Spin ${ }^{\mathbb{C}}$ structures

Andrzej Szczepański
University of Gdańsk

Toruń, April 12, 2014

Clifford algebra

Definition

By a Clifford algebra over the real numbers we shall understand an associative algebra with unity, generated by elements

$$
\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}
$$

and with relations

where $1 \leqslant i, j \leqslant n$. We define $C_{0}=\mathbb{R}$.
It is easy to see that $C_{1}=\mathbb{C}$ and $C_{2}=\mathbb{H}$, where \mathbb{H} is the
four-dimensional quaternion algebra. Moreover, $\mathbb{R}^{n} \subset C_{n}$ and $\operatorname{dim}_{\mathbb{R}} C_{n}=2^{n}$, where \mathbb{R}^{n} is n-dimensional \mathbb{R}-vector space with the
basis $e_{1}, e_{2}, \ldots, e_{n}$.

Clifford algebra

Definition

By a Clifford algebra over the real numbers we shall understand an associative algebra with unity, generated by elements

$$
\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}
$$

and with relations

where $1 \leqslant i, j \leqslant n$. We define $C_{0}=\mathbb{R}$.
It is easy to see that $C_{1}=\mathbb{C}$ and $C_{2}=\mathbb{H}$, where \mathbb{H} is the
four-dimensional quaternion algebra. Moreover, $\mathbb{R}^{n} \subset C_{n}$ and $\operatorname{dim}_{\mathbb{R}} C_{n}=2^{n}$, where \mathbb{R}^{n} is n-dimensional \mathbb{R}-vector space with the
basis e_{1}, e_{2},

Clifford algebra

Definition

By a Clifford algebra over the real numbers we shall understand an associative algebra with unity, generated by elements

$$
\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}
$$

and with relations

$$
\forall i, e_{i}^{2}=-1
$$

where $1 \leqslant i, j \leqslant n$. We define $C_{0}=\mathbb{R}$.

It is easy to see that $C_{1}=\mathbb{C}$ and $C_{2}=\mathbb{H}$, where \mathbb{H} is the
four-dimensional quaternion algebra. Moreover, $\mathbb{R}^{n} \subset C_{n}$ and $\operatorname{dim}_{\mathbb{R}} C_{n}=2^{n}$, where \mathbb{R}^{n} is n-dimensional \mathbb{R}-vector space with the
basis e_{1}, e_{2},

Clifford algebra

Definition

By a Clifford algebra over the real numbers we shall understand an associative algebra with unity, generated by elements

$$
\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}
$$

and with relations

$$
\forall i, e_{i}^{2}=-1
$$

$$
\forall i, j, e_{i} e_{j}=-e_{j} e_{i}
$$

where $1 \leqslant i, j \leqslant n$.
We define $C_{0}=\mathbb{R}$.
It is easy to see that $C_{1}=\mathbb{C}$ and $C_{2}=\mathbb{H}$, where \mathbb{H} is the
four-dimensional quaternion algebra. Moreover, $\mathbb{R}^{n} \subset C_{n}$ and $\operatorname{dim}_{\mathbb{R}} C_{n}=2^{n}$, where \mathbb{R}^{n} is n-dimensional \mathbb{R}-vector space with the basis e_{1}, e_{2},

Clifford algebra

Definition

By a Clifford algebra over the real numbers we shall understand an associative algebra with unity, generated by elements

$$
\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}
$$

and with relations

$$
\forall i, e_{i}^{2}=-1
$$

$$
\forall i, j, e_{i} e_{j}=-e_{j} e_{i}
$$

where $1 \leqslant i, j \leqslant n$. We define $C_{0}=\mathbb{R}$.
It is easy to see that $C_{1}=\mathbb{C}$ and $C_{2}=\mathbb{H}$, where \mathbb{H} is the
four-dimensional quaternion algebra. Moreover, $\mathbb{R}^{n} \subset C_{n}$ and $\operatorname{dim}_{\mathbb{R}} C_{n}=2^{n}$, where \mathbb{R}^{n} is n-dimensional \mathbb{R}-vector space with the basis $e_{1}, e_{2}, \ldots, e_{n}$.

Clifford algebra

Definition

By a Clifford algebra over the real numbers we shall understand an associative algebra with unity, generated by elements

$$
\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}
$$

and with relations

$$
\forall i, e_{i}^{2}=-1
$$

$$
\forall i, j, e_{i} e_{j}=-e_{j} e_{i}
$$

where $1 \leqslant i, j \leqslant n$. We define $C_{0}=\mathbb{R}$.
It is easy to see that $C_{1}=\mathbb{C}$ and \square
four-dimensional quaternion algebra. Moreover, $\mathbb{R}^{n} \subset C_{n}$ and
$\operatorname{dim}_{\mathbb{R}} C_{n}=2^{n}$, where \mathbb{R}^{n} is n-dimensional \mathbb{R}-vector space with the
basis $e_{1}, e_{2}, \ldots, e_{n}$.

Clifford algebra

Definition

By a Clifford algebra over the real numbers we shall understand an associative algebra with unity, generated by elements

$$
\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}
$$

and with relations

$$
\forall i, e_{i}^{2}=-1
$$

$$
\forall i, j, e_{i} e_{j}=-e_{j} e_{i}
$$

where $1 \leqslant i, j \leqslant n$. We define $C_{0}=\mathbb{R}$.
It is easy to see that $C_{1}=\mathbb{C}$ and $C_{2}=\mathbb{H}$, where \mathbb{H} is the four-dimensional quaternion algebra.
$\operatorname{dim}_{\mathbb{R}} C_{n}=2^{n}$, where \mathbb{R}^{n} is n-dimensional \mathbb{R}-vector space with the
basis e_{1}, e_{2},

Clifford algebra

Definition

By a Clifford algebra over the real numbers we shall understand an associative algebra with unity, generated by elements

$$
\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}
$$

and with relations

$$
\forall i, e_{i}^{2}=-1
$$

$$
\forall i, j, e_{i} e_{j}=-e_{j} e_{i}
$$

where $1 \leqslant i, j \leqslant n$. We define $C_{0}=\mathbb{R}$.
It is easy to see that $C_{1}=\mathbb{C}$ and $C_{2}=\mathbb{H}$, where \mathbb{H} is the four-dimensional quaternion algebra. Moreover, $\mathbb{R}^{n} \subset C_{n}$ and $\operatorname{dim}_{\mathbb{R}} C_{n}=2^{n}$, where \mathbb{R}^{n} is n-dimensional \mathbb{R}-vector space with the basis $e_{1}, e_{2}, \ldots, e_{n}$.

We have the following homomorphisms (involutions) on C_{n} :
(i) $e_{i_{1}} e_{i_{2}} \ldots e_{i_{k}} \mapsto e_{i_{k}} e_{i_{k-1}} \ldots e_{i_{2}} e_{i_{1}}$
(ii) ${ }^{\prime}$
$e_{i} \longmapsto-e_{i}$,
(iii)
$a \longmapsto\left(a^{\prime}\right)^{*}, a \in C_{n}$.
Suppose $C_{n}^{0}=\left\{x \in C_{n} \mid x^{\prime}=x\right\}$. It is easy to observe that $\forall a, b \in C_{n},(a b)^{*}=b^{*} a^{*}$

Definition

We define subgroups of C_{n}.

$$
\operatorname{Spin}(n)=\operatorname{Pin}(n) \cap C_{n}^{0} .
$$

A group Spin I

We have the following homomorphisms (involutions) on C_{n} :
(i) *: $e_{i_{1}} e_{i_{2}} \ldots e_{i_{k}} \mapsto e_{i_{k}} e_{i_{k-1}} \ldots e_{i_{2}} e_{i_{1}}$,
(ii) ${ }^{\prime}: e_{i} \mapsto-e_{i}$,
(iii) ${ }^{-}: a \mapsto\left(a^{\prime}\right)^{*}, a \in C_{n}$.

Suppose $C_{n}^{0}=\left\{x \in C_{n} \mid x^{\prime}=x\right\}$. It is easy to observe that $\forall a, b \in C_{n},(a b)^{*}=b^{*} a^{*}$

Definition

We define subgroups of C_{n}.

$$
\operatorname{Spin}(n)=\operatorname{Pin}(n) \cap C_{n}^{0} .
$$

A group Spin I

We have the following homomorphisms (involutions) on C_{n} :
(i) *: $e_{i_{1}} e_{i_{2}} \ldots e_{i_{k}} \mapsto e_{i_{k}} e_{i_{k-1}} \ldots e_{i_{2}} e_{i_{1}}$,
(ii) ${ }^{\prime}: e_{i} \mapsto-e_{i}$,
(iii) ${ }^{-}: a \mapsto\left(a^{\prime}\right)^{*}, a \in C_{n}$.

Suppose $C_{n}^{0}=\left\{x \in C_{n} \mid x^{\prime}=x\right\}$. It is easy to observe that

Definition

We define subgroups of C_{n}.

$$
\operatorname{Spin}(n)=\operatorname{Pin}(n) \cap C_{n}^{0} .
$$

A group Spin I

We have the following homomorphisms (involutions) on C_{n} :
(i) *: $e_{i_{1}} e_{i_{2}} \ldots e_{i_{k}} \mapsto e_{i_{k}} e_{i_{k-1}} \ldots e_{i_{2}} e_{i_{1}}$,
(ii) ${ }^{\prime}: e_{i} \mapsto-e_{i}$,
(iii) ${ }^{-}: a \mapsto\left(a^{\prime}\right)^{*}, a \in C_{n}$.

Suppose $C_{n}^{0}=\left\{x \in C_{n} \mid x^{\prime}=x\right\}$. It is easy to observe that

$$
\forall a, b \in C_{n},(a b)^{*}=b^{*} a^{*}
$$

Definition

We define subgroups of C_{n}.

$$
\operatorname{Spin}(n)=\operatorname{Pin}(n) \cap C_{n}^{0} .
$$

A group Spin I

We have the following homomorphisms (involutions) on C_{n} :
(i) *: $e_{i_{1}} e_{i_{2}} \ldots e_{i_{k}} \mapsto e_{i_{k}} e_{i_{k-1}} \ldots e_{i_{2}} e_{i_{1}}$,
(ii) ${ }^{\prime}: e_{i} \mapsto-e_{i}$,
(iii) ${ }^{-}: a \mapsto\left(a^{\prime}\right)^{*}, a \in C_{n}$.

Suppose $C_{n}^{0}=\left\{x \in C_{n} \mid x^{\prime}=x\right\}$. It is easy to observe that

$$
\forall a, b \in C_{n},(a b)^{*}=b^{*} a^{*}
$$

Definition

We define subgroups of C_{n},

$$
\operatorname{Pin}(n)=\left\{x_{1} x_{2} \ldots x_{k} \mid x_{i} \in S^{n-1} \subset \mathbb{R}^{n} \subset C_{n}, i=1,2, \ldots k\right\}
$$

A group Spin I

We have the following homomorphisms (involutions) on C_{n} :
(i) *: $e_{i_{1}} e_{i_{2}} \ldots e_{i_{k}} \mapsto e_{i_{k}} e_{i_{k-1}} \ldots e_{i_{2}} e_{i_{1}}$,
(ii) ' $: e_{i} \mapsto-e_{i}$,
(iii) ${ }^{-}: a \mapsto\left(a^{\prime}\right)^{*}, a \in C_{n}$.

Suppose $C_{n}^{0}=\left\{x \in C_{n} \mid x^{\prime}=x\right\}$. It is easy to observe that

$$
\forall a, b \in C_{n},(a b)^{*}=b^{*} a^{*}
$$

Definition

We define subgroups of C_{n},

$$
\operatorname{Pin}(n)=\left\{x_{1} x_{2} \ldots x_{k} \mid x_{i} \in S^{n-1} \subset \mathbb{R}^{n} \subset C_{n}, i=1,2, \ldots k\right\}
$$

$$
\operatorname{Spin}(n)=\operatorname{Pin}(n) \cap C_{n}^{0} .
$$

Spin-structure I

Definition

A closed oriented manifold M^{n} has a Spin-structure if and only if the second Stiefel-Whitney class $w_{2}\left(M^{n}\right)=0$.

Remark

A Spin-structure on the manifold M^{n} is a lift of δ to $\operatorname{BSpin}(n)$, giving a commutative diagram:

Spin-structure I

Definition

A closed oriented manifold M^{n} has a Spin-structure if and only if the second Stiefel-Whitney class $w_{2}\left(M^{n}\right)=0$.

Remark

A Spin-structure on the manifold M^{n} is a lift of δ to $\operatorname{BSpin}(n)$, giving a commutative diagram:

Spin-structure I

Definition

A closed oriented manifold M^{n} has a Spin-structure if and only if the second Stiefel-Whitney class $w_{2}\left(M^{n}\right)=0$.

Remark

A Spin-structure on the manifold M^{n} is a lift of δ to $\operatorname{BSpin}(n)$, giving a commutative diagram:

BSpin(n)

Group Spin ${ }^{\mathbb{C}}$

The group $\operatorname{Spin}{ }^{\mathbb{C}}(n)$ is given by

$$
\operatorname{Spin}^{\mathbb{C}}(n)=\left(\operatorname{Spin}(n) \times S^{1}\right) /\{1,-1\}
$$

where $\operatorname{Spin}(n) \cap S^{1}=\{1,-1\}$. Moreover, there is a homomorphism of groups

given by

$$
\bar{\lambda}_{n}[g, z]=\lambda_{n}(g),
$$

where $g \in \operatorname{Spin}(n), z \in S^{1}$ and $\lambda_{n}: \operatorname{Spin}(n) \rightarrow \operatorname{SO}(n)$ is the universal covering.

Group Spin ${ }^{\mathbb{C}}$

The group $\operatorname{Spin}{ }^{\mathbb{C}}(n)$ is given by

$$
\operatorname{Spin}^{\mathbb{C}}(n)=\left(\operatorname{Spin}(n) \times S^{1}\right) /\{1,-1\}
$$

where $\operatorname{Spin}(n) \cap S^{1}=\{1,-1\}$. Moreover, there is a homomorphism of groups

$$
\bar{\lambda}_{n}[g, z]=\lambda_{n}(g),
$$

where $g \in \operatorname{Spin}(n), z \in S^{1}$ and $\lambda_{n}: \operatorname{Spin}(n) \rightarrow \operatorname{SO}(n)$ is the universal covering.

Group Spin ${ }^{\mathbb{C}}$

The group Spin ${ }^{\mathbb{C}}(n)$ is given by

$$
\operatorname{Spin}^{\mathbb{C}}(n)=\left(\operatorname{Spin}(n) \times S^{1}\right) /\{1,-1\}
$$

where $\operatorname{Spin}(n) \cap S^{1}=\{1,-1\}$. Moreover, there is a
homomorphism of groups

given by

$$
\bar{\lambda}_{n}[g, z]=\lambda_{n}(g),
$$

where $g \in \operatorname{Spin}(n), z \in S^{1}$ and $\lambda_{n}: \operatorname{Spin}(n) \rightarrow \operatorname{SO}(n)$ is the universal covering.

Group Spin ${ }^{\mathbb{C}}$

The group Spin ${ }^{\mathbb{C}}(n)$ is given by

$$
\operatorname{Spin}^{\mathbb{C}}(n)=\left(\operatorname{Spin}(n) \times S^{1}\right) /\{1,-1\}
$$

where $\operatorname{Spin}(n) \cap S^{1}=\{1,-1\}$. Moreover, there is a homomorphism of groups
given by

$$
\bar{\lambda}_{n}[g, z]=\lambda_{n}(g),
$$

where $g \in \operatorname{Spin}(n), z \in S^{1}$ and $\lambda_{n}: \operatorname{Spin}(n) \rightarrow \operatorname{SO}(n)$ is the universal covering.

Group Spin ${ }^{\text {C }}$

The group Spin ${ }^{\mathbb{C}}(n)$ is given by

$$
\operatorname{Spin}^{\mathbb{C}}(n)=\left(\operatorname{Spin}(n) \times S^{1}\right) /\{1,-1\}
$$

where $\operatorname{Spin}(n) \cap S^{1}=\{1,-1\}$. Moreover, there is a homomorphism of groups

$$
\bar{\lambda}_{n}: \operatorname{Spin}^{\mathbb{C}}(n) \rightarrow \operatorname{SO}(n)
$$

given by

$$
\bar{\lambda}_{n}[g, z]=\lambda_{n}(g)
$$

where $g \in \operatorname{Spin}(n), z \in S^{1}$ and $\lambda_{n}: \operatorname{Spin}(n) \rightarrow \operatorname{SO}(n)$ is the
universal covering.

Group Spin ${ }^{\text {C }}$

The group Spin ${ }^{\mathbb{C}}(n)$ is given by

$$
\operatorname{Spin}^{\mathbb{C}}(n)=\left(\operatorname{Spin}(n) \times S^{1}\right) /\{1,-1\}
$$

where $\operatorname{Spin}(n) \cap S^{1}=\{1,-1\}$. Moreover, there is a homomorphism of groups

$$
\bar{\lambda}_{n}: \operatorname{Spin}^{\mathbb{C}}(n) \rightarrow \operatorname{SO}(n)
$$

given by

$$
\bar{\lambda}_{n}[g, z]=\lambda_{n}(g)
$$

where $g \in \operatorname{Spin}(n), z \in S^{1}$ and $\lambda_{n}: \operatorname{Spin}(n) \rightarrow S O(n)$ is the universal covering.

Group Spin ${ }^{\mathbb{C}}$

The group Spin ${ }^{\mathbb{C}}(n)$ is given by

$$
\operatorname{Spin}^{\mathbb{C}}(n)=\left(\operatorname{Spin}(n) \times S^{1}\right) /\{1,-1\}
$$

where $\operatorname{Spin}(n) \cap S^{1}=\{1,-1\}$. Moreover, there is a homomorphism of groups

$$
\bar{\lambda}_{n}: \operatorname{Spin}^{\mathbb{C}}(n) \rightarrow \operatorname{SO}(n)
$$

given by

$$
\bar{\lambda}_{n}[g, z]=\lambda_{n}(g),
$$

where $g \in \operatorname{Spin}(n), z \in S^{1}$ and $\lambda_{n}: \operatorname{Spin}(n) \rightarrow \operatorname{SO}(n)$ is the universal covering.

Spin ${ }^{\mathbb{C}}$-structure

The oriented manifold M^{n} has a Spin ${ }^{\mathbb{C}}$-structure there exists $\tilde{w}_{2} \in H^{2}\left(M^{n}, \mathbb{Z}\right)$ such that $\operatorname{red}\left(\tilde{w}_{2}\right)=w_{2}$, where $w_{2} \in H^{2}\left(M^{n}, \mathbb{Z}_{2}\right)$ and red : $H^{2}\left(M^{n}, \mathbb{Z}\right) \rightarrow H^{2}\left(M^{n}, \mathbb{Z}_{2}\right)$ is a homomorphism induced by the natural homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}_{2}$.

Spin ${ }^{\text {C }}$-structure

The oriented manifold M^{n} has a Spin ${ }^{\mathbb{C}}$-structure if and only if there exists $\tilde{w}_{2} \in H^{2}\left(M^{n}, \mathbb{Z}\right)$ such that
homomorphism induced by the natural homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}_{2}$.

Spin ${ }^{\text {C }}$-structure

The oriented manifold M^{n} has a Spin ${ }^{\mathbb{C}}$-structure if and only if there exists $\tilde{w}_{2} \in H^{2}\left(M^{n}, \mathbb{Z}\right)$ such that $\operatorname{red}\left(\tilde{w}_{2}\right)=w_{2}$, homomorphism induced by the natural homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}_{2}$.

Spin ${ }^{\text {C }}$-structure

The oriented manifold M^{n} has a Spin $^{\mathbb{C}}$-structure if and only if there exists $\tilde{w}_{2} \in H^{2}\left(M^{n}, \mathbb{Z}\right)$ such that $\operatorname{red}\left(\tilde{w}_{2}\right)=w_{2}$, where $w_{2} \in H^{2}\left(M^{n}, \mathbb{Z}_{2}\right)$ and red : $H^{2}\left(M^{n}, \mathbb{Z}\right) \rightarrow H^{2}\left(M^{n}, \mathbb{Z}_{2}\right)$ is a homomorphism induced by the natural homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}_{2}$.

Spin ${ }^{\mathbb{C}}$ - structure I

Definition

A Spin ${ }^{\mathbb{C}}$-structure on the manifold M^{n} is a lift of δ to $\mathrm{BSpin}^{\mathbb{C}}(n)$, giving a commutative diagram:

Spin ${ }^{\text {C }}$ - structure II

Theorem

The set of lifts of δ is in bijection correspondence with [$\left.M^{n}, B U(1)\right]$.

Proof: We have the bundle

$$
B U(1) \rightarrow \operatorname{BSpin}^{\mathbb{C}}(n) \rightarrow B S O(n)
$$

Let h_{p} denote the homeomorphism from $B U(1)$ to the fiber of $\mathrm{BSpin}^{\mathbb{C}}(n)$ over the point $p \in B S O(n)$. Given a map $\lambda \in\left[M^{n}, B U(1)\right]$, define the lift δ_{λ} by $\delta_{\lambda}(x)=h_{\delta(x)} \circ \lambda(x)$. This is an injective map from $\left[M^{n}, B U(1)\right]$ into the set of lifts; it is also surjective, since two different lifts will have to disagree on at least one fiber.

Comments

1. Any Spin manifold has a $\operatorname{Spin}{ }^{\mathbb{C}}(n)$ structure,
2. Any three manifold has a Spin structure,
3. Any four manifold has a Spin ${ }^{\mathbb{C}}$ structure (Very old result W. T. Wu (1950), F. Hirzebruch-H. Hopf (1958)).

Dimension Three I

We have the following isomorphisms of Lie groups:

Dimension Three I

We have the following isomorphisms of Lie groups:

$$
S O(3)=S U(2) /\{ \pm 1\}=U(2) / U(1)
$$

$U(1)=S^{1}$ lies in $U(2)$ as diagonal subgroup.

$$
\operatorname{Spin}(3)=S U(2)=S^{3}
$$

$\operatorname{Spin}^{\mathbb{C}}(3)=(U(1) \times \operatorname{Spin}(3)) /\{ \pm 1\}=(U(1) \times S U(2)) /\{ \pm 1\}=U(2)$.
The projection $U(2) \rightarrow S O(3)$ is a princinal circle bundle over SO(3), which corresponds to the nonzero element of $H^{2}(S O(3), \mathbb{Z})=\mathbb{Z}_{2}$.

Dimension Three I

We have the following isomorphisms of Lie groups:

$$
S O(3)=S U(2) /\{ \pm 1\}=U(2) / U(1)
$$

$U(1)=S^{1}$ lies in $U(2)$ as diagonal subgroup.

$$
\operatorname{Spin}(3)=S U(2)=S^{3}
$$

$\operatorname{Spin}^{\mathbb{C}}(3)=(U(1) \times \operatorname{Spin}(3)) /\{ \pm 1\}=(U(1) \times S U(2)) /\{ \pm 1\}=U(2)$.
The projection $U(2) \rightarrow S O(3)$ is a princinal circle bundle over SO(3), which corresponds to the nonzero element of $H^{2}(S O(3), \mathbb{Z})=\mathbb{Z}_{2}$.

Dimension Three I

We have the following isomorphisms of Lie groups:

$$
S O(3)=S U(2) /\{ \pm 1\}=U(2) / U(1)
$$

$U(1)=S^{1}$ lies in $U(2)$ as diagonal subgroup.

$$
\operatorname{Spin}(3)=S U(2)=S^{3}
$$

$$
\operatorname{Spin}^{\mathbb{C}}(3)=(U(1) \times \operatorname{Spin}(3)) /\{ \pm 1\}=(U(1) \times S U(2)) /\{ \pm 1\}=U(2)
$$

The projection $U(2) \rightarrow S O(3)$ is a principal circle bundle over
$S O$ (3), which corresponds to the nonzero element of
$H^{2}(S O(3), \mathbb{Z})=\mathbb{Z}_{2}$.

Dimension Three I

We have the following isomorphisms of Lie groups:

$$
S O(3)=S U(2) /\{ \pm 1\}=U(2) / U(1)
$$

$U(1)=S^{1}$ lies in $U(2)$ as diagonal subgroup.

$$
\operatorname{Spin}(3)=S U(2)=S^{3}
$$

$\operatorname{Spin}^{\mathbb{C}}(3)=(U(1) \times \operatorname{Spin}(3)) /\{ \pm 1\}=(U(1) \times S U(2)) /\{ \pm 1\}=U(2)$.
The projection $U(2) \rightarrow S O(3)$ is a principal circle bundle over $S O(3)$, which corresponds to the nonzero element of $H^{2}(S O(3), \mathbb{Z})=\mathbb{Z}_{2}$.

Simple remark

The isomorphism classes of principal circle bundles over a CW space X are numerated by the elements of $[X, B \cup(1)]=\left[X, \mathbb{C P}^{\infty}\right]=[X, K(\mathbb{Z}, 2)]=H^{2}(X, \mathbb{Z})$.
As an example let us consider the circle bundle

which corresponds to the nonzero element of

$$
H^{2}(S O(3), \mathbb{Z})=H^{2}\left(\mathbb{R} P^{3}, \mathbb{Z}\right)=\mathbb{Z}_{2}
$$

Simple remark

The isomorphism classes of principal circle bundles over a CW space X are numerated by the elements of $[X, B U(1)]=\left[X, \mathbb{C P} \mathbb{P}^{\infty}\right]=[X, K(\mathbb{Z}, 2)]=H^{2}(X, \mathbb{Z})$.
As an example let us consider the circle bundle

which corresponds to the nonzero element of

$$
H^{2}(S O(3), \mathbb{Z})=H^{2}\left(\mathbb{R} P^{3}, \mathbb{Z}\right)=\mathbb{Z}_{2}
$$

Simple remark

The isomorphism classes of principal circle bundles over a CW space X are numerated by the elements of
$[X, B U(1)]=\left[X, \mathbb{C P} \mathbb{P}^{\infty}\right]=[X, K(\mathbb{Z}, 2)]=H^{2}(X, \mathbb{Z})$.
As an example let us consider the circle bundle

$$
U(1) \rightarrow U(2) \rightarrow S O(3)
$$

which corresponds to the nonzero element of

$$
H^{2}(S O(3), \mathbb{Z})=H^{2}\left(\mathbb{R} P^{3}, \mathbb{Z}\right)=\mathbb{Z}_{2}
$$

Simple remark

The isomorphism classes of principal circle bundles over a CW space X are numerated by the elements of $[X, B U(1)]=\left[X, \mathbb{C P} \mathbb{P}^{\infty}\right]=[X, K(\mathbb{Z}, 2)]=H^{2}(X, \mathbb{Z})$.
As an example let us consider the circle bundle

$$
U(1) \rightarrow U(2) \rightarrow S O(3)
$$

which corresponds to the nonzero element of

$$
H^{2}(S O(3), \mathbb{Z})=H^{2}\left(\mathbb{R} P^{3}, \mathbb{Z}\right)=\mathbb{Z}_{2}
$$

Simple remark

The isomorphism classes of principal circle bundles over a CW space X are numerated by the elements of $[X, B U(1)]=\left[X, \mathbb{C P} \mathbb{P}^{\infty}\right]=[X, K(\mathbb{Z}, 2)]=H^{2}(X, \mathbb{Z})$.
As an example let us consider the circle bundle

$$
U(1) \rightarrow U(2) \rightarrow S O(3)
$$

which corresponds to the nonzero element of

$$
H^{2}(S O(3), \mathbb{Z})=H^{2}\left(\mathbb{R} P^{3}, \mathbb{Z}\right)=\mathbb{Z}_{2}
$$

Spin $^{\mathbb{C}}$ in dimension 3

Let M^{3} be a closed, oriented Riemannian 3-manifold. Let $f_{M}: F r \rightarrow M^{3}$ be the associated principal $S O(3)$-bundle of oriented orthonormal frames.
A Spin ${ }^{\mathbb{C}}$-structure on M^{3} is a lift of f_{M} to a principal $U(2)$-bundle.
In other words it is a pair: a principal $U(2)$-bundle $F \rightarrow M^{3}$ and an isomorphism α of principal $S O(3)$-bundles

$$
F / U(1) \rightarrow M \text { with } \quad F r \xrightarrow{f_{M}} M^{3} .
$$

We can consider the above isomorphism as the circle bundle

which corresponds to an element of $H^{2}(F r, \mathbb{Z})$. The set of Spin ${ }^{\mathbb{C}}$
structures on M^{3} is denoted by $\mathcal{S}(M) \subset H^{2}(F r, \mathbb{Z})$.

Spin $^{\mathbb{C}}$ in dimension 3

Let M^{3} be a closed, oriented Riemannian 3-manifold. Let $f_{M}: F r \rightarrow M^{3}$ be the associated principal $S O(3)$-bundle of oriented orthonormal frames.
A Spin ${ }^{\mathbb{C}}$-structure on M^{3} is a lift of f_{M} to a principal $U(2)$-bundle.
In other words it is a pair: a principal $U(2)$-bundle $F \rightarrow M^{3}$ and an
isomorphism α of principal $S O(3)$-bundles
$F / U(1) \rightarrow M$ with $\quad F r \xrightarrow{f} M^{3}$

We can consider the above isomorphism as the circle bundle

which corresponds to an element of $H^{2}(F r, \mathbb{Z})$. The set of Spin ${ }^{\mathbb{C}}$ structures on M^{3} is denoted by $\mathcal{S}(M) \subset H^{2}(F r, \mathbb{Z})$.

Let M^{3} be a closed, oriented Riemannian 3-manifold. Let $f_{M}: F r \rightarrow M^{3}$ be the associated principal $S O(3)$-bundle of oriented orthonormal frames.
A Spin ${ }^{\mathbb{C}}$-structure on M^{3} is a lift of f_{M} to a principal $U(2)$-bundle. In other words it is a pair: a principal $U(2)$-bundle $F \rightarrow M^{3}$ and an isomorphism α of principal $S O(3)$-bundles

$$
F / U(1) \rightarrow M \text { with } \quad F r \xrightarrow{f_{M}} M^{3}
$$

We can consider the above isomorphism as the circle bundle

which corresponds to an element of $H^{2}(F r, \mathbb{Z})$. The set of Spin ${ }^{\mathbb{C}}$ structures on M^{3} is denoted by $\mathcal{S}(M) \subset H^{2}(F r, \mathbb{Z})$.

Let M^{3} be a closed, oriented Riemannian 3-manifold. Let $f_{M}: F r \rightarrow M^{3}$ be the associated principal $S O(3)$-bundle of oriented orthonormal frames.
A Spin ${ }^{\mathbb{C}}$-structure on M^{3} is a lift of f_{M} to a principal $U(2)$-bundle. In other words it is a pair: a principal $U(2)$-bundle $F \rightarrow M^{3}$ and an isomorphism α of principal $S O(3)$-bundles

$$
F / U(1) \rightarrow M \text { with } \quad F r \xrightarrow{f_{M}} M^{3}
$$

We can consider the above isomorphism as the circle bundle

$$
F \xrightarrow{\text { proj }} F / U(1) \xrightarrow{\alpha} F r,
$$

which corresponds to an element of $H^{2}(F r, \mathbb{Z})$.

Let M^{3} be a closed, oriented Riemannian 3-manifold. Let $f_{M}: F r \rightarrow M^{3}$ be the associated principal $S O(3)$-bundle of oriented orthonormal frames.
A Spin ${ }^{\mathbb{C}}$-structure on M^{3} is a lift of f_{M} to a principal $U(2)$-bundle. In other words it is a pair: a principal $U(2)$-bundle $F \rightarrow M^{3}$ and an isomorphism α of principal $S O(3)$-bundles

$$
F / U(1) \rightarrow M \text { with } F r \xrightarrow{f_{M}} M^{3}
$$

We can consider the above isomorphism as the circle bundle

$$
F \xrightarrow{\text { proj }} F / U(1) \xrightarrow{\alpha} F r,
$$

which corresponds to an element of $H^{2}(F r, \mathbb{Z})$. The set of Spin ${ }^{\mathbb{C}}$ structures on M^{3} is denoted by $\mathcal{S}(M) \subset H^{2}(F r, \mathbb{Z})$.

Vector Fields I

Let M^{3} be an oriented closed 3-manifold. Since M^{3} has trivial Euler characteristic, it admits (Th. Euler-Hopf) nowhere vanishing vector fields.

Definition

Let v_{1} and v_{2} be two nowhere vanishing vector fields. We say that

that

$$
\left.\left.v_{1}\right|_{M \backslash B} \simeq v_{2}\right|_{M \backslash B} .
$$

(Here $\simeq="$ is homotopic".)
This gives an equivalence relation, and we define the space of vect (M) structures over M^{3} as nowhere vanishing vector fields modulo this relation. $\operatorname{vect}(M)$ is also sometimes called the set of Euler structures on M^{3}.

Vector Fields I

Let M^{3} be an oriented closed 3-manifold. Since M^{3} has trivial Euler characteristic, it admits (Th. Euler-Hopf) nowhere vanishing vector fields.

Definition

Let v_{1} and v_{2} be two nowhere vanishing vector fields. We say that v_{1} is homologous to v_{2} if there is a boll $B \subset M^{3}$ with the property that
(Here $\simeq=$ "is homotopic".)
This gives an equivalence relation, and we define the space of vect(M) structures over M^{3} as nowhere vanishing vector fields modulo this relation. $\operatorname{vect}(M)$ is also sometimes called the set of Euler structures on M^{3}

Vector Fields I

Let M^{3} be an oriented closed 3-manifold. Since M^{3} has trivial Euler characteristic, it admits (Th. Euler-Hopf) nowhere vanishing vector fields.

Definition

Let v_{1} and v_{2} be two nowhere vanishing vector fields. We say that v_{1} is homologous to v_{2} if there is a boll $B \subset M^{3}$ with the property that

$$
\left.\left.v_{1}\right|_{M \backslash B} \simeq v_{2}\right|_{M \backslash B} .
$$

(Here $\simeq="$ is homotopic".)
This gives an equivalence relation, and we define the space of vect (M) structures over M^{3} as nowhere vanishing vector fields modulo this relation. $\operatorname{vect}(M)$ is also sometimes called the set of Euler structures on M^{3}.

Vector Fields II

An equivalent definition of Euler structures on M^{3} can be given in terms of the spherical fiber bundle of unit tangent vectors $S M \rightarrow M^{3}$.

Definition
An Euler structure on M^{3} is an element of $H^{2}(S M, \mathbb{Z})$ whose
reduction to every fiber $S_{x} M, x \in M^{3}$ is the generator of

$$
H^{2}\left(S_{x} M, \mathbb{Z}\right)=H^{2}\left(S^{2}, \mathbb{Z}\right)=\mathbb{Z}
$$

determined by the orientation of M^{3} at x

Vector Fields II

An equivalent definition of Euler structures on M^{3} can be given in terms of the spherical fiber bundle of unit tangent vectors $S M \rightarrow M^{3}$.

Definition

An Euler structure on M^{3} is an element of $H^{2}(S M, \mathbb{Z})$ whose reduction to every fiber $S_{x} M, x \in M^{3}$ is the generator of

$$
H^{2}\left(S_{x} M, \mathbb{Z}\right)=H^{2}\left(S^{2}, \mathbb{Z}\right)=\mathbb{Z}
$$

determined by the orientation of M^{3} at x.

Equivalence

Let u be a nowhere vanishing vector field of M^{3}. The mapping

$$
x \mapsto u(x) /|u(x)|: M^{3} \rightarrow S M
$$

defines an 3-cycle in $S M=M^{3} \times S^{2}$.
It is an element of $H_{3}(S M, \mathbb{Z}) \simeq H^{2}(S M, \mathbb{Z})$. When we orient $S M^{3}$
properly the above element of $H^{2}(S M, \mathbb{Z})$ represented by this cycle
is an Euler structure on M^{3} in the sense of the second definition.

Equivalence

Let u be a nowhere vanishing vector field of M^{3}. The mapping

$$
x \mapsto u(x) /|u(x)|: M^{3} \rightarrow S M
$$

defines an 3-cycle in $S M=M^{3} \times S^{2}$.
It is an element of $H_{3}(S M, \mathbb{Z}) \simeq H^{2}(S M, \mathbb{Z})$. When we orient $S M^{3}$ properly the above element of $H^{2}(S M, \mathbb{Z})$ represented by this cycle is an Euler structure on M^{3} in the sense of the second definition.

Main Observation

Theorem

Let M^{3} be a closed oriented Riemannian 3-manifold. There is a canonical $H_{1}\left(M^{3}, \mathbb{Z}\right)$-equivariant bijection $\operatorname{vect}(M)=\mathcal{S}(M)$.

Collorary

$\operatorname{vect}(M)=\mathcal{S}(M)=H^{2}\left(M^{3}, \mathbb{Z}\right)$

Theorem

Let M^{3} be a closed oriented Riemannian 3-manifold. There is a canonical $H_{1}\left(M^{3}, \mathbb{Z}\right)$-equivariant bijection vect $(M)=\mathcal{S}(M)$.

Collorary

$$
\operatorname{vect}(M)=\mathcal{S}(M)=H^{2}\left(M^{3}, \mathbb{Z}\right)
$$

Sketch of the Proof

As before, consider the principal $S O(3)$-bundle $f_{M}: F r \rightarrow M^{3}$ and the spherical bundle $S M \rightarrow M^{3}$. Denote by p the bundle morphism $\mathrm{Fr} \rightarrow S M$ which is given at a point of M^{3} by a formula

$$
p\left(e_{1}, e_{2}, e_{3}\right)=e_{1} .
$$

Sketch of the Proof

As before, consider the principal $S O(3)$-bundle $f_{M}: F r \rightarrow M^{3}$ and the spherical bundle $S M \rightarrow M^{3}$. Denote by p the bundle morphism $\mathrm{Fr} \rightarrow S M$ which is given at a point of M^{3} by a formula

$$
p\left(e_{1}, e_{2}, e_{3}\right)=e_{1} .
$$

Hence a homomorphism $p^{*}: H^{2}(S M, \mathbb{Z}) \rightarrow H^{2}(F r, \mathbb{Z})$ sends $\operatorname{vect}(M)$ to $\mathcal{S}(M)$.

Sketch of the Proof

As before, consider the principal $S O(3)$-bundle $f_{M}: F r \rightarrow M^{3}$ and the spherical bundle $S M \rightarrow M^{3}$. Denote by p the bundle morphism $\mathrm{Fr} \rightarrow \mathrm{SM}$ which is given at a point of M^{3} by a formula

$$
p\left(e_{1}, e_{2}, e_{3}\right)=e_{1} .
$$

Hence a homomorphism $p^{*}: H^{2}(S M, \mathbb{Z}) \rightarrow H^{2}(F r, \mathbb{Z})$ sends $\operatorname{vect}(M)$ to $\mathcal{S}(M)$. Moreover $\operatorname{vect}(M)=\mathcal{S}(M)=H^{2}\left(M^{3}, \mathbb{Z}\right)$.

Final Remarks

1. Action $H_{1}\left(M^{3}, \mathbb{Z}\right) \times \mathcal{S}(M) \rightarrow \mathcal{S}(M)=H^{2}\left(M^{3}, \mathbb{Z}\right):$

2. Action $H_{1}\left(M^{3}, \mathbb{Z}\right) \times \operatorname{vect}(M) \rightarrow \operatorname{vect}(M) \subset H^{2}(S M, \mathbb{Z}):$ Let $x \in H_{1}\left(M^{3}, \mathbb{Z}\right), y \in \operatorname{vect}(M),(x, y) \mapsto f_{y}^{*}(x)+y \in \operatorname{vect}(M) \subset$ $H^{2}(S M, \mathbb{Z})$ where $f_{y}: S M \rightarrow M^{3}$ is a spherical fiber bundle of unit
tangent vectors.
Remember from Poincare duality $H_{1}\left(M^{3}, \mathbb{Z}\right)=H^{2}\left(M^{3}, \mathbb{Z}\right)$. The
above constructions are independence from Riemann metric.

Final Remarks

1. Action $H_{1}\left(M^{3}, \mathbb{Z}\right) \times \mathcal{S}(M) \rightarrow \mathcal{S}(M)=H^{2}\left(M^{3}, \mathbb{Z}\right)$: Let $x \in$ $H_{1}\left(M^{3}, \mathbb{Z}\right), y \in \mathcal{S}(M),(x, y) \mapsto f_{M}^{*}(x)+y \in \mathcal{S}(M) \subset H^{2}(F r, \mathbb{Z})$.
2. Action $H_{1}\left(M^{3}, \mathbb{Z}\right) \times \operatorname{vect}(M) \rightarrow \operatorname{vect}(M) \subset H^{2}(S M, \mathbb{Z}):$ Let $H^{2}(S M, \mathbb{Z})$ where $f_{y}: S M \rightarrow M^{3}$ is a spherical fiber bundle of unit
tangent vectors.
Remember from Poincare duality $H_{1}\left(M^{3}, \mathbb{Z}\right)=H^{2}\left(M^{3}, \mathbb{Z}\right)$. The
above constructions are independence from Riemann metric.
3. Action $H_{1}\left(M^{3}, \mathbb{Z}\right) \times \mathcal{S}(M) \rightarrow \mathcal{S}(M)=H^{2}\left(M^{3}, \mathbb{Z}\right)$: Let $x \in$ $H_{1}\left(M^{3}, \mathbb{Z}\right), y \in \mathcal{S}(M),(x, y) \mapsto f_{M}^{*}(x)+y \in \mathcal{S}(M) \subset H^{2}(F r, \mathbb{Z})$.
4. Action $H_{1}\left(M^{3}, \mathbb{Z}\right) \times \operatorname{vect}(M) \rightarrow \operatorname{vect}(M) \subset H^{2}(S M, \mathbb{Z})$:
$H^{2}(S M, \mathbb{Z})$ where $f_{y}: S M \rightarrow M^{3}$ is a spherical fiber bundle of unit
tangent vectors.
Remember from Poincare duality $H_{1}\left(M^{3}, \mathbb{Z}\right)=H^{2}\left(M^{3}, \mathbb{Z}\right)$. The
above constructions are independence from Riemann metric.
5. Action $H_{1}\left(M^{3}, \mathbb{Z}\right) \times \mathcal{S}(M) \rightarrow \mathcal{S}(M)=H^{2}\left(M^{3}, \mathbb{Z}\right)$: Let $x \in$ $H_{1}\left(M^{3}, \mathbb{Z}\right), y \in \mathcal{S}(M),(x, y) \mapsto f_{M}^{*}(x)+y \in \mathcal{S}(M) \subset H^{2}(F r, \mathbb{Z})$.
6. Action $H_{1}\left(M^{3}, \mathbb{Z}\right) \times \operatorname{vect}(M) \rightarrow \operatorname{vect}(M) \subset H^{2}(S M, \mathbb{Z})$: Let $x \in H_{1}\left(M^{3}, \mathbb{Z}\right), y \in \operatorname{vect}(M),(x, y) \mapsto f_{y}^{*}(x)+y \in \operatorname{vect}(M) \subset$ $H^{2}(S M, \mathbb{Z})$ where $f_{y}: S M \rightarrow M^{3}$ is a spherical fiber bundle of unit tangent vectors.
Remember from Poincare duality $H_{1}\left(M^{3}, \mathbb{Z}\right)=H^{2}\left(M^{3}, \mathbb{Z}\right)$.
7. Action $H_{1}\left(M^{3}, \mathbb{Z}\right) \times \mathcal{S}(M) \rightarrow \mathcal{S}(M)=H^{2}\left(M^{3}, \mathbb{Z}\right)$: Let $x \in$ $H_{1}\left(M^{3}, \mathbb{Z}\right), y \in \mathcal{S}(M),(x, y) \mapsto f_{M}^{*}(x)+y \in \mathcal{S}(M) \subset H^{2}(F r, \mathbb{Z})$.
8. Action $H_{1}\left(M^{3}, \mathbb{Z}\right) \times \operatorname{vect}(M) \rightarrow \operatorname{vect}(M) \subset H^{2}(S M, \mathbb{Z})$: Let $x \in H_{1}\left(M^{3}, \mathbb{Z}\right), y \in \operatorname{vect}(M),(x, y) \mapsto f_{y}^{*}(x)+y \in \operatorname{vect}(M) \subset$ $H^{2}(S M, \mathbb{Z})$ where $f_{y}: S M \rightarrow M^{3}$ is a spherical fiber bundle of unit tangent vectors.
Remember from Poincare duality $H_{1}\left(M^{3}, \mathbb{Z}\right)=H^{2}\left(M^{3}, \mathbb{Z}\right)$. The above constructions are independence from Riemann metric.

Bibliography

1. P. Ozsváth, Z. Szabó, An introduction to Heegaard Floer homology, Clay Mathematics Proceedings 5,AMS, 2006 2. V. Turaev, Torsion invariants of Spin ${ }^{\mathbb{C}}$-structures on 3-manifolds, Mathematical Research Letters 4,1997, 679-695
