Isoptics of pairs of open rosettes with common asymptotes

Dominik Szałkowski Maria Curie-Skłodowska University

March 28, 2012

Global Differential Geometry and Global Analysis Lecture Notes in Mathematics, 1991, Volume 1481/1991, 28-35 Isoptics of a closed strictly convex curve W. Cieślak, A. Miernowski, W. Mozgawa

origin 0 in the interior of C. Let p(t), $t \in [0, 2\pi]$, be the distance from 0 to the support line l(t) to C perpendicular to the vector e^{it} . The function p is called a support function of the curve C. It is well known (cf. [2]) that the support function is differentiable and

that the parametrization of C in terms of this function is given by

$$z(t) = p(t)e^{it} + \dot{p}(t)ie^{it}$$
 for $t \in [0, 2\pi]$.

Let C_{α} be a <u>locus</u> of vertices of a fixed angle $\pi - \alpha$ formed by two support lines of the curve C. The curve C_{α} will be called an alpha-isoptic of C.

Next we introduce the following notations:

ANALELE STIINTIFICE ALE UNIVERSITATII "AL.I.CUZA" IASI

Tomul XLIV, s.I.a, Matematica, 1998, f2

Sine theorem for rosettes

S. Góźdź, A. Miernowski, W. Mozgawa

Fig. 2

Definition 2.1. The cut locus of the intersection points of the tangent lines at t and t_k is said to be an isoptic of the type (k, α) and is denoted $C_{k,\alpha}$.

Istanbul Univ. Fen Fak. Mat. Dergisi 57-58 (1998-1999), 33-39 Isoptics of open, convex curves and Crofton-type formulas A. Miernowski, W. Mozgawa

Beitrage zur Algebra und Geometrie Volume 42 (2001), No. 1, 281-288 Isoptics of pairs of nested closed strictly convex curves and Crofton-type formulas

A. Miernowski, W. Mozgawa

Annales Universitatis Mariae Curie-Skłodowska, Lublin – Polonia,

Vol. LIX, 2005, Sectio A, 119-128

Isoptics of open rosettes

D. Szałkowski

FIGURE 6. Parametrization of an k, α -isoptic.

To appear Singular points of isoptics of open rosettes D. Szałkowski

Figure 4. Open rosette and its orthoptic of second order from example 1 $\,$

Definition

An open rosette without self intersections is said to be a simple open rosette.

Definition

A pair of open rosettes (C_1, C_2) which satisfy conditions:

- ightharpoonup rosettes C_1 and C_2 are simple open rosettes,
- ▶ asymptotes A_1 , A_2 are given by y = kx and y = -kx, $k \in (0, \infty)$,
- rosette C_1 lies between asymptotes A_1 and A_2 in II and III quadrant of the coordinate system, rosette C_2 lies between asymptotes A_1 and A_2 in I and IV quadrant of the coordinate system,
- ▶ $p_1(t)$ and $p_2(t)$ are support functions of C_1 i C_2 and they are defined on the same interval $(-\beta, \beta)$, where $\beta = \frac{\pi}{2} \operatorname{arctg} k$,

is said to be a pair of open rosettes with common asymptotes.

Figure: A pair of open rosettes with common asymptotes

Figure: Section $C_{\alpha,1,1}$ of α -isoptic

Figure: Section $C_{\alpha,1,2}$ of α -isoptic

Figure: Section $C_{\alpha,2,2}$ of α -isoptic

Figure: Section $C_{\alpha,2,1}$ of α -isoptic

Figure: Asymptotic points of α -isoptic of pair of open rosettes with common asymptotes

Figure: Orientation of rosettes C_1, C_2 and sections of C_{α}

Let (C_1, C_2) be a pair of open rosettes with common asymptotes and let C_{α} be its α -isoptic for $\alpha \in (0, 2\beta)$. Then the parametrization of section $C_{\alpha,m,n}$ of isoptic is given by

$$C_{\alpha,m,n}: z_{\alpha,m,n}(t) = p_m(t)e^{it} + \left(-p_m(t)\cot\alpha + \frac{p_n(t+\alpha)}{\sin\alpha}\right)ie^{it},$$

where $t \in (-\beta, \beta - \alpha), m = 1, 2, n = 1, 2$.

Some useful functions

$$q_{\alpha,m,n}(t) = p_m(t)\cos t - p'_m(t)\sin t$$

$$-p_n(t+\alpha)\cos(t+\alpha) + p'_n(t+\alpha)\sin(t+\alpha)$$

$$+i(p_m(t)\sin t + p'_m(t)\cos t$$

$$-p_n(t+\alpha)\sin(t+\alpha) - p'_n(t+\alpha)\cos(t+\alpha),$$

$$\lambda_{\alpha,m,n}(t) = -p'_m(t) - p_m(t)\cot \alpha + \frac{p_n(t+\alpha)}{\sin \alpha},$$

$$\mu_{\alpha,m,n}(t) = -\frac{p_m(t)}{\sin \alpha} + p_n(t+\alpha)\cot \alpha - p'_n(t+\alpha),$$

$$\varrho_{\alpha,m,n}(t) = p_m(t) - p'_m(t)\cot \alpha + \frac{p'_n(t+\alpha)}{\sin \alpha}.$$

Figure: Parametrization of section $C_{\alpha,1,1}$ of α -isoptic

Figure: Parametrization of section $C_{\alpha,1,2}$ of α -isoptic

Let (C_1, C_2) be a pair of open rosettes with common asymptotes and let C_{α} be its isoptic for $\alpha \in (0, 2\beta)$. Asymptotic points of the isoptic have the following coordinates

$$P_{\alpha,1,1}\left(\frac{p_1(-\beta+\alpha)}{\sqrt{1+k^2}\sin\alpha}, k\frac{p_1(-\beta+\alpha)}{\sqrt{1+k^2}\sin\alpha}\right),$$

$$P_{\alpha,1,2}\left(\frac{p_1(\beta-\alpha)}{\sqrt{1+k^2}\sin\alpha}, -k\frac{p_1(\beta-\alpha)}{\sqrt{1+k^2}\sin\alpha}\right),$$

$$P_{\alpha,2,1}\left(\frac{p_2(-\beta+\alpha)}{\sqrt{1+k^2}\sin\alpha}, k\frac{p_2(-\beta+\alpha)}{\sqrt{1+k^2}\sin\alpha}\right),$$

$$P_{\alpha,2,2}\left(\frac{p_2(\beta-\alpha)}{\sqrt{1+k^2}\sin\alpha}, -k\frac{p_2(\beta-\alpha)}{\sqrt{1+k^2}\sin\alpha}\right).$$

Let (C_1, C_2) be a pair of open rosettes with common asymptotes and let C_{α} be its α -isoptic, $\alpha \in (0, 2\beta)$. Then

$$\lim_{t \to -\beta^{+}} z_{\alpha,1,1}(t) = P_{\alpha,1,1} = \lim_{t \to -\beta^{+}} z_{\alpha,2,1}(t),$$

$$\lim_{t \to (\beta - \alpha)^{-}} z_{\alpha,1,1}(t) = P_{\alpha,1,2} = \lim_{t \to (\beta - \alpha)^{-}} z_{\alpha,1,2}(t),$$

$$\lim_{t \to -\beta^{+}} z_{\alpha,2,2}(t) = P_{\alpha,2,1} = \lim_{t \to -\beta^{+}} z_{\alpha,1,2}(t),$$

$$\lim_{t \to (\beta - \alpha)^{-}} z_{\alpha,2,2}(t) = P_{\alpha,2,2} = \lim_{t \to (\beta - \alpha)^{-}} z_{\alpha,2,1}(t).$$

Let (C_1, C_2) be a pair of open rosettes with common asymptotes and let C_{α} be its α -isoptic, $\alpha \in (0, 2\beta)$. Then

$$\lim_{t \to -\beta^{+}} \frac{z'_{\alpha,1,1}(t)}{\left|z'_{\alpha,1,1}(t)\right|} = -\lim_{t \to -\beta^{+}} \frac{z'_{\alpha,2,1}(t)}{\left|z'_{\alpha,2,1}(t)\right|},$$

$$\lim_{t \to (\beta-\alpha)^{-}} \frac{z'_{\alpha,1,1}(t)}{\left|z'_{\alpha,1,1}(t)\right|} = -\lim_{t \to (\beta-\alpha)^{-}} \frac{z'_{\alpha,1,2}(t)}{\left|z'_{\alpha,1,2}(t)\right|},$$

$$\lim_{t \to -\beta^{+}} \frac{z'_{\alpha,2,2}(t)}{\left|z'_{\alpha,2,2}(t)\right|} = -\lim_{t \to -\beta^{+}} \frac{z'_{\alpha,1,2}(t)}{\left|z'_{\alpha,1,2}(t)\right|},$$

$$\lim_{t \to (\beta-\alpha)^{-}} \frac{z'_{\alpha,2,2}(t)}{\left|z'_{\alpha,2,2}(t)\right|} = -\lim_{t \to (\beta-\alpha)^{-}} \frac{z'_{\alpha,2,1}(t)}{\left|z'_{\alpha,2,1}(t)\right|}.$$

Let (C_1, C_2) be a pair of open rosettes with common asymptotes and let C_{α} be its α -isoptic, where $\alpha \in (0, 2\beta)$. Curvature of section $C_{\alpha,m,n}$ is given by

$$\kappa_{\alpha,m,n}(t) = \frac{\lambda_{\alpha,m,n}^2(t) + \varrho_{\alpha,m,n}^2(t) + \lambda_{\alpha,m,n}'(t)\varrho_{\alpha,m,n}(t) - \lambda_{\alpha,m,n}(t)\varrho_{\alpha,m,n}'(t)}{(\lambda_{\alpha,m,n}^2(t) + \varrho_{\alpha,m,n}^2(t))^{3/2}}$$

where $t \in (-\beta, \beta - \alpha), m = 1, 2, n = 1, 2$.

Let (C_1, C_2) be a pair of open rosettes with common asymptotes and let C_{α} be its α -isoptic, where $\alpha \in (0, 2\beta)$. Curvature of section $C_{\alpha,m,n}$ is given by

$$\kappa_{\alpha,m,n}(t) = \frac{2|q_{\alpha,m,n}(t)|^2 - [q_{\alpha,m,n}(t), q'_{\alpha,m,n}(t)]}{|q_{\alpha,m,n}(t)|^3} \sin \alpha,$$

where $t \in (-\beta, \beta - \alpha), m = 1, 2, n = 1, 2$.

Corollary

Let (C_1, C_2) be a pair of open rosettes with common asymptotes and let C_{α} be its α -isoptic, where $\alpha \in (0, 2\beta)$. Then:

► section $C_{\alpha,m,n}$ of α -isoptic for $m \neq n$ is convex curve, if and only if the following condition holds

$$2|q_{\alpha,m,n}(t)|^2 > [q_{\alpha,m,n}(t), q'_{\alpha,m,n}(t)],$$

▶ section $C_{\alpha,m,n}$ of α -isoptic for m = n is convex curve, if and only if the following condition holds

$$2|q_{\alpha,m,n}(t)|^2 < [q_{\alpha,m,n}(t), q'_{\alpha,m,n}(t)],$$

for every $t \in (-\beta, \beta - \alpha)$, where m = 1, 2, n = 1, 2.

Let (C_1, C_2) be a pair of open rosettes with common asymptotes and let C_{α} be its α -isoptic, where $\alpha \in (0, 2\beta)$. Then

$$\frac{|q_{\alpha,m,n}(t)|}{\sin\alpha} = \frac{|\lambda_{\alpha,m,n}(t)|}{\sin\xi_{m,n}} = \frac{|\mu_{\alpha,m,n}(t)|}{\sin\eta_{m,n}},$$

for m = 1, 2, n = 1, 2. Angle $\xi_{m,n}$ is the angle between vectors $z'_{\alpha,k}(t)$ and ie^{it} , and angle $\eta_{m,n}$ is the angle between vectors $z'_{\alpha,k}(t)$ and $ie^{i(t+\alpha)}$.

Figure: Sine theorem for section $C_{\alpha,1,1}$ of α -isoptic, $\gamma_1 = \eta_{1,1}$, $\gamma_2 = \pi - \alpha$, $\gamma_3 = \xi_{1,1}$

Figure: Sine theorem for section $C_{\alpha,1,2}$ α -isoptic, $\gamma_1 = \eta_{1,2}, \ \gamma_2 = \alpha, \ \gamma_3 = \pi - \xi_{1,2}$

Hyperbole

Let us consider hyperbola C given by the formula

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \ a > 0, \ b > 0.$$

By C_1 we denote left branch of hyperbola, and by C_2 its right branch.

The support function of C_1 is given by

$$p(t) = -\frac{1}{\sqrt{\frac{x_0^2}{a^4} + \frac{y_0^2}{b^4}}} = -\sqrt{a^2 \cos^2 t - b^2 \sin^2 t}.$$

Since C_1 lies between asymptotes $y = \frac{b}{a}x$ and $y = -\frac{b}{a}x$, then the domain of its support function is the interval $(-\beta, \beta)$, where $\beta = \frac{\pi}{2} - \arctan \frac{b}{a}$.

Let C be such a hyperbola that a > b. Then the orthoptic of hyperbola exists and its a circle with center in the origin of the coordinate system and with radius $\sqrt{a^2 - b^2}$.

Theorem

Let C be a hyperbola and let C_{α} be its α -isoptic. For section $C_{\alpha,1,2}$ we have

$$\bigwedge_{\alpha \in (0,2\beta)} \kappa_{\alpha,1,2} \left(-\frac{\alpha}{2} \right) > 0.$$

Figure: Point of section $C_{\alpha,1,2}$ of α -isoptic lying on the y-axis

Let C be a hyperbola and let C_{α} be its α -isoptic. Then, for section $C_{\alpha,1,1}$ of α -isoptic there exist such angles $\alpha_1, \alpha_2 \in (0, 2\beta)$, that

$$\kappa_{1,1}\left(-\frac{\alpha_1}{2},\alpha_1\right) > 0, \quad \kappa_{1,1}\left(-\frac{\alpha_2}{2},\alpha_2\right) < 0.$$

Corollary

Let C be a hyperbola and let C_{α} be its α -isoptic. Let α_0 be an angle satysfying condition $\cos \alpha_0 = \frac{b^2}{a^2 + b^2}$ (the critical angle). Then, for section $C_{\alpha,1,1}$ we have

$$\kappa_{1,1}\left(-\frac{\alpha}{2},\alpha\right) > 0 \text{ for } \alpha < \alpha_0, \quad \kappa_{1,1}\left(-\frac{\alpha}{2},\alpha\right) < 0 \text{ for } \alpha > \alpha_0.$$

Figure: α -isoptics of hyperbolas for different angles. Bolded curve is the α -isoptic for critical angle

Figure: Isoptics of pair of open rosettes

$$t_k = t + 2(k-1)\pi + \alpha$$

Consider open rosettes

 $C_1: p_1(t) = 4 - t \cos t,$

 $C_2: p_2(t) = 4 - t\sin t$

Figure: Pair of open rosettes

$$z_{\frac{3\pi}{4},1}(t) = (4 - t\cos t)e^{it} + \left(4 + 4\sqrt{2} - 2t\cos t + t\sin t + \frac{3\pi}{4}(\sin t - \cos t)\right)ie^{it}.$$

Figure: Isoptic of pair of open rosettes