$\mathsf{Spin}^{\mathbb{C}}$ structures

Andrzej Szczepański University of Gdańsk

Toruń, April 12, 2014

Andrzej Szczepański University of Gdańsk Spin^C structures

Definition

By a Clifford algebra over the real numbers we shall understand an associative algebra with unity, generated by elements

$$\{e_1, e_2, \ldots, e_n\}$$

and with relations

$$\forall i, e_i^2 = -1,$$

$$\forall i, j, e_i e_j = -e_j e_i,$$

where $1 \leq i, j \leq n$. We define $C_0 = \mathbb{R}$.

Definition

By a Clifford algebra over the real numbers we shall understand an associative algebra with unity, generated by elements

$$\{e_1, e_2, \ldots, e_n\}$$

and with relations

 $\forall i, e_i^2 = -1,$

$$\forall i, j, e_i e_j = -e_j e_i,$$

where $1 \leq i, j \leq n$. We define $C_0 = \mathbb{R}$.

Definition

By a Clifford algebra over the real numbers we shall understand an associative algebra with unity, generated by elements

$$\{e_1, e_2, \ldots, e_n\}$$

and with relations

$$\forall i, e_i^2 = -1,$$

$$\forall i, j, e_i e_j = -e_j e_i,$$

where $1 \leq i, j \leq n$. We define $C_0 = \mathbb{R}$.

Definition

By a Clifford algebra over the real numbers we shall understand an associative algebra with unity, generated by elements

$$\{e_1, e_2, \ldots, e_n\}$$

and with relations

$$\forall i, e_i^2 = -1,$$

$$\forall i, j, e_i e_j = -e_j e_i,$$

where $1 \leq i, j \leq n$. We define $C_0 = \mathbb{R}$.

Definition

By a Clifford algebra over the real numbers we shall understand an associative algebra with unity, generated by elements

$$\{e_1, e_2, \ldots, e_n\}$$

and with relations

$$\forall i, e_i^2 = -1,$$

$$\forall i, j, e_i e_j = -e_j e_i,$$

where $1 \leq i, j \leq n$. We define $C_0 = \mathbb{R}$.

Definition

By a Clifford algebra over the real numbers we shall understand an associative algebra with unity, generated by elements

$$\{e_1, e_2, \ldots, e_n\}$$

and with relations

$$\forall i, e_i^2 = -1,$$

$$\forall i, j, e_i e_j = -e_j e_i,$$

where $1 \leq i, j \leq n$. We define $C_0 = \mathbb{R}$.

Definition

By a Clifford algebra over the real numbers we shall understand an associative algebra with unity, generated by elements

$$\{e_1, e_2, \ldots, e_n\}$$

and with relations

$$\forall i, e_i^2 = -1,$$

$$\forall i, j, e_i e_j = -e_j e_i,$$

where $1 \leq i, j \leq n$. We define $C_0 = \mathbb{R}$.

Definition

By a Clifford algebra over the real numbers we shall understand an associative algebra with unity, generated by elements

$$\{e_1, e_2, \ldots, e_n\}$$

and with relations

$$\forall i, e_i^2 = -1,$$

$$\forall i, j, e_i e_j = -e_j e_i,$$

where $1 \leq i, j \leq n$. We define $C_0 = \mathbb{R}$.

We have the following homomorphisms (involutions) on C_n :

(i) *:
$$e_{i_1}e_{i_2}\ldots e_{i_k} \mapsto e_{i_k}e_{i_{k-1}}\ldots e_{i_2}e_{i_1}$$
,
(ii) ': $e_i \mapsto -e_i$,
(iii) ⁻: $a \mapsto (a')^*$, $a \in C_n$.
Suppose $C_n^0 = \{x \in C_n \mid x' = x\}$. It is easy to observe that

 $\forall a, b \in C_n, (ab)^* = b^*a^*.$

Definition

We define subgroups of C_n ,

 $Pin(n) = \{x_1x_2...x_k \mid x_i \in S^{n-1} \subset \mathbb{R}^n \subset C_n, i = 1, 2, ..., k\},\$

$$Spin(n) = Pin(n) \cap C_n^0$$
.

We have the following homomorphisms (involutions) on C_n : (i) *: $e_{i_1}e_{i_2}\ldots e_{i_k} \mapsto e_{i_k}e_{i_{k-1}}\ldots e_{i_2}e_{i_1}$, (ii) ': $e_i \mapsto -e_i$, (iii) -: $a \mapsto (a')^*, a \in C_n$. Suppose $C_n^0 = \{x \in C_n \mid x' = x\}$. It is easy to observe that

Definition

We define subgroups of C_n ,

 $\operatorname{Pin}(n) = \{x_1 x_2 \dots x_k \mid x_i \in S^{n-1} \subset \mathbb{R}^n \subset C_n, i = 1, 2, \dots k\},\$

$$Spin(n) = Pin(n) \cap C_n^0$$
.

Andrzej Szczepański University of Gdańsk Spin^C structures

We have the following homomorphisms (involutions) on C_n : (i) *: $e_{i_1}e_{i_2} \dots e_{i_k} \mapsto e_{i_k}e_{i_{k-1}} \dots e_{i_2}e_{i_1}$, (ii) ': $e_i \mapsto -e_i$, (iii) -: $a \mapsto (a')^*, a \in C_n$. Suppose $C_n^0 = \{x \in C_n \mid x' = x\}$. It is easy to observe that

Definition

We define subgroups of C_n ,

 $\operatorname{Pin}(n) = \{x_1 x_2 \dots x_k \mid x_i \in S^{n-1} \subset \mathbb{R}^n \subset C_n, i = 1, 2, \dots k\},\$

$$Spin(n) = Pin(n) \cap C_n^0$$
.

Andrzej Szczepański University of Gdańsk Spin^C structures

We have the following homomorphisms (involutions) on C_n :

(i) *:
$$e_{i_1}e_{i_2} \dots e_{i_k} \mapsto e_{i_k}e_{i_{k-1}} \dots e_{i_2}e_{i_1}$$
,
(ii) ': $e_i \mapsto -e_i$,
(iii) ⁻: $a \mapsto (a')^*$, $a \in C_n$.
Suppose $C_n^0 = \{x \in C_n \mid x' = x\}$. It is easy to observe that

 $\forall a, b \in C_n, (ab)^* = b^*a^*.$

Definition

We define subgroups of C_n ,

 $Pin(n) = \{x_1x_2\ldots x_k \mid x_i \in S^{n-1} \subset \mathbb{R}^n \subset C_n, i = 1, 2, \ldots k\},\$

$$Spin(n) = Pin(n) \cap C_n^0$$
.

We have the following homomorphisms (involutions) on C_n :

(i) *:
$$e_{i_1}e_{i_2} \dots e_{i_k} \mapsto e_{i_k}e_{i_{k-1}} \dots e_{i_2}e_{i_1}$$
,
(ii) ': $e_i \mapsto -e_i$,
(iii) ⁻: $a \mapsto (a')^*$, $a \in C_n$.
Suppose $C_n^0 = \{x \in C_n \mid x' = x\}$. It is easy to observe that

 $\forall a, b \in C_n, (ab)^* = b^*a^*.$

Definition

We define subgroups of C_n ,

$$\mathsf{Pin}(n) = \{x_1x_2\ldots x_k \mid x_i \in S^{n-1} \subset \mathbb{R}^n \subset C_n, i = 1, 2, \ldots k\},\$$

$$Spin(n) = Pin(n) \cap C_n^0$$
.

We have the following homomorphisms (involutions) on C_n :

(i) *:
$$e_{i_1}e_{i_2} \dots e_{i_k} \mapsto e_{i_k}e_{i_{k-1}} \dots e_{i_2}e_{i_1}$$
,
(ii) ': $e_i \mapsto -e_i$,
(iii) -: $a \mapsto (a')^*$, $a \in C_n$.
Suppose $C_n^0 = \{x \in C_n \mid x' = x\}$. It is easy to observe that

 $\forall a, b \in C_n, (ab)^* = b^*a^*.$

Definition

We define subgroups of C_n ,

$$\mathsf{Pin}(n) = \{x_1x_2\ldots x_k \mid x_i \in S^{n-1} \subset \mathbb{R}^n \subset C_n, i = 1, 2, \ldots k\},\$$

$$Spin(n) = Pin(n) \cap C_n^0$$
.

A closed oriented manifold M^n has a Spin-structure if and only if the second Stiefel-Whitney class $w_2(M^n) = 0$.

Remark

A Spin-structure on the manifold M^n is a lift of δ to BSpin(n), giving a commutative diagram:

< A > < 3

A closed oriented manifold M^n has a Spin-structure if and only if the second Stiefel-Whitney class $w_2(M^n) = 0$.

Remark

A Spin-structure on the manifold M^n is a lift of δ to BSpin(n), giving a commutative diagram:

< 17 > <

A closed oriented manifold M^n has a Spin-structure if and only if the second Stiefel-Whitney class $w_2(M^n) = 0$.

Remark

A Spin-structure on the manifold M^n is a lift of δ to BSpin(n), giving a commutative diagram:

The group $\text{Spin}^{\mathbb{C}}(n)$ is given by

$${\sf Spin}^{\mathbb C}({\it n})=({\sf Spin}({\it n}) imes S^1)/\{1,-1\}$$

where $Spin(n) \cap S^1 = \{1, -1\}$. Moreover, there is a homomorphism of groups

$$\bar{\lambda}_n : \operatorname{Spin}^{\mathbb{C}}(n) \to \operatorname{SO}(n)$$

given by

$$\bar{\lambda}_n[g,z] = \lambda_n(g),$$

(人間) (人) (人) (人) (人)

The group $\text{Spin}^{\mathbb{C}}(n)$ is given by

$$\mathsf{Spin}^{\mathbb{C}}(n) = (\mathsf{Spin}(n) \times S^1)/\{1, -1\}$$

where $\text{Spin}(n) \cap S^1 = \{1, -1\}$. Moreover, there is a homomorphism of groups

$$\bar{\lambda}_n : \operatorname{Spin}^{\mathbb{C}}(n) \to \operatorname{SO}(n)$$

given by

$$\bar{\lambda}_n[g,z] = \lambda_n(g),$$

The group $\text{Spin}^{\mathbb{C}}(n)$ is given by

$$\mathsf{Spin}^{\mathbb{C}}(\mathit{n}) = (\mathsf{Spin}(\mathit{n}) imes \mathcal{S}^1) / \{1, -1\}$$

where $Spin(n) \cap S^1 = \{1, -1\}$. Moreover, there is a homomorphism of groups

$$\bar{\lambda}_n : \operatorname{Spin}^{\mathbb{C}}(n) \to \operatorname{SO}(n)$$

given by

$$\bar{\lambda}_n[g,z] = \lambda_n(g),$$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

The group $\text{Spin}^{\mathbb{C}}(n)$ is given by

$$\mathsf{Spin}^{\mathbb{C}}(\mathit{n}) = (\mathsf{Spin}(\mathit{n}) imes \mathcal{S}^1) / \{1, -1\}$$

where $Spin(n) \cap S^1 = \{1, -1\}$. Moreover, there is a homomorphism of groups

 $\bar{\lambda}_n: \operatorname{Spin}^{\mathbb{C}}(n) \to \operatorname{SO}(n)$

given by

$$\bar{\lambda}_n[g,z] = \lambda_n(g),$$

A (1) × A (2) × A (2) ×

The group $\text{Spin}^{\mathbb{C}}(n)$ is given by

$$\mathsf{Spin}^{\mathbb{C}}(\mathit{n}) = (\mathsf{Spin}(\mathit{n}) imes \mathcal{S}^1) / \{1, -1\}$$

where $Spin(n) \cap S^1 = \{1, -1\}$. Moreover, there is a homomorphism of groups

$$\bar{\lambda}_n: \operatorname{Spin}^{\mathbb{C}}(n) \to \operatorname{SO}(n)$$

given by

$$\bar{\lambda}_n[g,z]=\lambda_n(g),$$

(人間) とうけん ほう

The group $\text{Spin}^{\mathbb{C}}(n)$ is given by

$$\mathsf{Spin}^{\mathbb{C}}(\mathit{n}) = (\mathsf{Spin}(\mathit{n}) imes \mathcal{S}^1) / \{1, -1\}$$

where $Spin(n) \cap S^1 = \{1, -1\}$. Moreover, there is a homomorphism of groups

$$\bar{\lambda}_n : \operatorname{Spin}^{\mathbb{C}}(n) \to \operatorname{SO}(n)$$

given by

$$\bar{\lambda}_n[g,z] = \lambda_n(g),$$

・日・ ・ ヨ・ ・ ヨ・

The group $\text{Spin}^{\mathbb{C}}(n)$ is given by

$$\mathsf{Spin}^{\mathbb{C}}(\mathit{n}) = (\mathsf{Spin}(\mathit{n}) imes \mathcal{S}^1) / \{1, -1\}$$

where $Spin(n) \cap S^1 = \{1, -1\}$. Moreover, there is a homomorphism of groups

$$\bar{\lambda}_n: \operatorname{Spin}^{\mathbb{C}}(n) \to \operatorname{SO}(n)$$

given by

$$\bar{\lambda}_n[g,z] = \lambda_n(g),$$

・日・・ ヨ・・ モ・

The oriented manifold M^n has a $\text{Spin}^{\mathbb{C}}$ -structure if and only if there exists $\tilde{w}_2 \in H^2(M^n, \mathbb{Z})$ such that $red(\tilde{w}_2) = w_2$, where $w_2 \in H^2(M^n, \mathbb{Z}_2)$ and $red : H^2(M^n, \mathbb{Z}) \to H^2(M^n, \mathbb{Z}_2)$ is a homomorphism induced by the natural homomorphism $\mathbb{Z} \to \mathbb{Z}_2$.

The oriented manifold M^n has a $\text{Spin}^{\mathbb{C}}$ -structure if and only if there exists $\tilde{w}_2 \in H^2(M^n, \mathbb{Z})$ such that $red(\tilde{w}_2) = w_2$, where $w_2 \in H^2(M^n, \mathbb{Z}_2)$ and $red : H^2(M^n, \mathbb{Z}) \to H^2(M^n, \mathbb{Z}_2)$ is a homomorphism induced by the natural homomorphism $\mathbb{Z} \to \mathbb{Z}_2$

The oriented manifold M^n has a Spin^{\mathbb{C}}-structure if and only if there exists $\tilde{w}_2 \in H^2(M^n, \mathbb{Z})$ such that $red(\tilde{w}_2) = w_2$, where $w_2 \in H^2(M^n, \mathbb{Z}_2)$ and $red : H^2(M^n, \mathbb{Z}) \to H^2(M^n, \mathbb{Z}_2)$ is a homomorphism induced by the natural homomorphism $\mathbb{Z} \to \mathbb{Z}_2$

The oriented manifold M^n has a $\text{Spin}^{\mathbb{C}}$ -structure if and only if there exists $\tilde{w}_2 \in H^2(M^n, \mathbb{Z})$ such that $red(\tilde{w}_2) = w_2$, where $w_2 \in H^2(M^n, \mathbb{Z}_2)$ and $red : H^2(M^n, \mathbb{Z}) \to H^2(M^n, \mathbb{Z}_2)$ is a homomorphism induced by the natural homomorphism $\mathbb{Z} \to \mathbb{Z}_2$.

A Spin^{\mathbb{C}}-structure on the manifold M^n is a lift of δ to BSpin^{\mathbb{C}}(n), giving a commutative diagram:

Theorem

The set of lifts of δ is in bijection correspondence with $[M^n, BU(1)]$.

Proof: We have the bundle

$$BU(1)
ightarrow \mathsf{BSpin}^{\mathbb{C}}(n)
ightarrow BSO(n).$$

Let h_p denote the homeomorphism from BU(1) to the fiber of $BSpin^{\mathbb{C}}(n)$ over the point $p \in BSO(n)$. Given a map $\lambda \in [M^n, BU(1)]$, define the lift δ_{λ} by $\delta_{\lambda}(x) = h_{\delta(x)} \circ \lambda(x)$. This is an injective map from $[M^n, BU(1)]$ into the set of lifts; it is also surjective, since two different lifts will have to disagree on at least one fiber.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- 1. Any Spin manifold has a $\text{Spin}^{\mathbb{C}}(n)$ structure,
- 2. Any three manifold has a Spin structure,
- 3. Any four manifold has a Spin^{\mathbb{C}} structure (Very old result W. T. Wu (1950), F. Hirzebruch-H. Hopf (1958)).

 $SO(3) = SU(2)/\{\pm 1\} = U(2)/U(1),$

 $U(1) = S^1$ lies in U(2) as diagonal subgroup.

 $Spin(3) = SU(2) = S^3$

 $Spin^{\mathbb{C}}(3) = (U(1) \times Spin(3)) / \{\pm 1\} = (U(1) \times SU(2)) / \{\pm 1\} = U(2).$

- * @ * * 注 * * 注 * - 注

The projection $U(2) \rightarrow SO(3)$ is a principal circle bundle over SO(3), which corresponds to the nonzero element of $H^2(SO(3), \mathbb{Z}) = \mathbb{Z}_2$.

$$SO(3) = SU(2)/\{\pm 1\} = U(2)/U(1),$$

 $U(1) = S^1$ lies in U(2) as diagonal subgroup.

 $Spin(3) = SU(2) = S^3$

 $Spin^{\mathbb{C}}(3) = (U(1) \times Spin(3)) / \{\pm 1\} = (U(1) \times SU(2)) / \{\pm 1\} = U(2).$

The projection $U(2) \rightarrow SO(3)$ is a principal circle bundle over SO(3), which corresponds to the nonzero element of $H^2(SO(3), \mathbb{Z}) = \mathbb{Z}_2$.

$$SO(3) = SU(2)/{\pm 1} = U(2)/U(1),$$

 $U(1) = S^1$ lies in U(2) as diagonal subgroup.

$$Spin(3) = SU(2) = S^3$$

 $Spin^{\mathbb{C}}(3) = (U(1) \times Spin(3)) / \{\pm 1\} = (U(1) \times SU(2)) / \{\pm 1\} = U(2).$ The projection $U(2) \rightarrow SO(3)$ is a principal circle bundle over SO(3), which corresponds to the nonzero element of $U^{2}(SO(2), \mathbb{Z}) = \mathbb{Z}$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$SO(3) = SU(2)/{\pm 1} = U(2)/U(1),$$

 $U(1) = S^1$ lies in U(2) as diagonal subgroup.

$$Spin(3) = SU(2) = S^3$$

$Spin^{\mathbb{C}}(3) = (U(1) \times Spin(3))/\{\pm 1\} = (U(1) \times SU(2))/\{\pm 1\} = U(2).$

The projection $U(2) \rightarrow SO(3)$ is a principal circle bundle over SO(3), which corresponds to the nonzero element of $H^2(SO(3), \mathbb{Z}) = \mathbb{Z}_2$.

$$SO(3) = SU(2)/{\pm 1} = U(2)/U(1),$$

 $U(1) = S^1$ lies in U(2) as diagonal subgroup.

$$Spin(3) = SU(2) = S^3$$

 $Spin^{\mathbb{C}}(3) = (U(1) \times Spin(3))/\{\pm 1\} = (U(1) \times SU(2))/\{\pm 1\} = U(2).$

★ 圖 ▶ ★ 温 ▶ ★ 温 ▶ … 温

The projection $U(2) \rightarrow SO(3)$ is a principal circle bundle over SO(3), which corresponds to the nonzero element of $H^2(SO(3), \mathbb{Z}) = \mathbb{Z}_2$.

The isomorphism classes of principal circle bundles over a CW space X are numerated by the elements of $[X, BU(1)] = [X, \mathbb{CP}^{\infty}] = [X, \mathcal{K}(\mathbb{Z}, 2)] = H^2(X, \mathbb{Z}).$ As an example let us consider the circle bundle

 $U(1) \rightarrow U(2) \rightarrow SO(3)$

which corresponds to the nonzero element of

 $H^2(SO(3),\mathbb{Z})=H^2(\mathbb{R}P^3,\mathbb{Z})=\mathbb{Z}_2.$

・ 同 ト ・ ヨ ト ・ ヨ ト

The isomorphism classes of principal circle bundles over a CW space X are numerated by the elements of $[X, BU(1)] = [X, \mathbb{CP}^{\infty}] = [X, \mathcal{K}(\mathbb{Z}, 2)] = H^2(X, \mathbb{Z}).$ As an example let us consider the circle bundle

 $U(1) \rightarrow U(2) \rightarrow SO(3)$

which corresponds to the nonzero element of

 $H^2(SO(3),\mathbb{Z})=H^2(\mathbb{R}P^3,\mathbb{Z})=\mathbb{Z}_2.$

・ 同 ト ・ ヨ ト ・ ヨ ト

The isomorphism classes of principal circle bundles over a CW space X are numerated by the elements of $[X, BU(1)] = [X, \mathbb{CP}^{\infty}] = [X, K(\mathbb{Z}, 2)] = H^2(X, \mathbb{Z}).$ As an example let us consider the circle bundle

$$U(1) \rightarrow U(2) \rightarrow SO(3)$$

which corresponds to the nonzero element of

 $H^2(SO(3),\mathbb{Z})=H^2(\mathbb{R}P^3,\mathbb{Z})=\mathbb{Z}_2.$

The isomorphism classes of principal circle bundles over a CW space X are numerated by the elements of $[X, BU(1)] = [X, \mathbb{CP}^{\infty}] = [X, K(\mathbb{Z}, 2)] = H^2(X, \mathbb{Z}).$ As an example let us consider the circle bundle

$$U(1) \rightarrow U(2) \rightarrow SO(3)$$

which corresponds to the nonzero element of

 $H^2(SO(3),\mathbb{Z})=H^2(\mathbb{R}P^3,\mathbb{Z})=\mathbb{Z}_2.$

The isomorphism classes of principal circle bundles over a CW space X are numerated by the elements of $[X, BU(1)] = [X, \mathbb{CP}^{\infty}] = [X, K(\mathbb{Z}, 2)] = H^2(X, \mathbb{Z}).$ As an example let us consider the circle bundle

$$U(1) \rightarrow U(2) \rightarrow SO(3)$$

which corresponds to the nonzero element of

$$H^2(SO(3),\mathbb{Z})=H^2(\mathbb{R}P^3,\mathbb{Z})=\mathbb{Z}_2.$$

Spin^{\mathbb{C}} in dimension 3

Let M^3 be a closed, oriented Riemannian 3-manifold. Let $f_M : Fr \to M^3$ be the associated principal SO(3)-bundle of oriented orthonormal frames.

A Spin^C-structure on M^3 is a lift of f_M to a principal U(2)-bundle. In other words it is a pair: a principal U(2)-bundle $F \to M^3$ and an isomorphism α of principal SO(3)-bundles

$$F/U(1) \rightarrow M$$
 with $Fr \stackrel{f_M}{\rightarrow} M^3$.

We can consider the above isomorphism as the circle bundle

$$F \stackrel{\operatorname{proj}}{
ightarrow} F/U(1) \stackrel{lpha}{
ightarrow} \operatorname{Fr},$$

which corresponds to an element of $H^2(Fr,\mathbb{Z})$. The set of Spin^C structures on M^3 is denoted by $\mathcal{S}(M) \subset H^2(Fr,\mathbb{Z})$.

$\mathsf{Spin}^\mathbb{C}$ in dimension 3

Let M^3 be a closed, oriented Riemannian 3-manifold. Let $f_M : Fr \to M^3$ be the associated principal SO(3)-bundle of oriented orthonormal frames.

A Spin^C-structure on M^3 is a lift of f_M to a principal U(2)-bundle. In other words it is a pair: a principal U(2)-bundle $F \to M^3$ and an isomorphism α of principal SO(3)-bundles

$$F/U(1) \rightarrow M$$
 with $Fr \stackrel{f_M}{\rightarrow} M^3$.

We can consider the above isomorphism as the circle bundle

$$F \stackrel{\operatorname{proj}}{\to} F/U(1) \stackrel{lpha}{\to} Fr,$$

which corresponds to an element of $H^2(Fr,\mathbb{Z})$. The set of Spin^C structures on M^3 is denoted by $\mathcal{S}(M) \subset H^2(Fr,\mathbb{Z})$.

$\mathsf{Spin}^{\mathbb{C}}$ in dimension 3

Let M^3 be a closed, oriented Riemannian 3-manifold. Let $f_M : Fr \to M^3$ be the associated principal SO(3)-bundle of oriented orthonormal frames.

A Spin^{\mathbb{C}}-structure on M^3 is a lift of f_M to a principal U(2)-bundle. In other words it is a pair: a principal U(2)-bundle $F \to M^3$ and an isomorphism α of principal SO(3)-bundles

$$F/U(1) \rightarrow M$$
 with $Fr \stackrel{f_M}{\rightarrow} M^3$.

We can consider the above isomorphism as the circle bundle

$$F \stackrel{\operatorname{proj}}{
ightarrow} F/U(1) \stackrel{lpha}{
ightarrow} \operatorname{Fr},$$

which corresponds to an element of $H^2(Fr,\mathbb{Z})$. The set of Spin^C structures on M^3 is denoted by $\mathcal{S}(M) \subset H^2(Fr,\mathbb{Z})$.

$\mathsf{Spin}^{\mathbb{C}}$ in dimension 3

Let M^3 be a closed, oriented Riemannian 3-manifold. Let $f_M : Fr \to M^3$ be the associated principal SO(3)-bundle of oriented orthonormal frames.

A Spin^{\mathbb{C}}-structure on M^3 is a lift of f_M to a principal U(2)-bundle. In other words it is a pair: a principal U(2)-bundle $F \to M^3$ and an isomorphism α of principal SO(3)-bundles

$$F/U(1) \rightarrow M$$
 with $Fr \stackrel{f_M}{\rightarrow} M^3$.

We can consider the above isomorphism as the circle bundle

$$F \stackrel{\operatorname{proj}}{\to} F/U(1) \stackrel{lpha}{\to} Fr,$$

which corresponds to an element of $H^2(Fr, \mathbb{Z})$. The set of $Spin^{\mathbb{C}}$ structures on M^3 is denoted by $S(M) \subset H^2(Fr, \mathbb{Z})$.

$\mathsf{Spin}^\mathbb{C}$ in dimension 3

Let M^3 be a closed, oriented Riemannian 3-manifold. Let $f_M : Fr \to M^3$ be the associated principal SO(3)-bundle of oriented orthonormal frames.

A Spin^{\mathbb{C}}-structure on M^3 is a lift of f_M to a principal U(2)-bundle. In other words it is a pair: a principal U(2)-bundle $F \to M^3$ and an isomorphism α of principal SO(3)-bundles

$$F/U(1) \rightarrow M$$
 with $Fr \stackrel{f_M}{\rightarrow} M^3$.

We can consider the above isomorphism as the circle bundle

$$F \stackrel{\operatorname{proj}}{\to} F/U(1) \stackrel{lpha}{\to} Fr,$$

which corresponds to an element of $H^2(Fr, \mathbb{Z})$. The set of $Spin^{\mathbb{C}}$ structures on M^3 is denoted by $\mathcal{S}(M) \subset H^2(Fr, \mathbb{Z})$.

Let M^3 be an oriented closed 3-manifold. Since M^3 has trivial Euler characteristic, it admits (Th. Euler-Hopf) nowhere vanishing vector fields.

Definition

Let v_1 and v_2 be two nowhere vanishing vector fields. We say that v_1 is homologous to v_2 if there is a boll $B \subset M^3$ with the property that

$$v_1|_{M\setminus B}\simeq v_2|_{M\setminus B}.$$

(Here $\simeq =$ "is homotopic".)

This gives an equivalence relation, and we define the space of vect(M) structures over M^3 as nowhere vanishing vector fields modulo this relation. vect(M) is also sometimes called the set of Euler structures on M^3 .

A (10) × (10) × (10)

Let M^3 be an oriented closed 3-manifold. Since M^3 has trivial Euler characteristic, it admits (Th. Euler-Hopf) nowhere vanishing vector fields.

Definition

Let v_1 and v_2 be two nowhere vanishing vector fields. We say that v_1 is homologous to v_2 if there is a boll $B \subset M^3$ with the property that

 $v_1|_{M\setminus B}\simeq v_2|_{M\setminus B}.$

(Here $\simeq =$ "is homotopic".)

This gives an equivalence relation, and we define the space of vect(M) structures over M^3 as nowhere vanishing vector fields modulo this relation. vect(M) is also sometimes called the set of Euler structures on M^3 .

Let M^3 be an oriented closed 3-manifold. Since M^3 has trivial Euler characteristic, it admits (Th. Euler-Hopf) nowhere vanishing vector fields.

Definition

Let v_1 and v_2 be two nowhere vanishing vector fields. We say that v_1 is homologous to v_2 if there is a boll $B \subset M^3$ with the property that

$$v_1|_{M\setminus B}\simeq v_2|_{M\setminus B}.$$

(Here $\simeq =$ "is homotopic".)

This gives an equivalence relation, and we define the space of vect(M) structures over M^3 as nowhere vanishing vector fields modulo this relation. vect(M) is also sometimes called the set of Euler structures on M^3 .

An equivalent definition of Euler structures on M^3 can be given in terms of the spherical fiber bundle of unit tangent vectors $SM \rightarrow M^3$.

Definition

An Euler structure on M^3 is an element of $H^2(SM, \mathbb{Z})$ whose reduction to every fiber $S_xM, x \in M^3$ is the generator of

$$H^2(S_{\times}M,\mathbb{Z}) = H^2(S^2,\mathbb{Z}) = \mathbb{Z}$$

determined by the orientation of M^3 at x.

An equivalent definition of Euler structures on M^3 can be given in terms of the spherical fiber bundle of unit tangent vectors $SM \rightarrow M^3$.

Definition

An Euler structure on M^3 is an element of $H^2(SM, \mathbb{Z})$ whose reduction to every fiber $S_xM, x \in M^3$ is the generator of

$$H^2(S_{\times}M,\mathbb{Z})=H^2(S^2,\mathbb{Z})=\mathbb{Z}$$

determined by the orientation of M^3 at x.

Let u be a nowhere vanishing vector field of M^3 . The mapping

$$x \mapsto u(x) / \mid u(x) \mid M^3 \to SM$$

defines an 3-cycle in $SM = M^3 \times S^2$.

It is an element of $H_3(SM, \mathbb{Z}) \simeq H^2(SM, \mathbb{Z})$. When we orient SM^3 properly the above element of $H^2(SM, \mathbb{Z})$ represented by this cycle is an Euler structure on M^3 in the sense of the second definition.

Let u be a nowhere vanishing vector field of M^3 . The mapping

$$x \mapsto u(x) / \mid u(x) \mid M^3 \to SM$$

defines an 3-cycle in $SM = M^3 \times S^2$.

It is an element of $H_3(SM, \mathbb{Z}) \simeq H^2(SM, \mathbb{Z})$. When we orient SM^3 properly the above element of $H^2(SM, \mathbb{Z})$ represented by this cycle is an Euler structure on M^3 in the sense of the second definition.

Theorem

Let M^3 be a closed oriented Riemannian 3-manifold. There is a canonical $H_1(M^3, \mathbb{Z})$ -equivariant bijection vect(M) = S(M).

Collorary

 $vect(M) = \mathcal{S}(M) = H^2(M^3, \mathbb{Z}).$

イロト イヨト イヨト イヨト 三日

Theorem

Let M^3 be a closed oriented Riemannian 3-manifold. There is a canonical $H_1(M^3, \mathbb{Z})$ -equivariant bijection vect(M) = S(M).

Collorary

$$vect(M) = \mathcal{S}(M) = H^2(M^3, \mathbb{Z}).$$

・ロト ・回ト ・ヨト ・ヨト … ヨ

As before, consider the principal SO(3)-bundle $f_M : Fr \to M^3$ and the spherical bundle $SM \to M^3$. Denote by p the bundle morphism $Fr \to SM$ which is given at a point of M^3 by a formula

$$p(e_1, e_2, e_3) = e_1.$$

Hence a homomorphism $p^* : H^2(SM, \mathbb{Z}) \to H^2(Fr, \mathbb{Z})$ sends vect(M) to S(M). Moreover $vect(M) = S(M) = H^2(M^3, \mathbb{Z})$.

As before, consider the principal SO(3)-bundle $f_M : Fr \to M^3$ and the spherical bundle $SM \to M^3$. Denote by p the bundle morphism $Fr \to SM$ which is given at a point of M^3 by a formula

$$p(e_1, e_2, e_3) = e_1.$$

Hence a homomorphism $p^* : H^2(SM, \mathbb{Z}) \to H^2(Fr, \mathbb{Z})$ sends vect(M) to S(M). Moreover $vect(M) = S(M) = H^2(M^3, \mathbb{Z})$.

As before, consider the principal SO(3)-bundle $f_M : Fr \to M^3$ and the spherical bundle $SM \to M^3$. Denote by p the bundle morphism $Fr \to SM$ which is given at a point of M^3 by a formula

$$p(e_1, e_2, e_3) = e_1.$$

Hence a homomorphism $p^* : H^2(SM, \mathbb{Z}) \to H^2(Fr, \mathbb{Z})$ sends vect(M) to S(M). Moreover $vect(M) = S(M) = H^2(M^3, \mathbb{Z})$.

1. Action $H_1(M^3,\mathbb{Z}) \times S(M) \to S(M) = H^2(M^3,\mathbb{Z})$: Let $x \in H_1(M^3,\mathbb{Z}), y \in S(M), (x, y) \mapsto f_M^*(x) + y \in S(M) \subset H^2(Fr,\mathbb{Z}).$

2. Action $H_1(M^3, \mathbb{Z}) \times vect(M) \rightarrow vect(M) \subset H^2(SM, \mathbb{Z})$: Let $x \in H_1(M^3, \mathbb{Z}), y \in vect(M), (x, y) \mapsto f_y^*(x) + y \in vect(M) \subset H^2(SM, \mathbb{Z})$ where $f_y : SM \rightarrow M^3$ is a spherical fiber bundle of unit tangent vectors.

1. Action $H_1(M^3,\mathbb{Z}) \times \mathcal{S}(M) \to \mathcal{S}(M) = H^2(M^3,\mathbb{Z})$: Let $x \in H_1(M^3,\mathbb{Z}), y \in \mathcal{S}(M), (x, y) \mapsto f_M^*(x) + y \in \mathcal{S}(M) \subset H^2(Fr,\mathbb{Z}).$

2. Action $H_1(M^3, \mathbb{Z}) \times vect(M) \rightarrow vect(M) \subset H^2(SM, \mathbb{Z})$: Let $x \in H_1(M^3, \mathbb{Z}), y \in vect(M), (x, y) \mapsto f_y^*(x) + y \in vect(M) \subset H^2(SM, \mathbb{Z})$ where $f_y : SM \rightarrow M^3$ is a spherical fiber bundle of unit tangent vectors.

1. Action $H_1(M^3,\mathbb{Z}) \times \mathcal{S}(M) \to \mathcal{S}(M) = H^2(M^3,\mathbb{Z})$: Let $x \in H_1(M^3,\mathbb{Z}), y \in \mathcal{S}(M), (x, y) \mapsto f^*_M(x) + y \in \mathcal{S}(M) \subset H^2(Fr,\mathbb{Z}).$

2. Action $H_1(M^3, \mathbb{Z}) \times vect(M) \rightarrow vect(M) \subset H^2(SM, \mathbb{Z})$: Let $x \in H_1(M^3, \mathbb{Z}), y \in vect(M), (x, y) \mapsto f_y^*(x) + y \in vect(M) \subset H^2(SM, \mathbb{Z})$ where $f_y : SM \rightarrow M^3$ is a spherical fiber bundle of unit tangent vectors.

1. Action $H_1(M^3,\mathbb{Z}) \times \mathcal{S}(M) \to \mathcal{S}(M) = H^2(M^3,\mathbb{Z})$: Let $x \in H_1(M^3,\mathbb{Z}), y \in \mathcal{S}(M), (x, y) \mapsto f_M^*(x) + y \in \mathcal{S}(M) \subset H^2(Fr,\mathbb{Z}).$

2. Action $H_1(M^3, \mathbb{Z}) \times vect(M) \rightarrow vect(M) \subset H^2(SM, \mathbb{Z})$: Let $x \in H_1(M^3, \mathbb{Z}), y \in vect(M), (x, y) \mapsto f_y^*(x) + y \in vect(M) \subset H^2(SM, \mathbb{Z})$ where $f_y : SM \rightarrow M^3$ is a spherical fiber bundle of unit tangent vectors.

1. Action $H_1(M^3,\mathbb{Z}) \times \mathcal{S}(M) \to \mathcal{S}(M) = H^2(M^3,\mathbb{Z})$: Let $x \in H_1(M^3,\mathbb{Z}), y \in \mathcal{S}(M), (x, y) \mapsto f_M^*(x) + y \in \mathcal{S}(M) \subset H^2(Fr,\mathbb{Z}).$

2. Action $H_1(M^3, \mathbb{Z}) \times vect(M) \rightarrow vect(M) \subset H^2(SM, \mathbb{Z})$: Let $x \in H_1(M^3, \mathbb{Z}), y \in vect(M), (x, y) \mapsto f_y^*(x) + y \in vect(M) \subset H^2(SM, \mathbb{Z})$ where $f_y : SM \rightarrow M^3$ is a spherical fiber bundle of unit tangent vectors.

 P. Ozsváth, Z. Szabó, An introduction to Heegaard Floer homology, Clay Mathematics Proceedings 5,AMS, 2006
 V. Turaev, Torsion invariants of *Spin*^C-structures on
 3-manifolds, Mathematical Research Letters 4,1997, 679-695