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To understand Khovanov homologies for links

we need first to recall some basic facts about

the Jones polynomial. We start with the Kauff-

man version of the Jones polynomial. This is

a polynomial fL, assigned to any oriented link

L, fL ∈ Z[A,A−1] It was originally defined in

the following way. First, we define Kauffman

bracket. This is a polynomial 〈D〉 assigned to

an unoriented diagram D by the following rules:
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The bracket, as defined, is invariant under Rei-

demeister moves 2 and 3. In order to make it

invariant under all three moves, we define the

polynomial fL by the following formula.

fD = (−A)−3tw(D)〈D〉.

Of course, by the bracket of an oriented dia-

gram we mean the bracket of the same dia-

gram with orientation forgotten.

We classify crossings in the (oriented) diagram

as positive or negative as shown in figure KH2.

We need to stress that in the absence of ori-

entation we still can classify a smoothing of a

crossing in the diagram as positive or negative

as shown in figure KH2.
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The bracket polynomial may be calculated by

applyig the given rules systematically crossing

after crossing. The configuration obtained af-

ter all crossings are smoothed is called a state

of the original diagram. Figure KH3 shows the

eight states of the standard trefoil diagram ar-

ranged in a systematic manner. The way the

states are arranged is the following: in the i−th

row (counting from 0) we have the states ob-

tained by splitting i crossings negatively and

the remaining ones positively.
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As it happens, the states in one row have the

same number of components. This is very un-

usual but it helps to calculate the bracket poly-

nomial of this diagram. It is easy to see that

the result is (we write the terms from the bot-

tom row to the top row)

A−3 · (−A−2−A2)+3A−1 ·1+3A · (−A−2−A2)

+A3(−A−2 − A2)2

When going from the bracket to the f poly-

nomial we still need to multiply by −A9. The

final result for the f polynomial is

A4 +0+A12 −A16,

while the bracket is equal to

−A−5 − 0 ·A−1 − A3 +A7.

This was not a particularly clever method of

calculating the Jones polynomial of the trefoil.

Nevertheless it illustrates well the significance

of the states in the calculation.
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In fact, while it might seem natural to assume

that the bracket polynomial of the single trivial

circle is the constant 1, it is useful to assume

that we consider the empty link also, and that

it is for the empty link that the constant 1 is

assigned. Then the bracket of the single circle

diagram is −A−2 − A2.
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While it is possible to define the Khovanov

homologies using this convention we prefer to

change the conventions slightly more. We de-

fine a version of the Kauffman bracket (to be

denoted as 〈D〉K ∈ Z[q, q−1] as described in fig-

ure KH4.
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Figure KH5 shows how the new bracket changes

under Reidemeister 1. Obviously, the behaviour

of the new bracket in this aspect is less regular

than that of the original Kauffman bracket.

We omit calculations but we show in figure KH6

how the new bracket changes under Reidemeis-

ter 2 (expanding Reidemeister 2 needs to be

balanced by multiplying by −q). Then, it is

easily checked that it is invariant under Reide-

meister 3.
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For a given diagram D of an oriented link we

denote by n+ (n−) the number of positive (neg-

ative) crossings of D. It is easily checked by

direct calculation that the following polynomial

is an invariant of oriented links:

J̃(D) = (−1)n−qn+−2n−〈D〉K.

For a given state S of a diagram D we de-

note by βS the number of crossings that were

smoothed negatively.

We can write the following state expansion for-

mula for the J̃ polynomial.

J̃(D) = (−1)n−qn+−2n−ΣS(−q)βS(q + q−1)|S|.

We will also use the β-state expansion, a ver-

sion of the formula given above with the right

hand side rewritten as

(−1)n−qn+−2n−Σβ(−q)βΣS:βS=β(q + q−1)|S|

One can easily check that the substitution A 7→
√

q−1 transforms (−A−2 − A2)f into J̃ (just

write the analogous state expansion for the f

polynomial and compare the two).
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Khovanov chain complex

We will define a bigraded chain complex C.

The vertical grading will be referred to as the

β-grading. The horizontal grading will be re-

ferrd to as the q-grading. The differential will

be of degree (0,1). The homologies (Kho-

vanov homologies) will be invariant under Rei-

demeister moves. The coefficients will be in

Z2. For a fixed q grading i the sum

χi = Σ(−1)jdimHi,j

will be the i-th coefficient of the J̃ polynomial.

Before we do it let us consider one more exam-

ple. We will calculate the J̃ polynomial for the

trefoil knot, from the diagram shown in fig-

ure KH5. We will do it according to the state

expansion formula.
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We will arrange the state sum for 〈·〉kh in five

rows, according to the increasing order of the

number of crossings smoothed negatively, count-

ing from the bottom to the top row (the β

parameter). So, in the top row we will put

the contribution of the single state obtained by

smoothing all four crossings negatively (which

for the diagram shown in figure KH5 means:

vertically), then one line below there will be

the sum of the four states obtained by smooth-

ing three crossing negatively and one cross-

ings positively, and so on — alltogether there

will be five rows, each containing a polynomial.

The result is showed in table KH7. The com-

ments on the next page explain how the table

should be read.
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Columns of the table are labled with exponents

of variable q. Rows are labled with values of

the parameter β. For example:

The first row from the top (with β-label 4)

shows the contribution to the state sum of the

state obtained by smoothing all crossings neg-

atively (vertically in this case). The result is a

single circle, with the bracket equal to q−1+ q,

but we need to multiply by (−q)4 so the con-

tribution of this state to the bracket is

q3 + q5.

The third row from the top (with β-label 2) de-

scribes the joint contribution of the six states

obtained by smoothing two crossings positively

and two crossings negatively. The contribution

is

2q−1 +10q +10q3 +2q5.

Let me explain this in more detail. Obviously,

we have six possible choices of two vertices to
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be smoothed negatively (out of four vertices

altogether). These are shown in figure KH8.

You will see that there two classes — two

states with three components in the top row

and four states with one component in two

rows below. Then again, we need to multiply

by a suitable monomial — this time it is q2. it

follows that the contribution of these six states

to the bracket is

q2 · (4(q−1 + q) + 2 · (q−3 +3q−1 +3q + q3)).



figure KH8
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There is one characteristic regularity visible in

table KH7. In the rows marked by odd val-

ues of the parameter β all non-zero entries are

negative and in the rows marked by even values

of β all non-zero entries are positive. For all

practical purposes we could equally well spec-

ify just the absolute values of the considered

entries.

This is no accident and it is obvious that this

must be so for all tables constructed in this

manner, for all diagrams of links.

Suppose that we find some natural way of con-

structing a bigraded chain complex, so that the

dimension at any given position be equal to the

absolute value of the number in our state sum

table. Then the Euler characteristic condition

will be automatically satisfied by an elementary

theorem of homological algebra.
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Description of the bigraded complex C

We will now describe the Khovanov complex

C as a bigraded space. Differentials will be

defined later. Let V be a graded two dimen-

sional space over Z2 generated by two vectors

denoted by e−, e+ of grading −1 and 1 respec-

tively. There is the obvious grading induced

on any tensor power V ⊗n. It is clear that the

dimension of the subspace generated by vec-

tors of grading k is the same as the coefficient

of qk in the polynomial (q−1 + q)n — in both

cases it is either zero or
(

n
n+k
2

)

, depending on

parity of n and k.
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Description of the total space of C

Now, let us consider a linear space over Z2

defined as

(1)
⊕

β

(

⊕

S:βS=β

V ⊗|S|
)

If we introduce the natural (q, β) grading on

this space, then the table of dimensions is al-

most identical with the one we considered for

the β state sum formula for the J̃ polynomial.

The two difference are:

1. All non-zero entries are now positive.

2. The q grading is shifted by β+n+ − 2n− to

the left.

The first difference is expected and there is no

particular harm in it. As for the second, we

correct it by shifting the horizontal grading by

β + n+ − 2n− to the right in the β height.

Now, we know that whatever differentials of

degree (0,1) we define on C, the q-graded Eu-

ler characteristic will be the sequence of coeffi-

cients of the J̃ polynomial — or this multiplied
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by −1. The second possibility is the conse-

quence of the fact that so far we did nothing

to take into account the (−1)n− term in the

formula for J̃. Now, we do it in the simplest

possible way: we modify the vertical grading by

shifting it down vertically by n− (so row num-

ber 0 in the original table will now become row

number −n−.
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So the total space of chain complex C is

⊕

β

(

⊕

S:βS=β

V ⊗|S|
)

.

While this is usually considered sufficiently pre-

cise, it will be more obvious how this is to be

understood if the term V ⊗|S| is rewritten as

⊗

C⊆S

VC ,

where C is a component of the state S and VC

is a copy of V . We need this to stress that the

generators are corresponding with the individ-

ual circles of the states.
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Definition of the differential

We need to define the differential ∂ which is

supposed to increase the vertical (β) gradig

by 1 and to preserve the horizontal (q) grad-

ing. Working over Z2 we just need to describe

the images of generators by specifying which

other generatores appear in the image with co-

efficient 1. The condition on the horizontal

grading means that we have already decided

that non-trivial differentials can only go from

a standard generator of the total space of the

complex to generators corresponding to states

with the number of negative splittings bigger

by precisely one: if we have a generator corre-

sponding to a state S obtained by smoothing k

crossings negatively, then non-trivial differen-

tials can only go to generators corresponding

to states obtained by smoothing k + 1 cross-

ings negatively. In fact we will use another

quite natural condition:
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Assume that S and T are two states that dif-

fer by the character of splitting at two points

or more. Then there is no non-trivial differ-

ential from any generator corresponding to S

to any generator corresponding to T . This ar-

rangement is conveniently visualized by an ex-

ample in figure KH11. The figure shows the

standardly positioned cube in R
3, whose set of

vertices is {0,1}3. Vertices of the cube cor-

respond to states of the diagram. The zero

coordinate at position i means that the i-th

crossing of the diagram was smoothed posi-

tively. It follows that the number of coeff-

cients equal to 1 corredsponds to the num-

ber of crossings smoothed negatively — the

unadjusted β grading. Vertices marked with

the same colour correspond to states with the

same vertical grading in the complex. The ar-

rows show the possible non-trivial differentials,

going from a point with a given number of

coefficients equal to 1 to the points with the

number bigger by exactly one.
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figure KH11
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In principle we need to define the differential

for simple tensors made up of vectors e− and

e+. For example, we might need to explain

the image of e− ⊗ e− ⊗ e− ⊗ e+ ⊗ e+. Now,

this simple tensor is one of the 32 simple ten-

sors related to a state with five components.

When we change the splitting at one crossing

it could possibly involve the two that are now

specially marked: [e−]⊗e−⊗e−⊗[e+]⊗e+. This

means that all the remaining circles of the con-

sidered state survive virtually unchanged. We

assume that the differential acst as identity on

the corresponding vectors. Therefore we need

to describe only how the differential behaves

on the two specially marked circles. It may also

happen that the change of splitting involves

only one circle. Then we need only to spec-

ify what happens to the corresponding vector.

To avoid unnecessry complications of notation

we will show only these vecors on which the

differential acts non-trivially, putting them one

next to another (if there are two). Here are

the formulae describing the differential in this

setting.
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First we give the definition for a switch of split-

ting that decreases the number of circles in the

state.

e− ⊗ e− 7→ 0

e− ⊗ e+ 7→ e−

e+ ⊗ e− 7→ e−

e+ ⊗ e+ 7→ e+

Now, for a switch of splitting that increases

the number of circles in the state.

e− 7→ e− ⊗ e−

e+ 7→ e− ⊗ e+ + e+ ⊗ e−
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It is easy to check directly that the differential

defined in this way has the property ∂∂ = 0.

Let us check one case directly. Suppose that

we change the type of splitting at two posi-

tions an the result is that at first one of the

circles is split into two and then one of these

is split into another two. Then the same must

happen when we change the splittings in re-

versed order. Let us do the calculation for the

first case, for e+:

We have

e+ 7→ e− ⊗ e+ + e+ ⊗ e−.

But the second case (changing the splitting of

the second crossing first) gives the result that

looks formally the same. Now, let us assume

than in the second instance we need to apply

the rule to the first term of the tensor product.

We obtain:
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e− ⊗ e+ + e+ ⊗ e− 7→
e− ⊗ e− ⊗ e+ + (e− ⊗ e+ + e+ ⊗ e−)⊗ e−
We need to check what happens when we do

the change of splitting at the second crossing

first. There is no natural order of the two cir-

cles obtained from the original one so we can

as well assume that we need to apply the rule

to the first vector again. Obviously, we will

obtain the same formal expression. But did

we not decide too easily to choose the order

of components as was convenient? No: what-

ever the order of the final three components,

the expression is symmetric with respect to the

order: a sum of all possible simple tensors of

length three with e− appearing twice and e+
appearing once.

As a result we have the two identical terms

cancelling each other over Z2.

If you object to this style of discussion of the ∂∂

composition, it might be helpful to use cobor-

dism pictures as shown in figure KH12. With

such a figure we adopt the convention of writ-

ing base vectors from left to right, as the cir-

cles appear in the picture.
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figure KH12

32



Here is the calculation for ∂∂(e+) for this case

again. We omit ⊗ signs. For the left:

e+ 7→ e+e−+e−e+ 7→ (e+e−+e−e+)e−+e−e−e+

And for the right:

e+ 7→ e+e−+e−e+ 7→ e+e−e−+e−((e+e−+e−e+))

This way we new exactly which term in the for-

mula correspond to which circle in the figure.

Obviously, we obtain the same result.

Let me show just one more calculation for the

situation shown in figure KH13, for the tensor

e+e+e−. For the left:

e+e+e− 7→ e+e− 7→ e−

For the right:

e+e+e− 7→ e+e− 7→ e−

Again, we obtain the same results both way,

so they cancel because the coefficients are in

Z2.
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If you check all possibilities you will see that

the differential has the required property. The

homologies of Khovanov complex are invariant

under Reidemeister moves. in fact, the com-

plex itself is invariant up to chain homoptopy

equvalence.


