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SHORT INTRODUCTION:
Differential ideals in Differential rings

2.1. The generalized Riemann type hydrodynamical equation: the case N=3. We will
begin with considering [5, 6, 7, 8] the differential ring R((z,?)) with two differentiations D, := d/0x
and Dy : R((x,t)) — R((z,1)), satisfying the following Lie-algebraic commutator relationship:

(2.1) Dy, D] = (Dyu)Dy,

where an element u € R((z,1)) is fixed.
The generalized Riemann type hydrodynamical equation at an arbitrary N € Z. reads as

follows:

(2.2) DY u=0.

Subject to the Riemann type hydrodynamical equation (2.2) at N =3
(2.3) Diu=0
we would like to construct analytically a so called "Lax differential ideal” L[ul((z,t)) C R((z,1)),

realizing its Lax type integrability and the related adjoint linear matrix representations of the
differentiations D and D; : R((z,t)) — R"((z,t)) in the space R ((z,)) for some integer p € Z,.




To proceed with analyzing the integrahility problem of the generalized Riemann type
equation (2.3) we construct an adjoint invariant, so called "Riemann differential ideal”,

Rlu]((z,1)) C R((z,1)) as
Rlu]((x =AY fDpu- Y [P0+ Y DD : Diu=0,

ﬂEE.|. TIEE.|. ﬂEE_|.

24) [ € R((z1),k=T3neL} CR((x1)
and formulate the following simple but important lemma.

Lemma 2.1. The kernel Ker D; C Rlu|((z,t)) of the differentiation D; : R((z,t)) = R((z,1)),
reduced upon the Riemann differential ideal Rlu]((z,t)) C R((x,)), is generated by elements, sat-
isfying the following linear functional-differential relationships:

(2-5) th” 0, th f th{g}:f{g}:

where, by definition, f* = f*F)()) =  J . fy{;.k) A" € R((z,1)),k=1,3, and X € R is arbitrary.




It 1s easy to see that equations (2.5) can be equivalently rewritten both in the matrix form as

0 0 0
(26) Dif =qNf, aN=[ A 0 ¢
01 0

where f := (f“},f(g}= f("]})T e R3((z,t)), A € R is an arbitrary "spectral” parameter, and in the
compact scalar form as

(2.7) D;fs=0

for an element f3 € R((z,f). Now we can construct by means of relationship (2.7) a new, so-
called " Lax differential ideal” L[u|((z,?)) C R((z,t)), isomorphic to the Riemann differential ideal
R[ul((z,t)) € R((z,t)) and realizing the Lax type integrability condition of the Riemann type
hydrodynamical equation (2.3). Namely, based on the result of Lemma 2.1 the following proposition
holds.

Proposition 2.2. The expression (2.6) is an adjoint linear matriz representation in the
space RP((z,t)) at p = 3 of the differentiation Dy : R((z,t)) — R((z,t)), reduced
to the ideal Rul((z,t)) C R((z,t)). The related Dy- and D;-invariant Laz differential
ideal L[ul((z,t)) C R((z,t)), which is isomorphic to the invariant Riemann differential ideal
R[u|((z,t)) C R((z,t)), is generated by elements fs(A) € R((z,t)),A € R, satisfying condition
(2.7), and equals

Li((z,t)) : ={g1fa() + 2D fa(N) + gaD; fa(A) : D} fa(\) = 0,
(2.8) A € R,g; €R((x1),j=T3}CR((z,1))



Proceed now to constructing a related adjoint linear matrix representation in the space
R3((z,t)) for the differentiation D, : R((z,t)) = R((z,t)), reduced upon the Lax differential
ideal Llul((x,t)) C R((z,t)). For this problem to be solved, we need to take into account the
commutator relationship (2.1) and the important invariance condition of the Lax differential ideal
L[u|((z,t)) C R((z,t)) with respect to the differentiation D, : R((z,t)) = R((z,t)). As a result of
simple but slightly tedious calculations one obtains the following matrix representation:

Ay —Uy -

(2.9) Dy f =tu,v,z; Alf, Lu,v,z;]A] = 3\ —2duy vy
6A2r[u,v,2]  —3)\  Aug

where, by definition, v := Diu,z = Dyv, (...); := Dz(...), a vector f € R3((z,f)), A € Ris

an arbitrary spectral parameter and a smooth mapping r : R*((z,t)) — R solves the following
functional-differential equation

1

(2.10) Dir+rDyu=1.

Moreover, the matrix ¢ := f[u,v,z; ] : R*((z,t)) — RS((I,f)} satisfies the following determining
tunctional-differential equation:

(2.11) Dyl + £Dgu = [g(N), £]

"
s

where [-,-] denotes the usual matrix commutator in the space R*((x,t)). Thereby, the following
proposition solving the problem, posed above, holds.



Proposition 2.3. The expression (2.9) is an adjoint linear matriz representation in the space
R3((z,t)) of the differentiation D, : R((z,t)) =R((z,t)), reduced upon the invariant Laz differen-
tial ideal L[u)((z,t)) C R((z,t)), given by (2.8).

Remark 2.4. Tt is here necessary to mention that matrix representation (2.6) coincides completely
with that obtained before in the work [10] by means of completely different methods, based mainly
on the gradient-holonomic algorithm, devised in [17, 18, 19]. The presented derivation of these
representations (2.6) and (2.9) is much more easier and simpler that can be, eventually, explained
by a deeper insight into the integrability problem, devised above within the differential algebraic
approach.

2.2. The solution set analysis of the functional-differential equation D;r +rD,u = 1.

Below we will describe all functional solutions to equation (2.15), making use of the lemma,
following from the results of [10].

Lemma 2.6. The following functions
(2.16) Bo=¢£&(2), By =u—tv+2t2/2, B =v—2zt, Ba=x—tu+vt’/2— 2t /6,

where £ : R((x,t)) = R((x,t)) is an arbitrary smooth mapping, are the main invariants of the
Riemann type dynamical system (2.13), satisfying the determining condition

(2.17) DB = 0.

As a simple inference of relationships (2.16) the next lemma holds.



Lemma 2.7. The local functionals

u 1'.-"2 Uy ’UfE uv 1’3
218 — b::———b::——_mb:: e s o0 S
and ) . ’
b]. = _:rb2 = —
4 i

on the functional manifold M are the basic functional solutions b; : M — R((z,t)),5 = 0,3, and
be : M = R((z,1)),k =1,2, to the determining functional-differential equations

(2.19) D:b=0
and

(2.20) D=1,
respectively.

Now one can formulate the following theorem about the general solution set to the functional-
differential equation (2.19).




Theorem 2.8. The following infinite hierarchies
(2.21) iy = (aDs)"bs, nyy = (aDs)" by,

where a:=1/z5, j=0,3, k=1,2 and n € L, are the basic functional solutions to the functional-
differential equation (2.19), that is

(2.22) Day,} =0
fors=1,2,7=0,3 and alln € Ly.

Proceed now to analyzing the solution set to functional-differential equation (2.15), making use
of the following transformation:
a
(2.23) =
an
where 17 : M — R((z,1)) is any solution to equation (2.22) and a smooth functional mapping a :
M — R((z,t)) satisfies the following determining functional-differential equation:

(2.24) Dia = an.

Then any solution to functional-differential equation (2.15) reads as
a

(2.25) r=—+m,
o

where 75 : M = R((z,1)) is any smooth solution to the functional-differential equation (2.22).



To find solutions to equation (2.24), we make use of the following linear a-expansion in the
corresponding Riemann differential ideal Ra|((z,t)) C R((z,t)) :

(2.26) a=c3+cpa+cia + e € Rla((z, ),
where & := D;a, & := D?a and taking into account that all functions a, & and & are functionally

independent owing to the fact that & := Dfa = 0. As a result of substitution (2.26) into (2.24)
we obtain the relationships

(2.27) citep=0,co=n cote; =0 c3+co=0.

The latter allow, owing to (2.20), at the special solution n = 1 to equation (2.22) two functional
solutions for the mapping ¢ : M = R((z,1)) :
(2.28) V=" PB=

Zr

As a result, we obtain, solving the recurrent functional equations (2.27), that

2
1 &
) &) = [wv-/Y/d =2~ 2%
22 272
BLL a0’ — Uz +”'(”3_“g) I
: 62,25 22,22 63 .

giving rise to the following three functional solutions to (2.15):



3 3 2
(1) vpt® ugvt ufuz—ve)z v
2.30 = — -
(2:30) "l 623 222 . 623 iy 7'
2
vy U
rgﬂ = (zv—1u?/2)/2]e, 2= z_: — i

2
Having now chosen the next special solution 7 := by = g—: — %"g to equation (2.22), one easily
ohtains from (2.27) that the functional expression

2 2
Uy Ugly 3 2

622 222 i by 2y 22
also solves the functional-differential equation (2.27). Doing further the same way as above, one

can construct an infinite set R of the searched solutions to the functional-differential equation
(2.27) on the manifold M. Therehy one can formulate the following theorem.

(2.31) —




Theorem 2.9. The complete set R of functional-differential solutions to equation .15) on the
manifold M 1is generated by functional solutions in the form (2.25) to the reduced functional-
differential equations (2.22) and (2.2}).

In particular, the subset

9 9 9
s (1)Ul Ul wuz —v)z, v @ 5
23) R = {1 =gyt ton ==/,
9 9 9
Up U5 U, Uy 3 Uy U
s ST e _ - R
N 2 Ezm’rg (ﬁzg 272 T 431,)/(21 233)} .

coincides exactly with that found hefore in article [10].




2.3. The generalized Riemann type hydrodynamical equation: the case N=4. Now
consider the generalized Riemann type differential equation (2.2) at N =4

(2.33) Diu=0

on an element u € R((z,f)) and construct the related invariant Riemann differential ideal
Rul((z,t)) C R((z, f;)) as follows:

(2.34)  R[u]((z,t ={A Y FDpu =N Y FPDDRu+A Y [ DD -
REE+ nediy HEE+
=Y £YD{Dju : Dlu=0XeR f* eR((z,1),k=T4,ne L)
HEE+

at a fixed function u € R((x,t)). The corresponding kernel Ker D; C R[ul((z,t)) of the differen-
tiation D; : R((xz,t)) = R((z,1)), reduced upon the Riemann differential ideal (2.34), is given by
the following linear differential relationships:

(2.35) D =0, Df® = A0, D f® = Af@, D f@ = 25O
where f(F) := fR)()) = 2 net, fxn ¢ R((z,t)), k = 1,4 and A € R is arbitrary. The linear

relationships (2.35) can be easily represented in the space R

0 0
(2.36) Dif =qAN)f, q()):= 3 E
0 0

—

(z,t)) in the following matrix form:

- S s [ e I
L i e [ e Y s



where f == (fU, f@), £ fONT € RY((z,t)), and A € R. Moreover, it is easy to observe that
relationships (2.35) can be equivalently rewritten in the compact scalar form as
(237 DI =0,
where an element f; € R((z,1)). Thus, now one can construct the invariant Lax differential ideal,
isomorphically equivalent to (2.34), as follows:

Li((@,t) = ={gf'" +9DefY + guD}fY + 0D} DY =0,
(239) 5 € R((zD),i=TICR(aH),

whose [);-invariance should be checked separately. The latter gives rise to the representation

“Muy  ANuy  —Awy Zy
AN 3N, 20w, My,
—10M%r;  6MY =33, Mo,
—20\6py  10MSr;  —4AXN Mu,

(23@} DIf = E[H._,’UTT_U._,E; }‘]f* E[uvy:wv’:; /\] =

where we put, by definition,
(2.40) Diwu :=v, Dy :=w,Dyw :=z,Dyz :=0,

(u,v,w,z)T € R((z,t))* ~ M, and the mappings rj: M= R((z,t)),7 = 1,2, satisfy the following
functional-differential equations:

(2.41) Diri +riDyu=1, Diry 4+ roDyu =1y,



similar to (2.10), considered already above. The equations (2.41) possess a lot of different lions,
amongst which there are functional expressions:
2 3 TR 6

uw v (1 w
(242 no= Delog-3rtonit o T
D (uw3 o’ B Jub -I- o’ w’ )
Py = - - ,
: T3 Gt 805 12025 4906

As a result, we can formulate the following proposition.

Proposition 2.10. The expressions (2.36) and (2.39) are the linear matriz representa-
tions in the space R*((z,t)) of the differentiations D; : R((z,t)) = R((z,t)) and D, :
R((z,t)) = R((z,t)), respectively, reduced upon the invariant Lax differential ideal L]ul((z,t)) C
R((z,t)), given by (2.5).




The following Lax type integrability theorem holds.

Theorem 2.11. The dynamical system (2.43), equivalent to the generalized Riemann type hydro-
dynamical system (2.33), possesses the Lax type representation

(2.44) fo=uv,2,w N f,  fo=p0)f, pll) = —ullu,v,w,2;\] +q(}),
where
“Nu,  ANv,  dwp, z 0 0 0 0\
o -t e 2%, M, A0 00
blu,v,w, 2] = 1007 6M —3\3w, A, | V=19 00|
—20MSry  10M%p;  —4N A3y, 00 X0
AUty 2w, Auw, —uzy
A Vw2V,
(2.45) plf) = 10Mur; A—6Mu  3Nuw, —Nuw, |

200%ury  —10M5ur; A+4Mu —Nuu, )
thereby being a Laz type integrable dynamical system on the functional manifold M.




The result obtained above can be easily generalized on the case of an arbitrary integer N € ,
thereby proving the Lax type integrability of the whole hierarchy of the Riemann type hydrody-

namical equation (2.2). The related calculations will be presented and discussed in other work.
Here we only do the next remark.

Remark 2.12. The Riemann type hydrodynamical equation (2.2) as N — oo can be equivalently
rewritten as the following Benney type [14, 15, 4] chain

(2.46) D™ =™V Dy = 9/0t + V00,
for the suitably constructed moment functions u™ := D% ul .= u € R((z,t)), n € Z,..

This aspect of the problem, looking very interesting, we also expect to treat i detail by means
of the differential-geometric tools elsewhere later.




3. THE DIFFERENTIAL-ALGEBRAIC ANALYSIS OF THE LAX TYPE INTEGRABILITY OF THE

KORTEWEG-DE VRIES DYNAMICAL SYSTEM

3.1. The difterential-algebraic problem setting. We consider the well known Korteweg-de
Vries equation in the following differential-algebraic form:

(3.1) D —Du=0,
where u € R((z,?)) and the differentiations D := d/0t + ud/dz, D, := 0/0z satisfy the commu-

tation condition (2.1):

32 D, D) = (Dzu)D,

We will also interpret relationship (3.1) as a nonlinear dynamical system
(3.3) Diu = Dyppu

on a suitably chosen functional manifold M C R((z,1)).




Based on the expression (3.1) we can easily construct a suitable invariant KdV-differential ideal
KdVu|((z,t)) C R((z,t)) as follows:
Kavpl() « =(Y Y 9DEDMu€R((e): Du-Du=0
k:ﬁ'ﬂEE+
(34) W e R((z1),k=02nel} CR((z,1)).
As the next step we need to find the kernel Ker D; C KdV[u|((z,t)) of the differentiation D, :

R((z,t)) = R((z,1)), reduced upon the KdV-differential ideal (3.4), we obtain by means of easy
calculations that 1t 1s generated by the following differential relationships:

Df? = MO, Df=-2f® +2f® Dy,
(35) DifY = =MW + fODu+ O Dy,

where, by definition, f*) = f®)(}) = ) e , fr{lk))\” € R((z,1)),k=10,2,and A € R is an
arbitrary parameter. Based on the relationships (3.5) the following proposition holds.




Proposition 3.1. The differential relationships (3.5) can be equivalently rewritten in the following
linear matriz form:

36 D =ar, = ( 7N ),

where f := (f1, f2)7 € R*((x,t)), A € R, giving rise to the corresponding linear matriz represen-
tation in the space R%((z,t)) of the differentiation Dy : R((z,t)) — R((z,t)), reduced upon the
KDV-differential ideal (3.4).

3.2. The Lax type representation. Now, making use of the matrix differential relationship
(3.6), we can construct the related with ideal (3.4) Lax differential ideal

Llul((z,1) : ={<g.f >e€R((z,1)) : Dif =q(N)/,
(3.7) f,9 € R((z,1)} CR((z,1)),
where < -, >gs denotes the standard scalar product in the Euclidean real space E2. Since the Lax
differential ideal (3.7) is, by construction, D;-invariant and isomorphic to the Dy- and D, -invariant
KDV-differential ideal (3.4), it is necessary to check its D -invariance. As a result of this condition
the following differential relationship

(3.38) D, f = fus If, £us N = ( il )

holds, where the mapping a : M — R((z,t)) satisfies the functional-differential relationships
(3.9) Dia=1,Dsu— D3u =0,




and the matrix ¢ := £ju; )] : R*((z,t)) — R?((z,t)) satisfies for all A\ € R the determining
functional-differential equation

(3.10) Dyl + €Dzu = [g(A), ] + Daq(N),

generalizing the similar equation (2.11). The result obtained above we will formulate as the fol-
lowing proposition.

Theorem 3.2. The differentials D; : R((z,t)) = R((z,t)) and Dy : R((z,t)) = R((z,t)) of
the differential ring R((x,t)), reduced upon the Lax differential ideal L[ul((z,t)) C R((z,t)), iso-
morphic to the KDV-differential ideal KdV [u]((z,t)) C R((z,t)), allow the compatible Laz type
representation

D = g o= (P )

(3.11) D.f = fuAf, fw A = ( Dg& 2?522' )1

where the mapping a : M — R((z,t)) satisfies the functional-differential relationships (3.9), f €
R%((z,t)), A € R, generated by the invariant Laz differential ideal L{u((z,t)) C R((z,1)).




It is interesting to mention that the Lax type representation (3.11) strongly differs from that
given hy the well known [16] classical expressions

Dyu/6 —(2u/3 - 4))
Dif = quNf, qa(\) = Dupu/6—(u/6-)) ,
B X (2u/3 — 4)) o lDas

[312) DIf = Ec![u; ;'L]f, JE?.'Jl[r""!':‘:ik] = ( u/ﬂﬂ—h é ) :

where, as above, the following functional-differential equation
[313) Dby + Ly Dyu = [QEI()‘): gc!] T Dm@ct(}‘):

holds for any A € R, being exactly equivalent to the nonlinear dynamical system (3.3) on
the functional manifold M. Thus, a problem of constructing a suitable KDV-differential 1deal
KdVlu|((z,t)) C R((z,t)), generating the corresponding Lax type differential ideal L[u|((z,t)) C
R((z,t)), invariant with respect to the differential representations (3.12), naturally arises, what we
expect to treat in detail elsewhere later. There also 1s a very interesting problem of the differential-
algebraic analysis of the related symplectic structures on the functional manifold M, with respect
to which the dynamical system (3.3) is Hamiltonian and suitably integrable.




4. CONCLUSION

As one could be convinced by the results obtamed in this work, the differential-algebraic tools,
when applied to a given set of differential relationships, based on the basic differentiations [,
and D; : R((z,t)) = R((z,t)) in the differential ring R((z,t)) and parameterized hy a fixed
element u € R((z,t)), make it possible to construct the corresponding Lax type representation
as that, realizing the linear matrix representations of the mentioned above hasic differentiations.
This scheme was elaborated in detail for the generalized Riemann type differential equation (2.2)
and for the classical Korteweg-de Vries equation (3.3). As these equations are equivalent to the
corresponding Hamiltonian systems with respect to suitable symplectic structures, this aspect
presents a very interesting problem from the differential-algebraic point of view and 1s planned to
he studied elsewhere.
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