LOCAL CHERN CLASSES AND RELATIONS AMONG RATIONAL FUNCTIONS

Andrzej Weber

University of Warsaw

Topological setup

- Torus $T = (S^1)^n$ or $(\mathbb{C}^*)^n$ acts on a topological space M.
- Denote by $T^{\vee} = \operatorname{Hom}(T, S^1)$ the group of characters.
- **Equivariant** cohomology $H_T^*(M)$ is a modul over

$$H_T^*(\rho t) = \mathbb{Q}[T^{\vee}] = \mathbb{Q}[t_1, t_2, \dots t_n]$$

If M is an algebraic manifold and $\mathcal T$ acts algebraically then

$$H_T^*(M) \otimes_{H_T^*(pt)} \mathbb{Q} = H^*(M)$$

Localization

(Almost) everything about equivariant cohomology can be read from some data concentrated at the fixed points.

Borel localization theorem

The restriction to the fixed set

$$H_T^*(M) \longrightarrow H_T^*(M^T)$$

is an isomorphism after inverting $T^{\vee} - \{0\}$.

Atiyah-Bott or Berline-Vergne formula

Assumption about fixed points:

$$M^T = \{p_0, p_1, \dots p_n\}$$
 is discrete.

For $p \in M^T$:

Define the Euler class e_p as the product of weights of T appearing in the tangent representation.

Integration Formula

The integral can be expressed by the local data. For $a \in H_T^*(M)$ it is the sum of fractions

$$\int_{M} a = \sum_{r \in M^{T}} \frac{a_{|p}}{e_{p}}$$

- We use Localization Theorem to compute some invariants of T-invariant singular varieties $X \subset M$.
- The main interest:

M is the Grassmannian $G_m(\mathbb{C}^n)$ and X is a Schubert variety.

The invariant:

Chern-Schwartz-MacPherson class.

Chern-Schwartz-MacPherson class

- For a singular variety $c_{SM}(X) \in H_*(X)$
- If X is smooth, then $c_{SM}(X)$ is the Poincaré dual of the usual Chern class
- It is functorial (in some sense)
- It can be computed via resolution $\pi: X \to X$ $c_{SM}(X) = \pi_*(c_*(\widetilde{X})) + correction \ terms$
- Correction terms are supported by singulatities.
- There is an equivariant version of CSM classes.

Chern-Schwartz-MacPherson class

From Localization theorem it follows that equivariant Chern-Schwartz-MacPherson classes are determined by local Chern classes at the fixed points.

Before computing equivariant Chern classes of Schubert varieties let us first see some computations based on Localization Theorem.

Example of computation

- $M=\mathbb{P}^n$, $T=(\mathbb{C}^*)^{n+1}$
- $M^T = \{p_0, p_1, \dots p_n\}$ fixed points
- $T_{p_k}M=\bigoplus_{\ell\neq k}L_{t_\ell-t_k}$ decomposition into lines
- $e_k = \prod_{\ell \neq k} (t_\ell t_k)$ Euler class
- $lacksquare c_1 := c_1(\mathcal{O}(-1))$ Chern class of the tautological bundle

$$\int_{\mathbb{P}^n} c_1^m = 0 \quad \text{for} \quad m < n$$
$$= (-1)^n \quad \text{for} \quad m = n$$

Applying Berline-Vergne formula we get an identity

$$\sum_{k=0}^n \frac{t_k^m}{\prod_{\ell \neq k} (t_\ell - t_k)} = 0$$

for m < n

For example : n = 2, m = 0

$$\frac{1}{(t_1-t_0)(t_2-t_0)}+\frac{1}{(t_0-t_1)(t_2-t_1)}+\frac{1}{(t_0-t_2)(t_1-t_2)}=0$$

(Please, check it by hand!)

Integral of higher powers

What do we get for m > n?

$$\int_{\mathbb{P}^n} c_1^m = ?$$

For example n = 2, m = 4

$$rac{t_0^4}{(t_1-t_0)(t_2-t_0)}+rac{t_1^4}{(t_0-t_1)(t_2-t_1)}+rac{t_2^4}{(t_0-t_2)(t_1-t_2)}=$$

$$Res_{z=\infty} \frac{z^4}{(t_0-z)(t_1-z)(t_2-z)} = t_0^2 + t_1^2 + t_2^2 + t_0t_1 + t_0t_2 + t_1t_2 =$$

in terms of the elementary symmetric functions:

$$=\sigma_1^2-\sigma_2\ = S_2$$

Integral of higher powers

In general

$$\int_{\mathbb{P}^n} c_1^{n+k} = (-1)^n S_k$$

where S_k is the Segre class (a special case of Schur function)

$$S_{k} = \frac{\begin{vmatrix} t_{0}^{n+k} & t_{0}^{n-1} & t_{0}^{n-2} & \dots & t_{0}^{1} & 1 \\ t_{1}^{n+k} & t_{1}^{n-1} & t_{1}^{n-2} & \dots & t_{1}^{1} & 1 \\ t_{2}^{n+k} & t_{2}^{n-1} & t_{2}^{n-2} & \dots & t_{2}^{1} & 1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ t_{n}^{n+k} & t_{n}^{n-1} & t_{0}^{n-2} & \dots & t_{n}^{1} & 1 \end{vmatrix}}{\prod_{j < j} (t_{j} - t_{j})}$$

(Jacobi-Trudy formula, Weyl character formula)

Analogue computation can be performed for Grassmannians.

But still, the calculus of **rational** symmetric functions is not developed enough.

- Equivariant Schubert calculus studied by Knutson, Laksov—Thorup, Gato—Santiago, . . .
- Some formulas for flag varieties can be obtained by taking residue at ∞ , [Berczi–Szenes].

Relation between local Chern classes

- Assumption: M^T is discrete.
- We apply the Berline-Vergne integration formula for equivariant Chern-Schwartz-MacPherson class of a singular subvariety.

Except from the top gradation

$$\sum_{p \in M^T} \frac{c^T(X)_{|p}}{e_p} = 0.$$

Top equivariant Chern class

The top component of the local Chern class is easy:

Theorem

If $p \in X^T$ and w_1, w_2, \dots, w_n are weights of T acting on the tangent space, then

$$c^{T}(X)_{|p,top}=\prod_{i=1}^{n}w_{i}\in H_{T}^{2\dim(M)}(pt),$$

i.e. the top equivariant Chern class is equal to the Euler class at p.

Computation of local equivariant Chern classes

- smooth point
- already computed Chern class
- unknown Chern class

Computation of local equivariant Chern class in $Grass_2(\mathbb{C}^4)$

Let us compute the local equivariant Chern class of the Schubert variety of codimension 1, i.e.

$$V_1 = \{W : W \cap \langle \varepsilon_1, \varepsilon_2 \rangle \neq 0\}$$

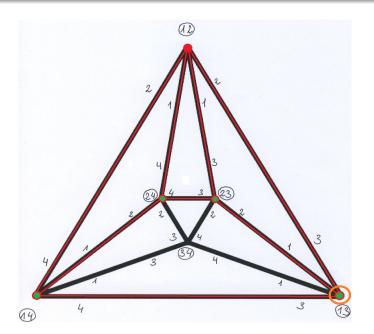
The neighborhood of the point $p_{1,2}$ in $Grass_2(\mathbb{C}^4)$ is identified with

$$\operatorname{Hom}(\operatorname{span}(\varepsilon_1,\varepsilon_2),\operatorname{span}(\varepsilon_3,\varepsilon_4))$$

$$\begin{pmatrix} 1 & 0 & a & b \\ 0 & 1 & c & d \end{pmatrix}$$

The equation of X is $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = 0$

Schubert variety V_1 in $Grass_2(\mathbb{C}^4)$



e.g. for $p_{1,3}$, the coordinates are

$$\begin{pmatrix} 1 & a & 0 & b \\ 0 & c & 1 & d \end{pmatrix}$$

and the equation of X is b = 0

- For that point the local Chern class is equal to $(t_4 t_1)(1 + t_2 t_1)(1 + t_2 t_3)(1 + t_4 t_3)$
- The summand in the integration formula:

$$\frac{(t_4-t_1)(1+t_2-t_1)(1+t_2-t_3)(1+t_4-t_3)}{(t_4-t_1)(t_2-t_1)(t_2-t_3)(t_4-t_3)} =$$

$$= \left(1+\frac{1}{t_2-t_1}\right)\left(1+\frac{1}{t_2-t_3}\right)\left(1+\frac{1}{t_4-t_3}\right)$$

Computation of local equivariant Chern class in $Grass_2(\mathbb{C}^4)$

$$\begin{array}{l} \text{Outsile} \left(1 + \frac{1}{\mathsf{t1}\,\mathsf{u} - \mathsf{t2}\,\mathsf{u}}\right) \left(1 + \frac{1}{\mathsf{t1}\,\mathsf{u} - \mathsf{t3}\,\mathsf{u}}\right) \left(1 + \frac{1}{-\mathsf{t3}\,\mathsf{u} + \mathsf{t4}\,\mathsf{u}}\right) \\ \text{Outsile} \left(1 + \frac{1}{\mathsf{t1}\,\mathsf{u} - \mathsf{t2}\,\mathsf{u}}\right) \left(1 + \frac{1}{\mathsf{t1}\,\mathsf{u} - \mathsf{t4}\,\mathsf{u}}\right) \left(1 + \frac{1}{\mathsf{t3}\,\mathsf{u} - \mathsf{t4}\,\mathsf{u}}\right) \\ \text{Outsile} \left(1 + \frac{1}{-\mathsf{t1}\,\mathsf{u} + \mathsf{t2}\,\mathsf{u}}\right) \left(1 + \frac{1}{\mathsf{t2}\,\mathsf{u} - \mathsf{t3}\,\mathsf{u}}\right) \left(1 + \frac{1}{-\mathsf{t3}\,\mathsf{u} + \mathsf{t4}\,\mathsf{u}}\right) \\ \text{Outsile} \left(1 + \frac{1}{-\mathsf{t1}\,\mathsf{u} + \mathsf{t2}\,\mathsf{u}}\right) \left(1 + \frac{1}{\mathsf{t2}\,\mathsf{u} - \mathsf{t4}\,\mathsf{u}}\right) \left(1 + \frac{1}{\mathsf{t3}\,\mathsf{u} - \mathsf{t4}\,\mathsf{u}}\right) \\ \text{Outsile} \cdot \text{Chern} = \text{Expand}[\text{Factor}[-(\mathsf{a} + \mathsf{b} + \mathsf{c} + \mathsf{d}) * (\mathsf{t3} - \mathsf{t1}) * (\mathsf{t3} - \mathsf{t2}) * (\mathsf{t4} - \mathsf{t1}) * (\mathsf{t4} - \mathsf{t2}) * \mathsf{u}^{\mathsf{A}}]]; \\ \text{Mostile} \cdot \text{Do}[\text{Print}["\text{deg}=", n]; \text{Print}[\text{Factor}[\text{Coefficient}[\text{Chern}, u, n]]], \{n, 3\}] \\ \text{deg} = 1 \\ -\mathsf{t1} - \mathsf{t2} + \mathsf{t3} + \mathsf{t4} \\ \text{deg} = 2 \\ (\mathsf{t1} + \mathsf{t2} - \mathsf{t3} - \mathsf{t4})^2 \\ \text{deg} = 3 \end{array}$$

-(t1+t2-t3-t4) (2 t1 t2-t1 t3-t2 t3-t1 t4-t2 t4+2 t3 t4)

Schur expansion

The coefficients of the expansion in the Schur basis

$$c^{T}(V_{1}) = \sum a_{\mathrm{I,J}} S_{\mathrm{I}}(-t_{1}, -t_{2}) \cdot S_{\mathrm{J}}(t_{3}, t_{4})$$

$$(0) \quad (1) \quad (11) \quad (2) \quad (21) \quad (22)$$

$$(0) \quad 1 \quad 1 \quad 1 \quad 2 \quad 1$$

$$(1) \quad 1 \quad 1 \quad 3 \quad 1 \quad 1$$

$$(11) \quad 1 \quad 3 \quad 1$$

$$(2) \quad 1 \quad 1 \quad 1$$

$$(21) \quad 2 \quad 1$$

$$(22) \quad 1$$

Computation of local equivariant Chern class in $Grass_3(\mathbb{C}^6)$

- Computations can be continued without problems for $Grass_3(\mathbb{C}^6)$
- The expression which has to be simplified to compute the gradation 1

-3 t1 - 3 t2 + 2 t3 + 2 t4 - 3 t5 - 3 t6	-3 t1 + 2 t2 - 3 t3 + 2 t4 - 3 t5 - 3 t6
(t1-t3) (t2-t3) (t3+t4) (t1+t5) (t2+t5) (-t4+t5) (t1+t6) (t2+t6) (-t4+t6)	(t1-t2) (t2-t3) (t2+t4) (t1+t5) (t3+t5) (-t4+t5) (t1+t6) (t3+t6) (-t4+t6)
2 t1-3 t2-3 t3+2 t4-3 t5-3 t6	-3 t1-3 t2+2 t3-3 t4+2 t5-3 t6
$ \begin{array}{l} (t1-t2) \ (t1-t3) \ (t1+t4) \ (t2+t5) \ (t3+t5) \ (-t4+t5) \ (t2+t6) \ (t3+t6) \ (-t4+t6) \\ -3 \ t1+2 \ t2-3 \ t3-3 \ t4+2 \ t5-3 \ t6 \end{array} $	(t1-t3) (t2-t3) (t1+t4) (t2+t4) (t3+t5) (-t4+t5) (t1+t6) (t2+t6) (-t5+t6) 2 t1-3 t2-3 t3-3 t4+2 t5-3 t6
(t1 - t2) (t2 - t3) (t1 + t4) (t3 + t4) (t2 + t5) (-t4 + t5) (t1 + t6) (t3 + t6) (-t5 + t6)	(t1-t2) (t1-t3) (t2+t4) (t3+t4) (t1+t5) (-t4+t5) (t2+t6) (t3+t6) (-t5+t6)
-3 t1 + 2 t2 + 2 t3 + 2 t4 + 2 t5 - 3 t6	2 t1-3 t2+2 t3+2 t4+2 t5-3 t6
(t1 - t2) (t1 - t3) (t2 + t4) (t3 + t4) (t2 + t5) (t3 + t5) (t1 + t6) (-t4 + t6) (-t5 + t6)	* (t1 - t2) (t2 - t3) (t1 + t4) (t3 + t4) (t1 + t5) (t3 + t5) (t2 + t6) (-t4 + t6) (-t5 + t6)
2 t1 + 2 t2 - 3 t3 + 2 t4 + 2 t5 - 3 t6	2 t1 - 3 t2 - 3 t3 - 3 t4 - 3 t5 + 2 t6
(t1 - t3) (t2 - t3) (t1 + t4) (t2 + t4) (t1 + t5) (t2 + t5) (t3 + t6) (-t4 + t6) (-t5 + t6)	* (t1 - t2) (t1 - t3) (t2 + t4) (t3 + t4) (t2 + t5) (t3 + t5) (t1 + t6) (-t4 + t6) (-t5 + t6)
-3 t1 + 2 t2 - 3 t3 - 3 t4 - 3 t5 + 2 t6	-3 t1 - 3 t2 + 2 t3 - 3 t4 - 3 t5 + 2 t6
(t1 - t2) (t2 - t3) (t1 + t4) (t3 + t4) (t1 + t5) (t3 + t5) (t2 + t6) (-t4 + t6) (-t5 + t6)	* (t1 - t3) (t2 - t3) (t1 + t4) (t2 + t4) (t1 + t5) (t2 + t5) (t3 + t6) (-t4 + t6) (-t5 + t6)
2 t1 + 2 t2 - 3 t3 + 2 t4 - 3 t5 + 2 t6	2 t1 - 3 t2 + 2 t3 + 2 t4 - 3 t5 + 2 t6
(t1 - t3) (t2 - t3) (t1 + t4) (t2 + t4) (t3 + t5) (-t4 + t5) (t1 + t6) (t2 + t6) (-t5 + t6)	(t1-t2) (t2-t3) (t1+t4) (t3+t4) (t2+t5) (-t4+t5) (t1+t6) (t3+t6) (-t5+t6)
-3 t1 + 2 t2 + 2 t3 + 2 t4 - 3 t5 + 2 t6	2 t1+2 t2-3 t3-3 t4+2 t5+2 t6
(t1 - t2) (t1 - t3) (t2 + t4) (t3 + t4) (t1 + t5) (-t4 + t5) (t2 + t6) (t3 + t6) (-t5 + t6)	(t1-t3) (t2-t3) (t3+t4) (t1+t5) (t2+t5) (-t4+t5) (t1+t6) (t2+t6) (-t4+t6)
2 t1 - 3 t2 + 2 t3 - 3 t4 + 2 t5 + 2 t6	-3 t1+2 t2+2 t3-3 t4+2 t5+2 t6
(t1 - t2) (t2 - t3) (t2 + t4) (t1 + t5) (t3 + t5) (-t4 + t5) (t1 + t6) (t3 + t6) (-t4 + t6)	(t1 - t2) (t1 - t3) (t1 + t4) (t2 + t5) (t3 + t5) (-t4 + t5) (t2 + t6) (t3 + t6) (-t4 + t6)

The result is equal to $[V_1] = -t_1 - t_2 - t_3 + t_4 + t_5 + t_6$

Local Chern class of $V_1 \subset Grass_3(\mathbb{C}^6)$ in Schur basis

333 1

- Now appears a problem with the size of the expressions since $\dim(Grass_4(\mathbb{C}^8)) = 16$ and $\dim(T) = 8$
- In a polynomial of degree 15 in 8 variables there are

245 157 monomials.

The expression is a sums of 79 fractions with factors $t_i - t_j$ in denominators.

Computation of local equivariant Chern class in $Grass_4(\mathbb{C}^8)$

The result written in the Schur basis

$$S_{\rm I}(-t_1,-t_2,-t_3,-t_4)\cdot S_{\rm J}(t_5,t_6,t_7,t_8)$$

is the following:

Local equivariant Chern class of $V_1 \subset \mathit{Grass}_4(\mathbb{C}^8)$

Local equivariant Chern class of $V_1 \subset Grass_4(\mathbb{C}^8)$

```
213
                              20 136
217
                              20 136 101 15 28
                                  21
                                          10 14
     28
            10 35
```

Positivity

- The local Chern classes are a positive combination of monomials
- But starting from $Grass_4(\mathbb{C}^8)$ they are **not** positive combinations of products of Schur functions

Conclusion

This supports the conjecture of Aluffi and Mihalcea that the Chern class (or even equivariant Chern class) of a Schubert variety is effective.

Further directions of work

- Develop a calculus of symmetric rational functions
- Deduce positivity results
- Study global equivariant Chern classes of Schubert varieties and open cells

