ON SOME INVARIANTS OF LINKS IN THE SOLID TORUS AND THEIR ESTIMATES

JOZE MALEŠIĆ, MACIEJ MROCKIOWSKI

1. INTRODUCTION

We introduce a new invariant for links in the solid torus and find some estimates for it coming from skein modules.

The first author is supported by the Slovenian Research Agency grants P1-0292-0101 and J1-9643-0101. The second author is supported by the Polish ministry grant N200100831/0524. Both authors are supported by the bilateral Polish-Slovenian grant No. 10 for the years 2008/09.

2. INVARIANTS J AND J'

We denote the solid torus $D \times S^1$ (D a disk) by T. For $n \in \mathbb{N}$, T is divided by n meridional disks $D = D \times e^{2\pi i k/n}$, $k = 1, \ldots, n$, into n chambers C_1, \ldots, C_n. Let L be a (tame) link in T, transversal to each D_i. For $k \in \{1, \ldots, n\}$, $L \cap C_k$ consists of closed curves and arcs with boundary of two types: arcs with two boundary points on the same meridional disk on one side of C_k (non traversing arcs) or arcs with boundary points on different meridional disks on each side of C_k (traversing arcs).

Denote the number of traversing arcs in C_k by $j'_k(L)$ and the number of all arcs (traversing and non traversing) in C_k by $j_k(L)$. Let $j'(L) = \sum_{k=1}^{n} j'_k(L)$ and $j(L) = \sum_{k=1}^{n} j_k(L)$.

Definition 1. $J'_n(L) = \min_{L \sim L'} j'(L')$ and $J_n(L) = \min_{L \sim L'} j(L')$, where the minima are taken over all links L' isotopic to L and transversal to each D_i.

Lemma 1. For $n < m$, $J_n(L) \leq J_m(L)$ and $J'_n(L) \leq J'_m(L)$

$J_n(L) = nJ_1(L)$

$J'_n(L) = J'_n(L) + C$ for some $C \geq 0$, for n large enough.

We denote by $v(L)$ the maximum n for which $J'_n(L) = 0$ (it is ∞ if all $J'_n(L) = 0$). We say that L is affine if it lies in a ball in T, which is equivalent to $J_1(L) = 0$.

Lemma 2. Let L be a non affine link in T and k the number of its components. Then $v(L) \leq k$

Proof. Subdivide T into n chambers, $n \leq v(L)$, so that L lies in these chambers with no traversing arcs. As L is non affine it has to intersect each of the n meridional disks. A component of L cannot intersect two different D_i-s, otherwise there would be traversing arcs. So there are at least as many components in L as the number
of D_1-s, which is n. Thus $n \leq k$. Now if $v(L) < \infty$, we can take $n = v(L)$. If $v(L) = \infty$ then n and so k would be arbitrarily large, which is impossible for a tame link which has a finite number of components. □

Corollary 1. L is affine iff $v(L) = \infty$.

Proof. If L is affine then clearly, for each k, $J_k(L) = 0$ so $v(L) = \infty$. It L is non affine then $v(L) \neq \infty$ from the preceding Lemma. □

3. Conway-Alexander skein module

Let t_k be the knot in T which has a diagram presented below on the left for $k = 3$.

![Diagram of knot t_3](image)

There is a naturally defined multiplication of links in T. For instance on the right of the preceding Figure we have $t_3 t_{-1}$. Using this multiplication one can present the basis of the Conway-Alexander skein module:

$$\{ t_{k_1}^{i_1} \cdots t_{k_s}^{i_s} : s \in \mathbb{N} \cup \{0\}, k_1 < \cdots < k_s \in \mathbb{Z}^+, i_1 \cdots i_s \in \mathbb{N} \} \cup \{ t_0 \},$$

where t_0 is the trivial affine knot.

The element t_1 is a generator of $H_1(T) = \mathbb{Z}$ (we can take $[t_1] = 1$ so that

$$[t_{k_1}^{i_1} \cdots t_{k_s}^{i_s}] = \sum_{i=1}^{s} k_i i_i.$$

We define the degree of such elements taking $\deg(t_k) = |k|$ and $\deg(FG) = \deg(F)\deg(G)$. Then in each degree d there is a finite number $b(d)$ of some monic monomials $T_{d,i}$, $1 \leq i \leq b(d)$, of degree d. For instance, for $d = 1$ there is t_1 and t_{-1} and for $d = 2$ there are $t_2, t_{-2}, t_1^2, t_{-1}^2$ and $t_1 t_{-1}$.

For a link L, its Conway-Alexander polynomial is of the form:

$$\nabla(L) = P_0(z) t_0 + \sum_{i=1}^{b(2)} P_{2,i}(z) T_{2,i} + \sum_{i=1}^{b(4)} P_{4,i}(z) T_{4,i} + \cdots$$

or

$$\nabla(L) = \sum_{i=1}^{b(1)} P_{1,i}(z) T_{1,i} + \sum_{i=1}^{b(3)} P_{3,i}(z) T_{3,i} + \cdots$$

where all $T_{k,i}$-s have the same homology class as L.

For instance, if L is 0-homologous then in degree 2 the only possible term is $t_1 t_{-1}$ and in degree 4 the only possible terms are $t_1^2 t_{-1}^2, t_2 t_{-2}, t_2 t_{-2}^2$ and $t_1^2 t_{-2}$.

Denote by $m_j(L)$ the minimum degree of z appearing in all $P_{j,i}$-s (equal ∞ if all these polynomials are 0).

Theorem 1. Let L be a non affine link in T. Then $m_j(L) \geq v(L) j / 2$.
Proof. From the corollary, \(v(L) < \infty \). If \(v(L) = 0 \) the inequality is trivial. So assume \(v(L) > 0 \). By assumption \(L \) can lie in \(v(L) \) chambers with no traversing arcs. To obtain an element of degree \(j \) there has to be \(j \) traversing arcs in each chamber. Switching a crossing does not change the type of any arc, whereas smoothing a crossing can at most create two traversing arcs. Thus, to get the \(v(L)j \) traversing arcs needed, one has to do at least \(v(L)j = 2 \) smoothings, each corresponding to a multiplication by \(z \). So the lowest possible degree of \(z \) is \(v(L)j = 2 \).

Example 1 For a chain with \(n \) components \(L_n \), \(\nabla(L_n) \) will have only terms of degree 0 and 2. The degree 2 part will be of the form \(z^n t^1 t^{-1} \). Clearly, from the Figure, \(v(L_n) \geq n \). From the Proposition \(v(L) \leq n \). Thus \(v(L) = n \).

4. HOMFLYPT skein module

For a link \(L \), its HOMFLYPT polynomial is of the form:

\[
H(L) = Q_0(x, z)t_0 + \sum_{i=1}^{b(2)} Q_2,i(x, z)T_{2,i} + \sum_{i=1}^{b(4)} Q_4,i(x, z)T_{4,i} + ..
\]

or

\[
H(L) = \sum_{i=1}^{b(1)} Q_1,i(x, z)T_{1,i} + \sum_{i=1}^{b(3)} Q_3,i(x, z)T_{3,i} + ..
\]

where all \(T_{k,i} \)-s have the same homology class as \(L \) and the \(Q_{k,i} \)-s are polynomials in \(z \) and Laurent polynomials in \(x \).

For the HOMFLYPT skein module, smoothing corresponds to multiplying by \(z \). On the other hand some \(z \) are cancelled when there are trivial components at the cost of multiplying by \(x^{-1} - x \). For \(Q \), a polynomial in \(z \) and Laurent polynomial in \(x \) let \(Q = (x^{-1} - x)^a Q' \), where \(x^{-1} - x \) does not divide \(Q' \), and let \(d(Q) \) be the sum of the degree in \(z \) and \(a \).

Denote by \(m_j'(L) \) the minimum of \(d(Q_{j,i,i}) \) for all \(i,j \)-s.

The following theorem is proved similarly to the Conway-Alexander polynomial case:

Theorem 2. Let \(L \) be a non affine link in \(T \). Then \(m_j'(L) \geq v(L)j/2 \).