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Clifford algebra

Definition
By a Clifford algebra over the real numbers we shall understand an
associative algebra with unity, generated by elements

{e1, e2, . . . , en}

and with relations
∀i , e2i = −1,

∀i , j , eiej = −ejei ,

where 1 ¬ i , j ¬ n. We define C0 = R.

It is easy to see that C1 = C and C2 = H, where H is the
four-dimensional quaternion algebra. Moreover, Rn ⊂ Cn and
dimRCn = 2n, where Rn is n-dimensional R-vector space with the
basis e1, e2, . . . , en.
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A group Spin I

We have the following homomorphisms (involutions) on Cn :

(i) ∗ : ei1ei2 . . . eik 7→ eik eik−1 . . . ei2ei1 ,

(ii) ′ : ei 7→ −ei ,

(iii) − : a 7→ (a′)∗, a ∈ Cn.

Suppose C 0n = {x ∈ Cn | x ′ = x}. It is easy to observe that

∀a, b ∈ Cn, (ab)∗ = b∗a∗.

Definition
We define subgroups of Cn,

Pin(n) = {x1x2 . . . xk | xi ∈ Sn−1 ⊂ Rn ⊂ Cn, i = 1, 2, . . . k},

Spin(n) = Pin(n) ∩ C 0n .
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Spin-structure I

Definition
A closed oriented manifold Mn has a Spin-structure if and only if
the second Stiefel-Whitney class w2(Mn) = 0.

Remark

A Spin-structure on the manifold Mn is a lift of δ to BSpin(n),
giving a commutative diagram:

BSpin(n)

Mn BSO(n).
��
� �
� �
� �
� �
�

B(λn)

??��������������
//

δ
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Group SpinC

The group SpinC(n) is given by

SpinC(n) = (Spin(n)× S1)/{1,−1}

where Spin(n) ∩ S1 = {1,−1}. Moreover, there is a
homomorphism of groups

λ̄n : SpinC(n)→ SO(n)

given by
λ̄n[g , z ] = λn(g),

where g ∈ Spin(n), z ∈ S1 and λn : Spin(n)→ SO(n) is the
universal covering.
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SpinC-structure

The oriented manifold Mn has a SpinC-structure if and only if
there exists w̃2 ∈ H2(Mn,Z) such that red(w̃2) = w2, where
w2 ∈ H2(Mn,Z2) and red : H2(Mn,Z)→ H2(Mn,Z2) is a
homomorphism induced by the natural homomorphism Z→ Z2.
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SpinC - structure I

Definition

A SpinC-structure on the manifold Mn is a lift of δ to BSpinC(n),
giving a commutative diagram:
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Mn BSO(n).
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SpinC - structure II

Theorem
The set of lifts of δ is in bijection correspondence with
[Mn,BU(1)].

Proof: We have the bundle

BU(1)→ BSpinC(n)→ BSO(n).

Let hp denote the homeomorphism from BU(1) to the fiber of
BSpinC(n) over the point p ∈ BSO(n). Given a map
λ ∈ [Mn,BU(1)], define the lift δλ by δλ(x) = hδ(x) ◦ λ(x). This is
an injective map from [Mn,BU(1)] into the set of lifts; it is also
surjective, since two different lifts will have to disagree on at least
one fiber.
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Comments

1. Any Spin manifold has a SpinC(n) structure,

2. Any three manifold has a Spin structure,

3. Any four manifold has a SpinC structure (Very old result W. T.
Wu (1950), F. Hirzebruch-H. Hopf (1958)).
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Dimension Three I

We have the following isomorphisms of Lie groups:

SO(3) = SU(2)/{±1} = U(2)/U(1),

U(1) = S1 lies in U(2) as diagonal subgroup.

Spin(3) = SU(2) = S3

SpinC(3) = (U(1)×Spin(3))/{±1} = (U(1)×SU(2))/{±1} = U(2).

The projection U(2)→ SO(3) is a principal circle bundle over
SO(3), which corresponds to the nonzero element of
H2(SO(3),Z) = Z2.
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Simple remark

The isomorphism classes of principal circle bundles over a CW
space X are numerated by the elements of
[X ,BU(1)] = [X ,CP∞] = [X ,K (Z, 2)] = H2(X ,Z).

As an example let us consider the circle bundle

U(1)→ U(2)→ SO(3)

which corresponds to the nonzero element of

H2(SO(3),Z) = H2(RP3,Z) = Z2.
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SpinC in dimension 3

Let M3 be a closed, oriented Riemannian 3-manifold. Let
fM : Fr → M3 be the associated principal SO(3)-bundle of oriented
orthonormal frames.

A SpinC-structure on M3 is a lift of fM to a principal U(2)-bundle.

In other words it is a pair: a principal U(2)-bundle F → M3 and an
isomorphism α of principal SO(3)-bundles

F/U(1)→ M with Fr
fM→ M3.

We can consider the above isomorphism as the circle bundle

F
proj→ F/U(1)

α→ Fr ,

which corresponds to an element of H2(Fr ,Z). The set of SpinC

structures on M3 is denoted by S(M) ⊂ H2(Fr ,Z).
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In other words it is a pair: a principal U(2)-bundle F → M3 and an
isomorphism α of principal SO(3)-bundles

F/U(1)→ M with Fr
fM→ M3.

We can consider the above isomorphism as the circle bundle

F
proj→ F/U(1)

α→ Fr ,

which corresponds to an element of H2(Fr ,Z). The set of SpinC

structures on M3 is denoted by S(M) ⊂ H2(Fr ,Z).
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Vector Fields I

Let M3 be an oriented closed 3-manifold. Since M3 has trivial
Euler characteristic, it admits (Th. Euler-Hopf) nowhere vanishing
vector fields.

Definition
Let v1 and v2 be two nowhere vanishing vector fields. We say that
v1 is homologous to v2 if there is a boll B ⊂ M3 with the property
that

v1|M\B ' v2|M\B .

(Here ' = ”is homotopic”.)
This gives an equivalence relation, and we define the space of
vect(M) structures over M3 as nowhere vanishing vector fields
modulo this relation. vect(M) is also sometimes called the set of
Euler structures on M3.
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Vector Fields II

An equivalent definition of Euler structures on M3 can be given in
terms of the spherical fiber bundle of unit tangent vectors
SM → M3.

Definition

An Euler structure on M3 is an element of H2(SM,Z) whose
reduction to every fiber SxM, x ∈ M3 is the generator of

H2(SxM,Z) = H2(S2,Z) = Z

determined by the orientation of M3 at x .
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Equivalence

Let u be a nowhere vanishing vector field of M3. The mapping

x 7→ u(x)/ | u(x) |: M3 → SM

defines an 3-cycle in SM = M3 × S2.

It is an element of H3(SM,Z) ' H2(SM,Z). When we orient SM3

properly the above element of H2(SM,Z) represented by this cycle
is an Euler structure on M3 in the sense of the second definition.
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Main Observation

Theorem

Let M3 be a closed oriented Riemannian 3-manifold. There is a
canonical H1(M3,Z)-equivariant bijection vect(M) = S(M).

Collorary

vect(M) = S(M) = H2(M3,Z).
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Sketch of the Proof

As before, consider the principal SO(3)-bundle fM : Fr → M3 and
the spherical bundle SM → M3. Denote by p the bundle morphism
Fr → SM which is given at a point of M3 by a formula

p(e1, e2, e3) = e1.

Hence a homomorphism p∗ : H2(SM,Z)→ H2(Fr ,Z) sends
vect(M) to S(M). Moreover vect(M) = S(M) = H2(M3,Z).
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Final Remarks

1. Action H1(M3,Z)× S(M)→ S(M) = H2(M3,Z) : Let x ∈
H1(M3,Z), y ∈ S(M), (x , y) 7→ f ∗M(x) + y ∈ S(M) ⊂ H2(Fr ,Z).

2. Action H1(M3,Z)× vect(M)→ vect(M) ⊂ H2(SM,Z) : Let
x ∈ H1(M3,Z), y ∈ vect(M), (x , y) 7→ f ∗y (x) + y ∈ vect(M) ⊂
H2(SM,Z) where fy : SM → M3 is a spherical fiber bundle of unit
tangent vectors.
Remember from Poincare duality H1(M3,Z) = H2(M3,Z). The
above constructions are independence from Riemann metric.
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1. P. Ozsváth, Z. Szabó, An introduction to Heegaard Floer
homology, Clay Mathematics Proceedings 5,AMS, 2006
2. V. Turaev, Torsion invariants of SpinC-structures on
3-manifolds, Mathematical Research Letters 4,1997, 679-695

Andrzej Szczepański University of Gdańsk SpinC structures


