

holds.

Then the function

$$
d_{\Phi}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\Phi\left(d_{1}\left(x_{1}, y_{1}\right), \ldots, d_{n}\left(x_{n}, y_{n}\right)\right)
$$

is a metric on X.
Definition
The metric space $\left(X, d_{\Phi}\right)$ is called a Φ-product or non standard metric product of metric spaces X_{1}, \ldots, X_{n}.

Let q be a positive real number. It is easy to see that the function

$$
\hat{\Phi}\left(p_{1}, p_{2}, \ldots, p_{n}\right)= \begin{cases}0, & \text { if } p_{1}=p_{2}=\ldots=p_{n}=0 \\ q, & \text { in other cases }\end{cases}
$$

meets conditions (A) and (B).
The isometry group of $\left(X, d_{\hat{\phi}}\right)$ is isomorphic as a permutation group to the symmetric group $S_{|X|}$. This is the largest possible isometry group of Φ-products of X_{1}, \ldots, X_{n}.

Proposition 1 Let X be a Φ-product of metric spaces X_{1}, \ldots, X_{n}, $n \geq 2$. Then the transformation group (Isom X, X) contains a subgroup isomorphic to the direct product of the transformation groups

$$
\left(\operatorname{Isom}_{1}, X_{1}\right) \times \ldots \times\left(\operatorname{Isom} X_{n}, X_{n}\right)
$$

Let now $\left(X_{1}, d_{1}\right), \ldots,\left(X_{n}, d_{n}\right)$ be discrete spaces, i.e., for different points $u, v \in X_{i} d_{i}(u, v)=1,1 \leq i \leq n$. And let $\left|X_{i}\right|=k_{i}$, $1 \leq i \leq n$. We can introduce the function $\Phi_{1}:[0, \infty)^{n} \rightarrow[0, \infty)$ putting

$$
\Phi_{1}\left(q_{1}, \ldots, q_{n}\right)=\left\{\begin{array}{lll}
q_{1}, & & \text { if } q_{1} \neq 0 ; \\
\frac{1}{2} q_{2}, & & \text { if } q_{1}=0 \text { and } q_{2} \neq 0 ; \\
\ldots & \ldots & \ldots \\
\frac{1}{n} q_{n}, & & \text { if } q_{1}=0, \ldots, q_{n-1}=0, q_{n} \neq 0 ; \\
0, & & \text { if } q_{1}=0, \ldots, q_{n}=0 .
\end{array}\right.
$$

Let T be a finite n-levels rooted tree with root v_{0}. Assume, that a rooted tree T is level homogenous with level index $\left[k_{1} ; k_{2} ; \ldots, k_{n}\right]$, where k_{i} is the number of edges joining a vertex of the i-th level with vertices of the $(i+1)$-st level. The metric space δT is defined to be the set of all rooted path of T equipped with a natural ultrametric

$$
\rho\left(\gamma_{1}, \gamma_{2}\right)=1 /(m+1)
$$

where m is the length of the maximal common part of rooted paths γ_{1} and γ_{2}.

The space δT of paths in the rooted level homogeneous tree T and the Φ_{1}-product of discrete metric spaces X_{1}, \ldots, X_{n} are isometric. It is well known that the isometry group of the space δT is isomorphic as a permutation group to the wreath product of symmetric group $S_{k_{i}}, i=1, \ldots, n$.
Therefore, the isometry group of the space $\left(X_{1} \times \ldots \times X_{n}, d_{\Phi_{1}}\right)$ is isomorphic as a permutation group to the wreath product of isometry groups of discrete spaces $X_{i}, i=1, \ldots, n$.

Let now $\left(X_{i}, d_{i}\right), i=1, \ldots, n$, be arbitrary metric spaces. And let as before C_{i} be the set of values of metric $d_{i}, 1 \leq i \leq n$. Assume that there exist functions $f_{i}:[0, \infty) \rightarrow[0, \infty), 1 \leq i \leq n$, such that
$\Phi\left(q_{1}, \ldots, q_{n}\right)=\left\{\begin{array}{lll}f_{1}\left(q_{1}\right), & \text { if } q_{1} \neq 0 ; \\ f_{2}\left(q_{2}\right), & & \text { if } q_{1}=0 \text { and } q_{2} \neq 0 ; \\ \ldots & \ldots & \ldots \\ f_{n}\left(q_{n}\right), & \text { if } q_{1}=0, \ldots, q_{n-1}=0, q_{n} \neq 0 ; \\ 0, & \text { if } q_{1}=0, \ldots, q_{n}=0\end{array}\right.$
for arbitrary $q_{i} \geq 0,1 \leq i \leq n$.

For each $i, 1 \leq i \leq n$, denote by \widehat{X}_{i} the space $\left(X_{i}, \widehat{d}_{i}\right)$, where for arbitrary $u, v \in X_{i}$

$$
\widehat{d}_{i}(u, v)=\left\{\begin{array}{ll}
f_{i}\left(d_{i}(u, v)\right), & \text { if } u \neq v \\
0, & \text { in other cases }
\end{array} .\right.
$$

Assume that for all $i, 1 \leq i \leq n-1$, the inequalities

$$
\begin{equation*}
\inf _{q_{i} \in C_{i}, q_{i} \neq 0} f_{i}\left(q_{i}\right)>\sup _{q_{i+1} \in C_{i+1}} f_{i+1}\left(q_{i+1}\right) \tag{2}
\end{equation*}
$$

hold.

Theorem

Let $\Phi:[0, \infty)^{n} \rightarrow[0, \infty)$ be a function such that conditions (A), (B), (1) and (2) hold. Then the isometry group of the Φ-product of metric spaces $X_{1}, X_{2}, \ldots, X_{n}$ is isomorphic as a permutation group to the wreath product of isometry groups of spaces $\widehat{X}_{i}, i=1, \ldots, n$,

$$
\left(\operatorname{Isom}\left(X, d_{\Phi}\right), X\right) \simeq \imath_{i=1}^{n}\left(\operatorname{Isom} \widehat{X}_{i}, X_{i}\right)
$$

Corollary

Let $\Phi:[0, \infty)^{n} \rightarrow[0, \infty)$ be a function such that the conditions (A), (B), (1) and (2) hold. If

$$
\operatorname{Isom}\left(X_{i}, f_{i}\left(d_{i}\right)\right)=\operatorname{Isom}\left(X_{i}, d_{i}\right)
$$

for all $i, 1 \leq i \leq n$, then
$(\operatorname{Isom} X, X) \simeq \imath_{i=1}^{n}\left(\operatorname{Isom} X_{i}, X_{i}\right)$.

Example

Let $X_{i}=\mathbb{Z}$ and d_{i} be the Euclidean distance, $1 \leq i \leq n$. The function
$\Phi_{5}\left(q_{1}, \ldots, q_{n}\right)= \begin{cases}n+1-\frac{1}{q_{1}+1}, & \text { if } q_{1} \neq 0 ; \\ n-\frac{1}{q_{2}+1}, & \text { if } q_{1}=0 \text { and } q_{2} \neq 0 ; \\ \ldots \ldots & \ldots \\ 2-\frac{1}{q_{n}+1}, & \text { if } q_{1}=0, \ldots, q_{n-1}=0, q_{n} \neq 0 ; \\ 0, & \text { if } q_{1}=0, \ldots, q_{n}=0 .\end{cases}$
meets conditions (A), (B), (1) and (2). Therefore, one can consider the Φ_{5}-product $\left(\mathbb{Z} \times \ldots \times \mathbb{Z}, d_{\Phi_{5}}\right)$ of $X_{i}, 1 \leq i \leq n$. The isometry group of $\left(\mathbb{Z} \times \ldots \times \mathbb{Z}, d_{\Phi_{5}}\right)$ is isomorphic as a permutation group to the wreath product of n infinite dihedral groups D_{∞}.

$$
\left(\operatorname{Isom}\left(\mathbb{Z} \times \ldots \times \mathbb{Z}, d_{\Phi_{5}}\right), \mathbb{Z} \times \ldots \times \mathbb{Z}\right) \simeq \imath_{i=1}^{n}\left(D_{\infty}, \mathbb{Z}\right)
$$

Example

Let $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ be metric spaces of finite diameters D_{1}, D_{2}. Assume that there exists a positive number r such that for arbitrary points $x_{1}, x_{2} \in X_{1}, x_{1} \neq x_{2}$, the inequality $d_{1}\left(x_{1}, x_{2}\right) \geq r$ holds. Let $\Phi_{3}\left(q_{1}, q_{2}\right)=\max \left(q_{1}, q_{2}\right)$.
If the inequality

$$
r>D_{2}
$$

holds then

$$
\operatorname{Isom}\left(X_{1} \times X_{2}, d_{\Phi_{3}}\right) \simeq \operatorname{Isom} X_{1} \text { IIsom } X_{2}
$$

Now we consider Φ-products $\left(X_{1} \times X_{2}, d_{\Phi}\right)$ of two metric spaces $\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right)$. For each $a_{1} \in X_{1}, a_{2} \in X_{2}$ let

$$
X_{a_{1}}^{2}=\left\{\left(a_{1}, x_{2}\right) \mid x_{2} \in X_{2}\right\}, \quad X_{a_{2}}^{1}=\left\{\left(x_{1}, a_{2}\right) \mid x_{1} \in X_{1}\right\}
$$

be subspaces of $\left(X_{1} \times X_{2}, d_{\Phi}\right)$. The points of spaces $X_{a_{1}}^{2}, a_{1} \in X_{1}$ are in natural one-to-one correspondence with the points of the space X_{2}, while the points of spaces $X_{a_{2}}^{1}, a_{2} \in X_{2}$ are in natural one-to-one correspondence with the points of X_{1}. Hence we can assume that the group Isom $X_{a_{1}}^{2}$ acts on the set X_{2} and the group $\operatorname{Isom} X_{a_{2}}^{1}$ acts on the set X_{1}.

Denote by C_{i} the set of values of the metric $d_{i}, i=1,2$. Assume that inequalities

$$
\begin{align*}
\inf _{q_{1} \in C_{1}, q_{1} \neq 0} \Phi\left(q_{1}, 0\right)> & \sup _{q_{2} \in C_{2}} \Phi\left(0, q_{2}\right), \\
& \inf _{q_{2} \in C_{2}, q_{2} \neq 0} \Phi\left(0, q_{2}\right)>\frac{1}{2} \sup _{q_{1} \in C_{1}} \Phi\left(q_{1}, 0\right) . \tag{3}
\end{align*}
$$

hold.

Theorem

Let $\Phi:[0, \infty)^{2} \rightarrow[0, \infty)$ be a function such that conditions (A),(B) and inequalities (3) hold. Assume that

$$
\begin{equation*}
\Phi\left(q_{1}, q_{2}\right)=\Phi\left(q_{1}, 0\right)+\Phi\left(0, q_{2}\right) \tag{4}
\end{equation*}
$$

Then

$$
(\operatorname{Isom} X, X) \simeq\left(\operatorname{Isom} X_{a_{2}}^{1}, X_{1}\right) \times\left(\operatorname{Isom} X_{a_{1}}^{2}, X_{2}\right)
$$

for any $\left(a_{1}, a_{2}\right) \in X_{1} \times X_{2}$.

Corollary

Let $\Phi:[0, \infty)^{2} \rightarrow[0, \infty)$ be a function such that conditions (A),(B) and inequalities (3) hold. Assume that

$$
\Phi\left(q_{1}, q_{2}\right)=\Phi\left(q_{1}, 0\right)+\Phi\left(0, q_{2}\right)
$$

If Isom $X_{a_{2}}^{1}=\operatorname{Isom} X_{1}, \operatorname{Isom} X_{a_{1}}^{2}=\operatorname{Isom} X_{2}$ for some $\left(a_{1}, a_{2}\right) \in X_{1} \times X_{2}$, then

$$
(\operatorname{Isom} X, X) \simeq\left(\operatorname{Isom} X_{1}, X_{1}\right) \times\left(\operatorname{Isom} X_{2}, X_{2}\right)
$$

Example

Let $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ be uniformly discrete metric spaces of finite diameters D_{1}, D_{2} correspondingly. And let r_{1}, r_{2} be positive numbers, such that for arbitrary points $x_{1}, x_{2} \in X_{i}, x_{1} \neq x_{2}$, the inequalities $d_{i}\left(x_{1}, x_{2}\right) \geq r_{i}$ hold, $i=1,2$. Denote $\Phi_{2}\left(q_{1}, q_{2}\right)=q_{1}+q_{2}$. Then the function $\Phi_{2}\left(q_{1}, q_{2}\right)$ meets conditions (A) and (B). If the inequalities

$$
r_{1}>D_{2} \geq r_{2}>\frac{1}{2} D_{1} \text { or } r_{2}>D_{1} \geq r_{1}>\frac{1}{2} D_{2}
$$

hold then the inequalities (3) hold as well. Therefore

$$
\operatorname{Isom}\left(X_{1} \times X_{2}, d_{\Phi_{2}}\right) \simeq \operatorname{Isom} X_{1} \times \operatorname{Isom} X_{2} .
$$

Example

Let $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ be metric spaces. Let

$$
\Phi_{1}\left(q_{1}, q_{2}\right)=\left\{\begin{array}{ll}
0, & \text { if } p_{1}=p_{2}=0 \\
4, & \text { if } p_{1} \neq 0, p_{2}=0 \\
3, & \text { if } p_{1}=0, p_{2} \neq 0 \\
q_{1}+q_{2}, & \text { in other cases }
\end{array} .\right.
$$

Then

$$
\operatorname{Isom}\left(X_{1} \times X_{2}, d_{\Phi_{1}}\right) \simeq S_{\left|X_{1}\right|} \times S_{\left|X_{2}\right|} .
$$

Let $\left(G_{1}, X_{1}\right), \ldots,\left(G_{n}, X_{n}\right)$ be a sequence of transformation groups. Following Kaloujnine L.A., Beleckij P.M., Feinberg V.T the transformation group ($G, \prod_{i=1}^{n} X_{i}$) is called the wreath products of groups $\left(G_{1}, X_{1}\right), \ldots,\left(G_{n}, X_{n}\right)$ if for all elements $u \in G$ the following conditions hold:

1) if $\left(x_{1}, \ldots, x_{n}\right)^{u}=\left(y_{1}, \ldots, y_{n}\right)$, then for all $i, 1 \leq i \leq n$, the value of y_{i} depends only on x_{1}, \ldots, x_{i};
2) for fixed x_{1}, \ldots, x_{i-1} the mapping $g_{i}\left(x_{1}, \ldots, x_{i-1}\right)$ defined by the equality

$$
g_{i}\left(x_{1}, \ldots, x_{i-1}\right)\left(x_{i}\right)=y_{i}, \quad x_{i} \in X_{i}
$$

is a permutation on the set X_{i} which belongs to G_{i}. Denote the wreath products of groups $\left(G_{1}, X_{1}\right), \ldots,\left(G_{n}, X_{n}\right)$ by $2_{i=1}^{n}\left(G_{i}, X_{i}\right)$.

