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Preface

These are unpolished lecture notes from the course BF 05 “Malliavin calculus with appli-
cations to economics”, which I gave at the Norwegian School of Economics and Business
Administration (NHH), Bergen, in the Spring semester 1996. The application I had in
mind was mainly the use of the Clark-Ocone formula and its generalization to finance,
especially portfolio analysis, option pricing and hedging. This and other applications are
described in the impressive paper by Karatzas and Ocone [KO] (see reference list in the
end of Chapter 5). To be able to understand these applications, we had to work through
the theory and methods of the underlying mathematical machinery, usually called the
Malliavin calculus. The main literature we used for this part of the course are the books
by Ustunel [U] and Nualart [N] regarding the analysis on the Wiener space, and the
forthcoming book by Holden, Øksendal, Ubøe and Zhang [HØUZ] regarding the related
white noise analysis (Chapter 3). The prerequisites for the course are some basic knowl-
edge of stochastic analysis, including Ito integrals, the Ito representation theorem and the
Girsanov theorem, which can be found in e.g. [Ø1].

The course was followed by an inspiring group of (about a dozen) students and employees
at HNN. I am indebted to them all for their active participation and useful comments. In
particular, I would like to thank Knut Aase for his help in getting the course started and
his constant encouragement. I am also grateful to Kerry Back, Darrell Duffie, Yaozhong
Hu, Monique Jeanblanc-Picque and Dan Ocone for their useful comments and to Dina
Haraldsson for her proficient typing.

Oslo, May 1997
Bernt Øksendal
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1 The Wiener-Ito chaos expansion

The celebrated Wiener-Ito chaos expansion is fundamental in stochastic analysis. In
particular, it plays a crucial role in the Malliavin calculus. We therefore give a detailed
proof.

The first version of this theorem was proved by Wiener in 1938. Later Ito (1951) showed
that in the Wiener space setting the expansion could be expressed in terms of iterated Ito
integrals (see below).

Before we state the theorem we introduce some useful notation and give some auxiliary
results.

Let W (t) = W (t, ω); t ≥ 0, ω ∈ Ω be a 1-dimensional Wiener process (Brownian motion)
on the probability space (Ω,F , P ) such that W (0, ω) = 0 a.s. P .

For t ≥ 0 let Ft be the σ-algebra generated by W (s, ·); 0 ≤ s ≤ t. Fix T > 0 (constant).

A real function g : [0, T ]n → R is called symmetric if

(1.1) g(xσ1 , . . . , xσn) = g(x1, . . . , xn)

for all permutations σ of (1, 2, . . . , n). If in addition

(1.2) ‖g‖2
L2([0,T ]n): =

∫
[0,T ]n

g2(x1, . . . , xn)dx1 · · · dxn <∞

we say that g ∈ L̂2([0, T ]n), the space of symmetric square integrable functions on [0, T ]n.

Let

(1.3) Sn = {(x1, . . . , xn) ∈ [0, T ]n; 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ T}.

The set Sn occupies the fraction 1
n!

of the whole n-dimensional box [0, T ]n. Therefore, if

g ∈ L̂2([0, T ]n) then

(1.4) ‖g‖2
L2([0,T ]n) = n!

∫
Sn

g2(x1, . . . , xn)dx1 . . . dxn = n!‖g‖2
L2(Sn)

If f is any real function defined on [0, T ]n, then the symmetrization f̃ of f is defined by

(1.5) f̃(x1, . . . , xn) =
1

n!

∑
σ

f(xσ1 , . . . , xσn)

where the sum is taken over all permutations σ of (1, . . . , n). Note that f̃ = f if and only
if f is symmetric. For example if

f(x1, x2) = x2
1 + x2 sin x1

then

f̃(x1, x2) =
1

2
[x2

1 + x2
2 + x2 sin x1 + x1 sin x2].
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Note that if f is a deterministic function defined on Sn (n ≥ 1) such that

‖f‖2
L2(Sn): =

∫
Sn

f 2(t1, . . . , tn)dt1 · · · dtn <∞,

then we can form the (n-fold) iterated Ito integral

(1.6) Jn(f): =

T∫
0

tn∫
0

· · ·
t3∫

0

(

t2∫
0

f(t1, . . . , tn)dW (t1))dW (t2) · · · dW (tn−1)dW (tn),

because at each Ito integration with respect to dW (ti) the integrand is Ft-adapted and
square integrable with respect to dP × dti, 1 ≤ i ≤ n.

Moreover, applying the Ito isometry iteratively we get

E[J2
n(h)] = E[{

T∫
0

(

tn∫
0

· · ·
t2∫

0

h(t1, . . . , tn)dW (t1) · · ·)dW (tn)}2]

=

T∫
0

E[(

tn∫
0

· · ·
t2∫

0

h(t1, . . . , tn)dW (t1) · · · dW (tn−1))2]dtn

= · · · =
T∫

0

tn∫
0

· · ·
t2∫

0

h2(t1, . . . , tn)dt1 · · · dtn = ‖h‖2
L2(Sn).(1.7)

Similarly, if g ∈ L2(Sm) and h ∈ L2(Sn) with m < n, then by the Ito isometry applied
iteratively we see that

E[Jm(g)Jn(h)]

= E[{
T∫

0

(

sm∫
0

· · ·
s2∫

0

g(s1, . . . , sm)dW (s1) · · · dW (sm)}

{
T∫

0

(

sm∫
0

· · ·
t2∫

0

h(t1, . . . , tn−m, s1, . . . , sm)dW (t1) · · ·)dW (sm)}]

=

T∫
0

E[{
sm∫
0

· · ·
s2∫

0

g(s1, . . . , sm−1, sm)dW (s1) · · · dW (sm−1)}

{
sm∫
0

· · ·
t2∫

0

h(t1, . . . , sm−1, sm)dW (t1) · · · dW (sm−1)}]dsm

=

T∫
0

sm∫
0

· · ·
s2∫

0

E[g(s1, s2, . . . , sm)

s1∫
0

· · ·
t2∫

0

h(t1, . . . , tn−m, s1, . . . , sm)

dW (t1) · · · dW (tn−m)]ds1, · · · dsm
= 0(1.8)

because the expected value of an Ito integral is zero.
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We summarize these results as follows:

(1.9) E[Jm(g)Jn(h)] =

{
0 if n 6= m
(g, h)L2(Sn) if n = m

where

(1.10) (g, h)L2(Sn) =
∫
Sn

g(x1, . . . , xn)h(x1, . . . , xn)dx1 · · · dxn

is the inner product of L2(Sn).

Note that (1.9) also holds for n = 0 or m = 0 if we define

J0(g) = g if g is a constant

and
(g, h)L2(S0) = gh if g, h are constants.

If g ∈ L̂2([0, T ]n) we define

(1.11) In(g): =
∫

[0,T ]n

g(t1, . . . , tn)dW⊗n(t): = n!Jn(g)

Note that from (1.7) and (1.11) we have

(1.12) E[I2
n(g)] = E[(n!)2J2

n(g)] = (n!)2‖g‖2
L2(Sn) = n!‖g‖2

L2([0,T ]n)

for all g ∈ L̂2([0, T ]n).

Recall that the Hermite polynomials hn(x); n = 0, 1, 2, . . . are defined by

(1.13) hn(x) = (−1)ne
1
2
x2 dn

dxn
(e
− 1

2
x2

); n = 0, 1, 2, . . .

Thus the first Hermite polynomials are

h0(x) = 1, h1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − 3x,

h4(x) = x4 − 6x2 + 3, h5(x) = x5 − 10x3 + 15x, . . .

There is a useful formula due to Ito [I] for the iterated Ito integral in the special case
when the integrand is the tensor power of a function g ∈ L2([0, T ]):

(1.14) n!

T∫
0

tn∫
0

· · ·
t2∫

0

g(t1)g(t2) · · · g(tn)dW (t1) · · · dW (tn) = ‖g‖nhn(
θ

‖g‖),

where

‖g‖ = ‖g‖L2([0,T ]) and θ =

T∫
0

g(t)dW (t).
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For example, choosing g ≡ 1 and n = 3 we get

6 ·
T∫

0

t3∫
0

t2∫
0

dW (t1)dW (t2)dW (t3) = T 3/2h3(
W (T )

T 1/2
) = W 3(T )− 3T W (T ).

THEOREM 1.1. (The Wiener-Ito chaos expansion) Let ϕ be an FT -measurable
random variable such that

‖ϕ‖2
L2(Ω): = ‖ϕ‖2

L2(P ): = EP [ϕ2] <∞ .

Then there exists a (unique) sequence {fn}∞n=0 of (deterministic) functions fn ∈ L̂2([0, T ]n)
such that

(1.15) ϕ(ω) =
∞∑
n=0

In(fn) (convergence in L2(P )).

Moreover, we have the isometry

(1.16) ‖ϕ‖2
L2(P ) =

∞∑
n=0

n!‖fn‖2
L2([0,T ]n)

Proof. By the Ito representation theorem there exists an Ft-adapted process ϕ1(s1, ω),
0 ≤ s1 ≤ T such that

(1.17) E[

T∫
0

ϕ2
1(s1, ω)ds1] ≤ ‖ϕ‖2

L2(P )

and

(1.18) ϕ(ω) = E[ϕ] +

T∫
0

ϕ1(s1, ω)dW (s1)

Define

(1.19) g0 = E[ϕ] (constant).

For a.a. s1 ≤ T we apply the Ito representation theorem to ϕ1(s1, ω) to conclude that
there exists an Ft-adapted process ϕ2(s2, s1, ω); 0 ≤ s2 ≤ s1 such that

(1.20) E[

s1∫
0

ϕ2
2(s2, s1, ω)ds2] ≤ E[ϕ2

1(s1)] <∞

and

(1.21) ϕ1(s1, ω) = E[ϕ1(s1)] +

s1∫
0

ϕ2(s2, s1, ω)dW (s2).

1.4



    

Substituting (1.21) in (1.18) we get

(1.22) ϕ(ω) = g0 +

T∫
0

g1(s1)dW (s1) +

T∫
0

(

s1∫
0

ϕ2(s2, s1, ω)dW (s2)dW (s1)

where

(1.23) g1(s1) = E[ϕ1(s1)].

Note that by the Ito isometry, (1.17) and (1.20) we have

(1.24) E[{
T∫

0

(

s1∫
0

ϕ2(s1, s2, ω)dW (s2))dW (s1)}2]=

T∫
0

(

s1∫
0

E[ϕ2
2(s1, s2, ω)]ds2)ds1 ≤ ‖ϕ‖2

L2(P ).

Similarly, for a.a. s2 ≤ s1 ≤ T we apply the Ito representation theorem to ϕ2(s2, s1, ω) to
get an Ft-adapted process ϕ3(s3, s2, s1, ω); 0 ≤ s3 ≤ s2 such that

(1.25) E[

s2∫
0

ϕ2
3(s3, s2, s1, ω)ds3] ≤ E[ϕ2

2(s2, s1)] <∞

and

(1.26) ϕ2(s2, s1, ω) = E[ϕ2(s2, s1, ω)] +

s2∫
0

ϕ3(s3, s2, s1, ω)dW (s3).

Substituting (1.26) in (1.22) we get

ϕ(ω) = g0 +

T∫
0

g1(s1)dW (s1) +

T∫
0

(

s1∫
0

g2(s2, s1)dW (s2))dW (s1)

+

T∫
0

(

s1∫
0

(

s2∫
0

ϕ3(s3, s2, s1, ω)dW (s3))dW (s2))dW (s1),(1.27)

where

(1.28) g2(s2, s1) = E[ϕ2(s2, s1)]; 0 ≤ s2 ≤ s1 ≤ T.

By the Ito isometry, (1.17), (1.20) and (1.25) we have

(1.29) E[{
T∫

0

s1∫
0

s2∫
0

ϕ3(s3, s2, s1, ω)dW (s3)dW (s2)dW (s3)}2] ≤ ‖ϕ‖2
L2(P ) .

By iterating this procedure we obtain by induction after n steps a process ϕn+1(t1, t2, . . .,
tn+1, ω); 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn+1 ≤ T and n + 1 deterministic functions g0, g1, . . . , gn
with g0 constant and gk defined on Sk for 1 ≤ k ≤ n, such that

(1.30) ϕ(ω) =
n∑
k=0

Jk(gk) +
∫

Sn+1

ϕn+1dW
⊗(n+1),
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where

(1.31)
∫

Sn+1

ϕn+1dW
⊗(n+1) =

T∫
0

tn+1∫
0

· · ·
t2∫

0

ϕn+1(t1, . . . , tn+1, ω)dW (t1) · · · dW (tn+1)

is the (n+ 1)-fold iterated integral of ϕn+1. Moreover,

(1.32) E[{
∫

Sn+1

ϕn+1dW
⊗(n+1)}2] ≤ ‖ϕ‖2

L2(Ω).

In particular, the family

ψn+1: =
∫

Sn+1

ϕn+1dW
⊗(n+1); n = 1, 2, . . .

is bounded in L2(P ). Moreover

(1.33) (ψn+1, Jk(fk))L2(Ω) = 0 for k ≤ n, fk ∈ L2([0, T ]k).

Hence by the Pythagorean theorem

(1.34) ‖ϕ‖2
L2(Ω) =

n∑
k=0

‖Jk(gk)‖2
L2(Ω) + ‖ψn+1‖2

L2(Ω)

In particular,
n∑
k=0

‖Jk(gk)‖2
L2(Ω) <∞

and therefore
∞∑
k=0

Jk(gk) is strongly convergent in L2(Ω). Hence

lim
n→∞

ψn+1 =:ψ exists (limit in L2(Ω))

But by (1.33) we have

(1.35) (Jk(fk), ψ)L2(Ω) = 0 for all k and all fk ∈ L2([0, T ]k)

In particular, by (1.14) this implies that

E[hk(
θ

‖g‖) · ψ] = 0 for all g ∈ L2([0, T ]), all k ≥ 0

where θ =
T∫
0
g(t)dW (t).

But then, from the definition of the Hermite polynomials,

E[θk · ψ] = 0 for all k ≥ 0
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which again implies that

E[exp θ · ψ] =
∞∑
k=0

1

k!
E[θk · ψ] = 0.

Since the family
{exp θ; g ∈ L2([0, T ])}

is dense in L2(Ω) (see [Ø1], Lemma 4.9), we conclude that

ψ = 0.

Hence

(1.36) ϕ(ω) =
∞∑
k=0

Jk(gk) (convergence in L2(Ω))

and

(1.37) ‖ϕ‖2
L2(Ω) =

n∑
k=0

‖Jk(gk)‖2
L2(Ω).

Finally, to obtain (1.15)–(1.16) we proceed as follows:

The function gn is only defined on Sn, but we can extend gn to [0, T ]n by putting

(1.38) gn(t1, . . . , tn) = 0 if (t1, . . . , tn) ∈ [0, T ]n \ Sn.

Now define
fn = g̃n, the symmetrization of g.

Then
In(fn) = n!Jn(fn) = n!Jn(g̃n) = Jn(gn)

and (1.15)–(1.16) follow from (1.36) and (1.37). tu

Examples

1) What is the Wiener-Ito expansion of

ϕ(ω) = W 2(T, ω) ?

From (1.14) we get

2

T∫
0

(

t2∫
0

dW (t1))dW (t2) = Th2(
W (T )

T 1/2
) = W 2(T )− T,

and therefore
W 2(T ) = T + I2(1).
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2) Note that for t ∈ (0, T ) we have

T∫
0

(

t2∫
0

X{t1<t<t2}(t1, t2)dW (t1))dW (t2)

=

T∫
t

W (t)dW (t2) = W (t)(W (T )−W (t)).

Hence, if we put

ϕ(ω) = W (t)(W (T )−W (t)), g(t1, t2) = X{t1<t<t2}
we see that

ϕ(ω) = J2(g) = 2J2(g̃) = I2(f2),

where

f2(t1, t2) = g̃(t1, t2) =
1

2
(X{t1<t<t2} + X{t2<t<t1}).

Exercises

1.1 a) Let hn(x); n = 0, 1, 2, . . . be the Hermite polynomials, defined in (1.13). Prove
that

exp(tx− t2

2
) =

∞∑
n=0

tn

n!
hn(x) for all t, x.

(Hint: Write

exp(tx− t2

2
) = exp(

1

2
x2) · exp(−1

2
(x− t)2)

and apply the Taylor formula on the last factor.)

b) Show that if λ > 0 then

exp(tx− t2λ

2
) =

∞∑
n=0

tnλ
n
2

n!
hn(

x√
λ

).

c) Let g ∈ L2([0, T ]) be deterministic. Put

θ = θ(ω) =

T∫
0

g(s)dW (s)

and

‖g‖ = ‖g‖L2([0,T ]) = (

T∫
0

g2(s)ds)1/2.

Show that

exp(

T∫
0

g(s)dW (s)− 1

2
‖g‖2) =

∞∑
n=0

‖g‖n
n!

hn(
θ

‖g‖)
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d) Let t ∈ [0, T ]. Show that

exp(W (t)− 1

2
t) =

∞∑
n=0

tn/2

n!
hn(

W (t)√
t

).

1.2 Find the Wiener-Ito chaos expansion of the following random variables:

a) ϕ(ω) = W (t, ω) (t ∈ [0, T ] fixed)

b) ϕ(ω) =
T∫
0
g(s)dW (s) (g ∈ L2([0, T ]) deterministic)

c) ϕ(ω) = W 2(t, ω) (t ∈ [0, T ] fixed)

d) ϕ(ω) = exp(
T∫
0
g(s)dW (s)) (g ∈ L2([0, T ]) deterministic)

(Hint: Use (1.14).)

1.3 The Ito representation theorem states that if F ∈ L2(Ω) is FT -measurable, then
there exists a unique Ft-adapted process ϕ(t, ω) such that

(1.40) F (ω) = E[F ] +

T∫
0

ϕ(t, ω)dW (t).

(See e.g. [Ø1], Theorem 4.10.)

As we will show in Chapter 5, this result is important in mathematical finance. Moreover,
it is important to be able to find more explicitly the integrand ϕ(t, ω). This is achieved
by the Clark-Ocone formula, which says that (under some extra conditions)

(1.41) ϕ(t, ω) = E[DtF |Ft](ω),

where DtF is the (Malliavin) derivative of F . We will return to this in Chapters 4 and 5.

For special functions F (ω) it is possible to find ϕ(t, ω) directly, by using the Ito formula.
For example, find ϕ(t, ω) when

a) F (ω) = W 2(T )

b) F (ω) = expW (T )

c) F (ω) =
T∫
0
W (t)dt

d) F (ω) = W 3(T )

e) F (ω) = cosW (T )

(Hint: Check that N(t): = e
1
2
t cosW (t) is a martingale.)
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1.4. [Hu] Suppose the function F of Exercise 1.3 has the form

(1.42) F (ω) = f(X(T ))

where X(t) = X(t, ω) is an Ito diffusion given by

(1.43) dX(t) = b(X(t))dt+ σ(X(t))dW (t); X(0) = x ∈ R.

Here b: R→ R and σ: R→ R are given Lipschitz continuous functions of at most linear
growth, so (1.43) has a unique solution X(t); t ≥ 0. Then there is a useful formula for
the process ϕ(t, ω) in (1.40). This is described as follows:

If g is a real function with the property

(1.44) Ex[|g(X(t))|] <∞ for all t ≥ 0, x ∈ R

(where Ex denotes expectation w.r.t. the law of X(t) when X(0) = x) then we define

(1.45) u(t, x): = Ptg(x): = Ex[g(X(t))]; t ≥ 0, x ∈ R

Suppose that there exists δ > 0 such that

(1.46) |σ(x)| ≥ δ for all x ∈ R

Then u(t, x) ∈ C1,2(R+ ×R) and

(1.47)
∂u

∂t
= b(x)

∂u

∂x
+

1

2
σ2(x)

∂2u

∂x2
for all t ≥ 0, x ∈ R

(Kolmogorov’s backward equation).

See e.g. [D2], Theorem 13.18 p. 53 and [D1], Theorem 5.11 p. 162 and [Ø1], Theorem 8.1.

a) Use Ito’s formula for the process

Y (t) = g(t,X(t)) with g(t, x) = PT−tf(x)

to show that

(1.48) f(X(T )) = PTf(x) +

T∫
0

[σ(ξ)
∂

∂ξ
PT−tf(ξ)]ξ=X(t)dW (t)

for all f ∈ C2(R).

In other words, with the notation of Exercise 1.3 we have shown that if F (ω) =
f(X(T )) then

(1.49) E[F ] = PTf(x) and ϕ(t, ω) = [σ(ξ)
∂

∂ξ
PT−tf(ξ)]ξ=X(t).

Use (1.49) to find E[F ] and ϕ(t, ω) when
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b) F (ω) = W 2(T )

c) F (ω) = W 3(T )

d) F (ω) = X(T, ω)

where
dX(t) = ρX(t)dt+ αX(t)dW (t) (ρ, α constants)

i.e. X(t) is geometric Brownian motion.

e) Extend formula (1.48) to the case when X(t) ∈ Rn and f : Rn → R. In this case
condition (1.46) must be replaced by the condition

(1.50) ηTσT (x)σ(x)η ≥ δ|η|2 for all x, η ∈ Rn

where σT (x) denotes the transposed of the m× n-matrix σ(x).
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2 The Skorohod integral

The Wiener-Ito chaos expansion is a convenient starting point for the introduction of
several important stochastic concepts, including the Skorohod integral. This integral may
be regarded as an extenstion of the Ito integral to integrands which are not necessarily
Ft-adapted. It is also connected to the Malliavin derivative. We first introduce some
convenient notation.

Let u(t, ω), ω ∈ Ω, t ∈ [0, T ] be a stochastic process (always assumed to be (t, ω)-
measurable), such that

(2.1) u(t, ·) is FT -measurable for all t ∈ [0, T ]

and

(2.2) E[u2(t, ω)] <∞ for all t ∈ [0, T ].

Then for each t ∈ [0, T ] we can apply the Wiener-Ito chaos expansion to the random
variable ω → u(t, ω) and obtain functions fn,t(t1, . . . , tn) ∈ L̂2(Rn) such that

(2.3) u(t, ω) =
∞∑
n=0

In(fn,t(·)).

The functions fn,t(·) depend on the parameter t, so we can write

(2.4) fn,t(t1, . . . , tn) = fn(t1, . . . , tn, t)

Hence we may regard fn as a function of n + 1 variables t1, . . . , tn, t. Since this function
is symmetric with respect to its first n variables, its symmetrization f̃n as a function of
n+ 1 variables t1, . . . , tn, t is given by, with tn+1 = t,

(2.5) f̃n(t1, . . . , tn+1) =

1

n+ 1
[fn(t1, . . . , tn+1) + · · ·+ fn(t1, . . . , ti−1, ti+1, . . . , tn+1, ti) + · · ·+ fn(t2, . . . , tn+1, t1)],

where we only sum over those permutations σ of the indices (1, . . . , n + 1) which inter-
change the last component with one of the others and leave the rest in place.

EXAMPLE 2.1. Suppose

f2,t(t1, t2) = f2(t1, t2, t) =
1

2
[X{t1<t<t2} + X{t2<t<t1}].

Then the symmetrization f̃2(t1, t2, t3) of f2 as a function of 3 variables is given by

f̃2(t1, t2, t3) =
1

3
[
1

2
(X{t1<t3<t2} + X{t2<t3<t1}) +

1

2
(X{t1<t2<t3}

+X{t3<t2<t1}) +
1

2
(X{t2<t1<t3} + X{t3<t1<t2})]
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This sum is 1
6

except on the set where some of the variables coincide, but this set has
measure zero, so we have

(2.6) f̃2(t1, t2, t3) =
1

6
a.e.

DEFINITION 2.2. Suppose u(t, ω) is a stochastic process satisfying (2.1), (2.2) and
with Wiener-Ito chaos expansion

(2.7) u(t, ω) =
∞∑
n=0

In(fn(·, t)).

Then we define the Skorohod integral of u by

(2.8) δ(u): =

T∫
0

u(t, ω)δW (t) :=
∞∑
n=0

In+1(f̃n) (when convergent)

where f̃n is the symmetrization of fn(t1, . . . , tn, t) as a function of n+1 variables t1, . . . , tn, t.

We say u is Skorohod-integrable and write u ∈ Dom(δ) if the series in (2.8) converges in
L2(P ). By (1.16) this occurs iff

(2.9) E[δ(u)2] =
∞∑
n=0

(n+ 1)!‖f̃n‖2
L2([0,T ]n+1) <∞ .

EXAMPLE 2.3. Let us compute the Skorohod integral

T∫
0

W (T, ω)δW (t).

Here u(t, ω) = W (T, ω) =
T∫
0

1 dW (t), so

f0 = 0, f1 = 1 and fn = 0 for all n ≥ 2.

Hence

δ(u) = I2(f̃1) = I2(1) = 2

T∫
0

(

t2∫
0

dW (t1))dW (t2) = W 2(T, ω)− T.

Note that even if W (T, ω) does not depend on t, we have

T∫
0

W (T, ω)δW (t) 6= W (T, ω)

T∫
0

δW (t) (but see (3.64)).

EXAMPLE 2.4. What is
T∫
0
W (t, ω)[W (T, ω)−W (t, ω)]δW (t) ?
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Note that

T∫
0

(

t2∫
0

X{t1<t<t2}(t1, t2)dW (t1))dW (t2)

=

T∫
0

W (t, ω)X{t<t2}(t2)dW (t2)

= W (t, ω)

T∫
t

dW (t2) = W (t, ω)[W (T, ω)−W (t, ω)].

Hence

u(t, ω): = W (t, ω)[W (T, ω)−W (t, ω)] = J2(X{t1<t<t2}(t1, t2))

= I2(f2(·, t)),

where

f2(t1, t2, t) =
1

2
(X{t1<t<t2} + X{t2<t<t1}).

Hence by Example 2.1 and (1.14)

δ(u) = I3(f̃2) = I3(
1

6
) = (

1

6
)I3(1)

=
1

6
[W 3(T, ω)− 3T W (T, ω)].

As mentioned earlier the Skorohod integral is an extension of the Ito integral. More
precisely, if the integrand u(t, ω) is Ft-adapted, then the two integrals coincide. To prove
this, we need a characterization of Ft-adaptedness in terms of the functions fn(·, t) in the
chaos expansion:

LEMMA 2.5. Let u(t, ω) be a stochastic process satisfying (2.1), (2.2) and let

u(t, ω) =
∞∑
n=0

In(fn(·, t))

be the Wiener-Ito chaos expansion of u(t, ·), for each t ∈ [0, T ]. Then u(t, ω) is Ft-adapted
if and only if

(2.10) fn(t1, . . . , tn, t) = 0 if t < max
1≤i≤n

ti .

REMARK The statement (2.10) should – as most statements about L2-functions – be
regarded as an almost everywhere (a.e.) statement. More precisely, (2.10) means that for
each t ∈ [0, T ] we have

fn(t1, . . . , tn, t) = 0 for a.a. (t1, . . . , tn) ∈ H,

where H = {(t1, . . . , tn) ∈ [0, T ]n; t < max
1≤i≤n

ti}.
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Proof of Lemma 2.5. First note that for any g ∈ L̂2([0, T ]n) we have

E[In(g)|Ft] = n!E[Jn(g)|Ft]

= n!E[

T∫
0

{
tn∫

0

· · ·
t2∫

0

g(t1, . . . , tn)dW (t1) · · ·}dW (tn)|Ft]

= n!

t∫
0

{
tn∫

0

· · ·
t2∫

0

g(t1, . . . , tn)dW (t1) · · ·}dW (tn)

= n!Jn(g(t1, . . . , tn) · X{max ti<t})

= In(g(t1, . . . , tn) · X{max ti<t}).(2.11)

Hence

u(t, ω) is Ft-adpted

⇔ E[u(t, ω)|Ft] = u(t, ω)

⇔
∞∑
n=0

E[In(fn(·, t))|Ft] =
∞∑
n=0

In(fn(·, t))

⇔
∞∑
n=0

In(fn(·, t) · X{max ti<t}) =
∞∑
n=0

In(fn(·, t))

⇔ fn(t1, . . . , tn, t) · X{max ti<t} = fn(t1, . . . , tn, t) a.e.,

by uniqueness of the Wiener-Ito expansion. Since the last identity is equivalent to (2.10),
the Lemma is proved. tu

THEOREM 2.6. (The Skorohod integral is an extension of the Ito integral)
Let u(t, ω) be a stochastic process such that

(2.12) E[

T∫
0

u2(t, ω)dt] <∞

and suppose that

(2.13) u(t, ω) is Ft-adapted for t ∈ [0, T ].

Then u ∈ Dom(δ) and

(2.14)

T∫
0

u(t, ω)δW (t) =

T∫
0

u(t, ω)dW (t)

Proof. First note that by (2.5) and Lemma 2.5 we have

(2.15) f̃n(t1, . . . , tn, tn+1) =
1

n+ 1
fn(· · · , tj−1, tj+1, . . . , tj)

where
tj = max

1≤i≤n+1
ti .
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Hence

‖f̃n‖2
L2([0,T ]n+1) = (n+ 1)!

∫
Sn+1

f̃ 2
n(x1, . . . , xn+1)dx1 · · · dxn+1

=
(n+ 1)!

(n+ 1)2

∫
Sn+1

f 2
n(x1, . . . , xn+1)dx1 · · · dxn

=
n!

n+ 1

T∫
0

(

t∫
0

xn∫
0

· · ·
x2∫
0

f 2
n(x1, . . . , xn, t)dx1 · · · dxn)dt

=
n!

n+ 1

T∫
0

(

T∫
0

xn∫
0

· · ·
x2∫
0

f 2
n(x1, . . . , xn, t)dx1 · · · dxn)dt

=
1

n+ 1

T∫
0

‖fn(·, t)‖2
L2([0,T ]n)dt,

again by using Lemma 2.5.

Hence, by (1.16),

∞∑
n=0

(n+ 1)!‖f̃n‖2
L2([0,T ]n+1) =

∞∑
n=0

n!

T∫
0

‖fn(·, t)‖2
L2([0,T ]n)dt

=

T∫
0

(
∞∑
n=0

n!‖fn(·, t)‖2
L2([0,T ]n))dt

= E[

T∫
0

u2(t, ω)dt] <∞ by assumption.(2.16)

This proves that u ∈ Dom(δ).

Finally, to prove (2.14) we again apply (2.15):

T∫
0

u(t, ω)dW (t) =
∞∑
n=0

T∫
0

In(fn(·, t))dW (t)

=
∞∑
n=0

T∫
0

{n!
∫

0≤t1≤···≤tn≤t

fn(t1, . . . , tn, t)dW (t1) · · · dW (tn)}dW (t)

=
∞∑
n=0

T∫
0

n!(n+ 1)
∫

0≤t1≤···≤tn≤tn+1

f̃n(t1, . . . , tn, tn+1)dW (t1) · · · dW (tn)dW (tn+1)

=
∞∑
n=0

(n+ 1)!Jn+1(f̃n) =
∞∑
n=0

In+1(f̃n) =

T∫
0

u(t, ω)δW (t).

tu
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Exercises

2.1 Compute the following Skorohod integrals:

a)
T∫
0
W (t)δW (t)

b)
T∫
0
(
T∫
0
g(s)dW (s))δW (t) (g ∈ L2([0, T ]) deterministic)

c)
T∫
0
W 2(t0)δW (t) (t0 ∈ [0, T ] fixed)

d)
T∫
0

exp(W (T ))δW (t)

(Hint: Use Exercise 1.2.)
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3 White noise, the Wick product and stochastic in-

tegration

This chapter gives an introduction to the white noise analysis and its relation to the
analysis on Wiener spaces discussed in the first two chapters. Although it is not strictly
necessary for the following chapters, it gives a useful alternative approach. Moreover, it
provides a natural platform for the Wick product, which is closely related to Skorohod
integration (see (3.22)). For example, we shall see that the Wick calculus can be used to
simplify the computation of these integrals considerably.

The Wick product was introduced by C. G. Wick in 1950 as a renormalization technique
in quantum physics. This concept (or rather a relative of it) was introduced by T. Hida
and N. Ikeda in 1965. In 1989 P. A. Meyer and J. A. Yan extended the construction to
cover Wick products of stochastic distributions (Hida distributions), including the white
noise.

The Wick product has turned out to be a very useful tool in stochastic analysis in general.
For example, it can be used to facilitate both the theory and the explicit calculations in
stochastic integration and stochastic differential equations. For this reason we include a
brief introduction in this course. It remains to be seen if the Wick product also has more
direct applications in economics.

General references for this section are [H], [HKPS], [HØUZ], [HP], [LØU 1-3], [Ø1], [Ø2]
and [GHLØUZ].

We start with the construction of the white noise probability space (S ′,B, µ):

Let S = S(R) be the Schwartz space of rapidly decreasing smooth functions on R with the
usual topology and let S ′ = S ′(R) be its dual (the space of tempered distributions). Let
B denote the family of all Borel subsets of S ′(R) (equipped with the weak-star topology).
If ω ∈ S ′ and φ ∈ S we let

(3.1) ω(φ) = 〈ω, φ〉
denote the action of ω on φ. (For example, if ω is a measure m on R then

〈ω, φ〉 =
∫
R

φ(x)dm(x)

and if ω is evaluation at x0 ∈ R then

〈ω, φ〉 = φ(x0) etc.)

By the Minlos theorem [GV] there exists a probability meaure µ on S ′ such that

(3.2)
∫
S′
ei〈ω,φ〉dµ(ω) = e−

1
2
‖φ‖2 ; φ ∈ S

where

(3.3) ‖φ‖2 =
∫
R

|φ(x)|2dx = ‖φ‖2
L2(R).
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µ is called the white noise probability measure and (S ′,B, µ) is called the white noise
probability space.

DEFINITION 3.1 The (smoothed) white noise process is the map

w : S × S ′ → R

given by

(3.4) w(φ, ω) = wφ(ω) = 〈ω, φ〉 ; φ ∈ S, ω ∈ S ′

From wφ we can construct a Wiener process (Brownian motion) Wt as follows:

STEP 1. (The Ito isometry)

(3.5) Eµ[〈·, φ〉2] = ‖φ‖2 ; φ ∈ S
where Eµ denotes expectation w.r.t. µ, so that

Eµ[〈·, φ〉2] =
∫
S′
〈ω, φ〉2dµ(ω).

STEP 2. Use Step 1 to define, for arbitrary ψ ∈ L2(R),

〈ω, ψ〉 := lim〈ω, φn〉,
where φn ∈ S and φn → ψ in L2(R)(3.6)

STEP 3. Use Step 2 to define

(3.7) W̃t(ω) = W̃ (t, ω) := 〈ω, χ[0,t](·)〉 for t ≥ 0

by choosing

ψ(s) = χ[0,t](s) =
{

1 if s ∈ [0, t]
0 if s 6∈ [0, t]

which belongs to L2(R) for all t ≥ 0.

STEP 4. Prove that W̃t has a continuous modification Wt = Wt(ω), i.e.

P [W̃t(·) = Wt(·)] = 1 for all t.

This continuous process Wt = Wt(ω) = W (t, ω) = W (t) is a Wiener process.

Note that when the Wiener process Wt(ω) is constructed this way, then each ω is inter-
preted as an element of Ω: = S ′(R), i.e. as a tempered distribution.

From the above it follows that the relation between smoothed white noise wφ(ω) and the
Wiener process Wt(ω) is

(3.8) wφ(ω) =
∫
R

φ(t)dWt(ω) ; φ ∈ S

where the integral on the right is the Wiener-Itô integral.
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The Wiener-Itô chaos expansion revisited

As before let the Hermite polynomials hn(x) be defined by

(3.9) hn(x) = (−1)ne
x2

2
dn

dxn
(e−

x2

2 ) ; n = 0, 1, 2, · · ·

This gives for example

h0(x) = 1, h1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − 3x

h4(x) = x4 − 6x2 + 3, h5(x) = x5 − 10x3 + 15x, · · ·

Let ek be the k’th Hermite function defined by

(3.10) ek(x) = π−
1
4 ((k − 1)!)−

1
2 · e−x

2

2 hk−1(
√

2x); k = 1, 2, · · ·

Then {ek}k≥1 constitutes an orthonormal basis for L2(R) and ek ∈ S for all k.

Define

(3.11) θk(ω) = 〈ω, ek〉 = Wek(ω) =
∫
R

ek(x)dWx(ω)

Let J denote the set of all finite multi-indices α = (α1, α2, . . . , αm) (m = 1, 2, . . .) of
non-negative integers αi. If α = (α1, · · · , αm) ∈ J we put

(3.12) Hα(ω) =
m∏
j=1

hαj(θj)

For example, if α = εk = (0, 0, · · · , 1) with 1 on k’th place, then

Hεk(ω) = h1(θk) = 〈ω, ek〉,

while
H3,0,2(ω) = h3(θ1)h0(θ2)h2(θ3) = (θ3

1 − 3θ1) · (θ2
3 − 1).

The family {Hα(·)}α∈J is an orthogonal basis for the Hilbert space

(3.13) L2(µ) = {X : S ′ → R such that ‖X‖2
L2(µ) :=

∫
S′
X(ω)2dµ(ω) <∞}.

In fact, we have

THEOREM 3.2 (The Wiener-Ito chaos expansion theorem II)

For all X ∈ L2(µ) there exist (uniquely determined) numbers cα ∈ R such that

(3.14) X(ω) =
∑
α

cαHα(ω).

Moreover, we have

(3.15) ‖X‖2
L2(µ) =

∑
α

α!c2
α
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where α! = α1!α2! · · ·αm! if α = (α1, α2, · · ·αm).

Let us compare with the equivalent formulation of this theorem in terms of multiple Ito
integrals: (See Chapter 1)

If ψ(t1, t2, · · · , tn) is a real symmetric function in its n (real) variables t1, · · · , tn and
ψ ∈ L2(Rn), i.e.

(3.16) ‖ψ‖L2(Rn) := [
∫

Rn
|ψ(t1, t2, · · · , tn)|2dt1dt2 · · · dtn]1/2 <∞

then its n-tuple Ito integral is defined by

In(ψ): =
∫

Rn
ψdW⊗n :=

n!
∫ ∞
−∞

(
∫ tn

−∞
(
∫ tn−1

−∞
· · · (

∫ t2

−∞
ψ(t1, t2, · · · , tn)dWt1)dWt2 · · ·)dWtn(3.17)

where the integral on the right consists of n iterated Ito integrals (note that in each
step the corresponding integrand is adapted because of the upper limits of the preceding
integrals). Applying the Ito isometry n times we see that

(3.18) E[(
∫

Rn
ψdW⊗n)2] = n!‖ψ‖2

L2(Rn); n ≥ 1

For n = 0 we adopt the convention that

(3.19) I0(ψ): =
∫

R0
ψdW⊗0 = ψ = ‖ψ‖L2(R0) when ψ is constant

Let L̂2(Rn) denote the set of symmetric real functions (on Rn) which are square integrable
with respect to Lebesque measure. Then we have (see Theorem 1.1):

THEOREM 3.3 (The Wiener-Ito chaos expansion theorem I)

For all X ∈ L2(µ) there exist (uniquely determined) functions fn ∈ L̂2(Rn) such that

(3.20) X(ω) =
∞∑
n=0

∫
Rn

fndW
⊗n(ω) =

∞∑
n=0

In(fn)

Moreover, we have

(3.21) ‖X‖2
L2(µ) =

∞∑
n=0

n!‖fn‖2
L2(Rn)

REMARK The connection between these two expansions in Theorem 3.2 and Theorem
3.3 is given by

(3.22) fn =
∑
α∈J
|α|=n

cαe
⊗α1
1 ⊗̂e⊗α2

2 ⊗̂ · · · ⊗̂e⊗αmm ; n = 0, 1, 2, · · ·
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where |α| = α1 + · · ·+αm if α = (α1, · · · , αm) ∈ J (m = 1, 2, · · ·). The functions e1, e2, · · ·
are defined in (3.10) and ⊗ and ⊗̂ denote tensor product and symmetrized tensor product,
respectively. For example, if f and g are real functions on R then

(f ⊗ g)(x1, x2) = f(x1)g(x2)

and

(f⊗̂g)(x1, x2) =
1

2
[f(x1)g(x2) + f(x2)g(x1)] ; (x1, x2) ∈ R2.

Analogous to the test functions S(R) and the tempered distributions S ′(R) on the real
line R, there is a useful space of stochastic test functions (S) and a space of stochastic
distributions (S)∗ on the white noise probability space:

DEFINITION 3.4 ([Z])

a) We say that f =
∑
α∈J

aαHα ∈ L2(µ) belongs to the Hida test function space (S) if

(3.23)
∑
α∈J

α!a2
α{
∞∏
j=1

(2j)αj}k <∞ for all k <∞

b) A formal sum F =
∑
α∈J

bαHα belongs to the Hida distribution space (S)∗ if

(3.24) there exists q <∞ s.t.
∑
α∈J

α!c2
α{
∞∏
j=1

(2j)αj}−q <∞

(S)∗ is the dual of (S). The action of F =
∑
α
bαHα ∈ (S)∗ on f =

∑
α
aαHα ∈ (S) is given

by
〈F, f〉 =

∑
α

α!aαbα

We have the inclusions
(S) ⊂ L2(µ) ⊂ (S)∗.

EXAMPLE 3.5

a) The smoothed white noise wφ(·) belongs to (S) if φ ∈ S, because if φ =
∑
j
cjej we

have

(3.25) wφ =
∑
j

cjHεj

so wφ ∈ (S) if and only if (using (3.23))∑
j

c2
j(2j)

k <∞ for all k,

which holds because φ ∈ S. (See e.g. [RS]).
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b) The singular (pointwise) white noise
•
Wt(·) is defined as follows:

(3.26)
•
Wt(ω) =

∑
k

ek(t)Hεk(ω)

Using (3.24) one can verify that
•
Wt(·) ∈ (S)∗ for all t. This is the precise

definition of singular/pointwise white noise!

The Wick product

In addition to a canonical vector space structure, the spaces (S) and (S)∗ also have a
natural multiplication:

DEFINITION 3.6 IfX =
∑
α
aαHα ∈ (S)∗, Y =

∑
β
bβHβ ∈ (S)∗ then the Wick product,

X ¦ Y , of X and Y is defined by

(3.27) X ¦ Y =
∑
α,β

aαbβHα+β =
∑
γ

(
∑

α+β=γ

aαbβ)Hγ

Using (3.24) and (3.23) one can now verify the following:

(3.28) X, Y ∈ (S)∗ ⇒ X ¦ Y ∈ (S)∗

(3.29) X, Y ∈ (S)⇒ X ¦ Y ∈ (S)

(Note, however, that X, Y ∈ L2(µ) 6⇒ X ¦ Y ∈ L2(µ) in general)

EXAMPLE 3.7

(i) The Wick square of white noise is

(singular case)
•
Wt
¦2 = (

•
Wt)

¦2 =
∑
k,m

ek(t)em(t)Hεk+εm

(smoothed case) w¦2φ =
∑
k,m

ckcmHεk+εm if φ =
∑

ckek ∈ S

Since

Hεk+εm =

{
Hεk ·Hεm if k 6= m
H2
εk
− 1 if k = m

we see that
w¦2φ = w2

φ −
∑
k

c2
k = w2

φ − ‖φ‖2.

Note, in particular, that w¦2φ is not positive. In fact, E[w¦2φ ] = 0 by (2.5).
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(ii) The Wick exponential of smoothed white noise is defined by

exp¦wφ =
∞∑
n=0

1

n!
w¦nφ ; φ ∈ S.

It can be shown that (see Exercise 1.1)

(3.30) exp¦wφ = exp(wφ −
1

2
‖φ‖2)

so exp¦wφ is positive. Moreover, we have

(3.31) Eµ[exp¦wφ] = 1 for all φ ∈ S.

Why the Wick product?

We list some reasons that the Wick product is natural to use in stochastic calculus:

1) First, note that if (at least) one of the factors X, Y is deterministic, then

X ¦ Y = X · Y

Therefore the two types of products, the Wick product and the ordinary (ω-pointwise)
product, coincide in the deterministic calculus. So when one extends a deterministic
model to a stochastic model by introducing noise, it is not obvious which interpreta-
tion to choose for the products involved. The choice should be based on additional
modelling and mathematical considerations.

2) The Wick product is the only product which is defined for singular white noise
•
Wt.

Pointwise product X · Y does not make sense in (S)∗!

3) The Wick product has been used for 40 years already in quantum physics as a
renormalization procedure.

4) Last, but not least: There is a fundamental relation between Ito/Skorohod integrals
and Wick products, given by

(3.32)
∫
Yt(ω)δWt(ω) =

∫
Yt ¦

•
Wt dt

(see [LØU 2], [B]).

Here the integral on the right is interpreted as a Pettis integral with values in (S)∗.

In view of (3.32) one could say that the Wick product is the core of Ito integration, hence
it is natural to use in stochastic calculus in general.

Finally we recall the definition of a pair of dual spaces, G and G∗, which are sometimes
useful. See [PT] and the references therein for more information.
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DEFINITION 3.8

a) Let λ ∈ R. Then the space Gλ consists of all formal expansions

(3.33) X =
∞∑
n=0

∫
Rn

fndW
⊗n

such that

(3.34) ‖X‖λ := [
∞∑
n=0

n!e2λn‖fn‖2
L2(Rn)]

1
2 <∞

For each λ ∈ R the space Gλ is a Hilbert space with inner product

(X, Y )Gλ =
∞∑
n=0

n!e2λn(fn, gn)L2(Rn)

if X =
∞∑
n=0

∫
Rn
fndW

⊗n, Y =
∞∑
m=0

∫
Rm

gmdW
⊗m(3.35)

Note that λ1 ≤ λ2 ⇒ Gλ2 ⊆ Gλ1 . Define

(3.36) G =
⋂
λ∈R

Gλ, with projective limit topology.

b) G∗ is defined to be the dual of G. Hence

(3.37) G∗ =
⋃
λ∈R

Gλ, with inductive limit topology.

REMARK. Note that an element Y ∈ G∗ can be represented as a formal sum

(3.38) Y =
∞∑
n=0

∫
Rn

gndW
⊗n

where gn ∈ L̂2(Rn) and ‖Y ‖λ <∞ for some λ ∈ R, while an X ∈ G satisfies ‖X‖λ <∞
for all λ ∈ R.

If X ∈ G and Y ∈ G∗ have the representations (3.33), (3.38), respectively, then the action
of Y on X, 〈Y,X〉, is given by

(3.39) 〈Y,X〉 =
∞∑
n=0

n!(fn, gn)L2(Rn)

where

(3.40) (fn, gn)L2(Rn) =
∫

Rn

f(x)g(x)dx

One can show that

(3.41) (S) ⊂ G ⊂ L2(µ) ⊂ G∗ ⊂ (S)∗.
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The space G∗ is not big enough to contain the singular white noise Wt. However, it does
often contain the solution Xt of stochastic differential equations. This fact allows one to
deduce some useful properties of Xt.

Like (S) and (S)∗ the spaces G and G∗ are closed under Wick product ([PT, Theorem
2.7]):

(3.42) X1, X2 ∈ G ⇒ X1 ¦X2 ∈ G

(3.43) Y1, Y2 ∈ G∗ ⇒ Y1 ¦ Y2 ∈ G∗

The Wick product in terms of iterated Ito integrals

The definition we have given of the Ito product is based on the chaos expansion II, because
only this is general enough to include the singular white noise. However, it is useful to
know how the Wick product is expressed in terms of chaos expansion I for L2(µ)-functions
or, more generally, for elements of G∗:

THEOREM 3.9 Suppose X =
∞∑
n=0

In(fn) ∈ G∗, Y =
∞∑
m=0

Im(gm) ∈ G∗. Then the Wick

product of X and Y can be expressed by

(3.44) X ¦ Y =
∞∑

n,m=0

In+m(fn⊗̂gm) =
∞∑
k=0

(
∑

n+m=k

Ik(fn⊗̂gm)).

For example, integration by parts gives that

(
∫
R

f(x)dWx) ¦ (
∫
R

g(y)dWy) =
∫

R2

(f⊗̂g)(x, y)dW⊗2

=
∫
R

(

y∫
−∞

(f(x)g(y) + f(y)g(x))dWx)dWy

=
∫
R

g(y)(

y∫
−∞

f(x)dWx)dWy +
∫
R

f(y)(

y∫
−∞

g(x)dWx)dWy

= (
∫
R

g(y)dWy)(
∫
R

f(x)dWx)−
∫
R

f(t)g(t)dt .(3.45)

Some properties of the Wick product

We list below some useful properties of the Wick product. Some are easy to prove, others
harder. For complete proofs see [HØUZ].

For arbitrary X, Y, Z ∈ G∗ we have

X ¦ Y = Y ¦X (commutative law)(3.46)

X ¦ (Y ¦ Z) = (X ¦ Y ) ¦ Z (associative law)(3.47)

X ¦ (Y + Z) = (X ¦ Y ) + (X ¦ Z) (distributive law)(3.48)
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Thus the Wick algebra obeys the same rules as the ordinary algebra. For example,

(3.49) (X + Y )¦2 = X¦2 + 2X ¦ Y + Y ¦2 (no Ito formula!)

and

(3.50) exp¦(X + Y ) = exp¦(X) ¦ exp¦(Y ).

Note, however, that combinations of ordinary products and Wick products requires cau-
tion. For example, in general we have

X · (Y ¦ Z) 6= (X · Y ) ¦ Z .

A remarkable property of the Wick product is that

(3.51) Eµ[X ¦ Y ] = Eµ[X] · Eµ[Y ]

whenever X, Y and X ¦ Y are µ-integrable. (Note that it is not required that X and Y
are independent!)

A reformulation of (3.45) is that

wφ ¦ wψ = wφ · wψ −
1

2

∫
R

φ(t)ψ(t)dt; φ, ψ ∈ δ .

(See also Example 3.7(i))

In particular,

(3.52) W ¦2
t = W 2

t − t; t ≥ 0

and

(3.53) if suppφ ∩ suppψ = ∅, then wφ ¦ wψ = wφ · wψ

Hence

If 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 then(3.54)

(Wt4 −Wt3) ¦ (Wt2 −Wt1) = (Wt4 −Wt3) · (Wt2 −Wt1)

More generally, it can be proved that if F (ω) is Ft-measurable and h > 0, then

(3.55) F ¦ (Wt+h −Wt) = F · (Wt+h −Wt)

(For a proof see e.g. Exercise 2.22 in [HØUZ].)

Note that from (3.44) we have that

(3.56) (
∫
R

g(t)dWt)
¦n = n!

∫
Rn

g⊗n(x1, . . . , xn)dW⊗n; g ∈ L2(R).
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Combining this with (1.14) we get, with θ =
∫
R
gdW ,

(3.57) θ¦n = ‖g‖nhn(
θ

‖g‖).

In particular,

(3.58) W ¦n
t = tn/2hn(

Wt√
t
), n = 0, 1, 2, . . .

Moreover, combining (3.57) with the generating formula for Hermite polynomials

(3.59) exp(tx− t2

2
) =

∞∑
n=0

tn

n!
hn(x) (see Exercise 1.1)

we get (see Example 3.7 (ii))

exp(
∫
R

g(t)dWt −
1

2
‖g‖2) =

∞∑
n=0

‖g‖n
n!

hn(
θ

‖g‖)

=
∞∑
n=0

1

n!
θ¦n = exp¦ θ .(3.60)

Hence

(3.61) exp¦(
∫
R

gdW ) = exp(
∫
R

gdW − 1

2
‖g‖2); g ∈ L2(R).

In particular,

(3.62) exp¦(Wt) = exp(Wt −
1

2
t); t ≥ 0.

Combining the properties above with the fundamental relation (3.32) for Skorohod inte-
gration, we get a powerful calculation technique for stochastic integration. First of all,
note that, by (3.32),

(3.63)

T∫
0

•
Wt dt = WT .

Moreover, using (3.48) one can deduce that

(3.64)

T∫
0

X ¦ Yt ¦
•
Wt dt = X ¦

T∫
0

Yt ¦
•
Wt dt

if X does not depend on t.

(Compare this with the fact that for Skorohod integrals we generally have

(3.65)

T∫
0

X · YtδWt 6= X ·
T∫

0

YtδWt ,
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even if X does not depend on t.)

To illustrate the use of Wick calculus, let us again consider Example 2.4:

T∫
0

Wt · [WT −Wt]δWt =

T∫
0

Wt ¦ (WT −Wt) ¦
•
Wt dt

=

T∫
0

Wt ¦WT ¦
•
Wt dt−

T∫
0

W ¦2
t ¦

•
Wt dt

= WT ¦
T∫

0

Wt ¦
•
Wt dt−

1

3
W ¦3
T =

1

6
W ¦3
T =

1

6
[W 3

T − 3TWT ],

where we have used (3.54), (3.48), (3.64) and (3.58).

Exercises

3.1 Use the identity (3.32) and Wick calculus to compute the following Skorohod inte-
grals

a)
T∫
0
W (T )δW (t) =

T∫
0
W (T ) ¦

•
W (t)dt

b)
T∫
0
(
T∫
0
g(s)dW (s))δW (t) (g ∈ L2([0, T ]) deterministic)

c)
T∫
0
W 2(t0)δW (t) (t0 ∈ [0, T ] fixed)

d)
T∫
0

exp(W (T ))δW (t)

Compare with your calculations in Exercise 2.1!
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4 Differentiation

Let us first recall some basic concepts from classical analysis:

DEFINITION 4.1. Let U be an open subset of Rn and let f be a function from U
into Rm.

a) We say that f has a directional derivative at the point x ∈ U in the direction y ∈ Rn

if

(4.1) Dyf(x): = lim
ε→0

f(x+ εy)− f(x)

ε
=

d

dε
[f(x+ εy)]ε=0

exists. If this is the case we call the vector Dyf(x) ∈ Rm the directional derivative
(at x in direction y). In particular, if we choose y to be the j’th unit vector ej =
(0, . . . , 1, . . . , 0), with 1 on j’th place, we get

Dεjf(x) =
∂f

∂xj
,

the j’th partial derivative of f .

b) We say that f is differentiable at x ∈ U if there exists a matrix A ∈ Rm×n such that

(4.2) lim
h→0
h∈Rn

1

|h| · |f(x+ h)− f(x)− Ah| = 0

If this is the case we call A the derivative of f at x and we write

A = f ′(x).

The following relations between the two concepts are well-known:

PROPOSITION 4.2.

(i) If f is differentiable at x ∈ U then f has a directional derivative in all directions
y ∈ Rn and

(4.3) Dyf(x) = f ′(x)y

(ii) Conversely, if f has a directional derivative at all x ∈ U in all the directions y = ej;
1 ≤ j ≤ n and all the partial derivatives

Dejf(x) =
∂f

∂xj
(x)

are continuous functions of x, then f is differentiable at all x ∈ U and

(4.4) f ′(x) = [
∂fi
∂xj

] 1≤i≤m
1≤j≤n

∈ Rm×n ,
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where fi is component number i of f , i.e.

f =

 f1
...
fm


We will now define similar operations in a more general context. First let us recall some
basic concepts from functional analysis:

DEFINITION 4.3. Let X be a Banach space, i.e. a complete, normed vector space
(over R), and let ‖x‖ denote the norm of the element x ∈ X. A linear functional on X
is a linear map

T :X → R

(T is called linear if T (ax+y) = aT (x)+T (y) for all a ∈ R, x, y ∈ X). A linear functional
T is called bounded (or continuous) if

|‖T‖|: = sup
‖x‖≤1

|T (x)| <∞

Sometimes we write 〈T, x〉 or Tx instead of T (x) and call 〈T, x〉 “the action of T on x”.
The set of all bounded linear functionals is called the dual of X and is denoted by X∗.
Equipped with the norm |‖ · ‖| the space X∗ becomes a Banach space also.

EXAMPLE 4.4.

(i) X = Rn with the usual Euclidean norm |x| =
√
x2

1 + · · ·+ x2
n is a Banach space. In

this case it is easy to see that we can identify X∗ with Rn.

(ii) Let X = C0([0, T ]), the space of continuous, real functions ω on [0, T ] such that
ω(0) = 0. Then

‖ω‖∞: = sup
t∈[0,T ]

|ω(t)|

is a norm on X called the uniform norm. This norm makes X into a Banach space
and its dual X∗ can be identified with the spaceM([0, T ]) of all signed measures ν
on [0, T ], with norm

|‖ν‖| = sup
|f |≤1

T∫
0

f(t)dν(t) = |ν|([0, T ])

(iii) If X = Lp([0, T ]) = {f : [0, T ]→ R;
T∫
0
|f(t)]pdt <∞} equipped with the norm

‖f‖p = [

T∫
0

|f(t)|pdt]1/p (1 ≤ p <∞)

then X is a Banach space, whose dual can be identified with Lq([0, T ]), where

1

p
+

1

q
= 1 .

In particular, if p = 2 then q = 2 so L2([0, T ]) is its own dual.
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We now extend the definitions we had for Rn to arbitrary Banach spaces:

DEFINITION 4.5. Let U be an open subset of a Banach space X and let f be a
function from U into Rm.

a) We say that f has a directional derivative (or Gateaux derivative) at x ∈ U in the
direction y ∈ X if

(4.5) Dyf(x): =
d

dε
[f(x+ εy)]ε=0 ∈ Rm

exists. If this is the case we call Dyf(x) the directional (or Gateaux ) derivative of
f (at x in the direction y).

b) We say that f is Frechet-differentiable at x ∈ U if there exists a bounded linear map

A:X → Rm

(i.e. A =

 A1
...
Am

 with Ai ∈ X∗ for 1 ≤ i ≤ m) such that

(4.6) lim
h→0
h∈X

1

‖h‖ · |f(x+ h)− f(x)− A(h)| = 0

If this is the case we call A the Frechet derivative of f at x and we write

(4.7) A = f ′(x) =

 f
′(x)1
...

f ′(x)m

 ∈ (X∗)m.

Similar to the Euclidean case (Proposition 4.2) we have

PROPOSITION 4.6.

(i) If f is Frechet-differentiable at x ∈ U ⊂ X then f has a directional derivative at x
in all directions y ∈ X and

(4.8) Dyf(x) = 〈f ′(x), y〉 ∈ Rm

where
〈f ′(x), y〉 = (〈f ′(x)1, y〉, . . . , 〈f ′(x)m, y〉)

is the m-vector whose i’th component is the action of the i’th component f ′(x)i of
f ′(x) on y.

(ii) Conversely, if f has a directional derivative at all x ∈ U in all directions y ∈ X and
the (linear) map

y → Dyf(x) ; y ∈ X
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is continuous for all x ∈ U , then there exists an element ∇f(x) ∈ (X∗)m such that

Dyf(x) = 〈∇f(x), y〉 .

If this map x→ ∇f(x) ∈ (X∗)m is continuous on U , then f is Frechet differentiable
and

(4.9) f ′(x) = ∇f(x) .

We now apply these operations to the Banach space Ω = C0([0, T ]) considered in Example
4.4 (ii) above. This space is called the Wiener space, because we can regard each path

t→ W (t, ω)

of the Wiener process starting at 0 as an element ω of C0([0, 1]). Thus we may identify
W (t, ω) with the value ω(t) at time t of an element ω ∈ C0([0, T ]):

W (t, ω) = ω(t)

With this identification the Wiener process simply becomes the space Ω = C0([0, T ])
and the probability law P of the Wiener process becomes the measure µ defined on the
cylinder sets of Ω by

µ({ω;ω(t1) ∈ F1, . . . , ω(tk) ∈ Fk}) = P [W (t1) ∈ F1, . . . ,W (tk) ∈ Fk]
=

∫
F1×···×Fk

ρ(t1, x, x1)ρ(t1 − t1, x, x2) · · · ρ(tk − tk−1, xk−1, xk)dx1, · · · dxk

where Fi ⊂ R; 0 ≤ t1 < t2 < · · · < tk and

ρ(t, x, y) = (2πt)−1/2 exp(−1

2
|x− y|2); t > 0; x, y ∈ R .

The measure µ is called the Wiener measure on Ω. In the following we will write L2(Ω)
for L2(µ) and L2([0, T ]×Ω) for L2(λ×µ) etc., where λ is the Lebesgue measure on [0, T ].

Just as for Banach spaces in general we now define

DEFINITION 4.6. As before let L2([0, T ]) be the space of (deterministic) square
integrable functions with respect to Lebesgue measure λ(dt) = dt on [0, T ]. Let F : Ω→ R
be a random variable, choose g ∈ L2([0, T ]) and put

(4.10) γ(t) =

t∫
0

g(s)ds ∈ Ω .

Then we define the directional derivative of F at the point ω ∈ Ω in direction γ ∈ Ω by

(4.11) DγF (ω) =
d

dε
[F (ω + εγ)]ε=0 ,

if the derivative exists in some sense (to be made precise below).
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Note that we only consider the derivative in special directions, namely in the directions of
elements γ of the form (4.10). The set of γ ∈ Ω which can be written on the form (4.10)
for some g ∈ L2([0, T ]) is called the Cameron-Martin space and denoted by H. It turns
out that it is difficult to obtain a tractable theory involving derivatives in all directions.
However, the derivatives in the directions γ ∈ H are sufficient for our purposes.

DEFINITION 4.7. Assume that F : Ω→ R has a directional derivative in all directions
γ of the form

γ(t) =

t∫
0

g(s)ds with g ∈ L2([0, T ])

in the strong sense that

(4.12) DγF (ω): = lim
ε→0

1

ε
[F (ω + εγ)− F (ω)]

exists in L2(Ω). Assume in addition that there exists ψ(t, ω) ∈ L2([0, T ]× Ω) such that

(4.13) DγF (ω) =

T∫
0

ψ(t, ω)g(t)dt .

Then we say that F is differentiable and we set

(4.14) DtF (ω): = ψ(t, ω).

We call DtF (ω) ∈ L2([0, T ]× Ω) the derivative of F .

The set of all differentiable random variables is denoted by D1,2.

EXAMPLE 4.8. Suppose F (ω) =
T∫
0
f(s)dW (s) =

T∫
0
f(s)dω(s), where f(s) ∈ L2([0, T ]).

Then if γ(t) =
t∫

0
g(s)ds we have

F (ω + εγ) =

T∫
0

f(s)(dω(s) + εdγ(s))

=

T∫
0

f(s)dω(s) + ε

T∫
0

f(s)g(s)ds,

and hence 1
ε
[F (ω + εγ)− F (ω)] =

T∫
0
f(s)g(s)ds for all ε > 0.

Comparing with (4.13) we see that F ∈ D1,2 and

(4.15) DtF (ω) = f(t); t ∈ [0, T ], ω ∈ Ω.

In particular, choose
f(t) = X[0,t1](t)
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we get

F (ω) =

T∫
0

X[0,t1](s)dW (s) = W (t1, ω)

and hence

(4.16) Dt(W (t1, ω)) = X[0,t1](t).

Let P denote the family of all random variables F : Ω→ R of the form

F (ω) = ϕ(θ1, . . . , θn)

where ϕ(x1, . . . , xn) =
∑
α
aαx

α is a polynomial in n variables x1, . . . , xn and

θi =
T∫
0
fi(t)dW (t) for some fi ∈ L2([0, T ]) (deterministic).

Such random variables are called Wiener polynomials. Note that P is dense in L2(Ω).

By combining (4.16) with the chain rule we get that P ⊂ D1,2:

LEMMA 4.9. Let F (ω) = ϕ(θ1, . . . , θn) ∈ P. Then F ∈ D1,2 and

(4.17) DtF (ω) =
n∑
i=1

∂ϕ

∂xi
(θ1, . . . , θn) · fi(t).

Proof. Let ψ(t, ω) denote the right hand side of (4.17). Since

sup
s∈[0,T ]

E[|W (s)|N ] <∞ for all N ∈ N,

we see that

1

ε
[F (ω + εγ)− F (ω)] =

1

ε
[ϕ(θ1 + ε(f1, g), . . . , θn + ε(fn, g)− ϕ(θ1, . . . , θn)]

→
n∑
i=1

∂ϕ

∂xi
(θ1, . . . , θn) ·Dγ(θi) in L2(Ω) as ε→ 0

Hence F has a directional derivative in direction γ (in the strong sense) and by (4.15) we
have

DγF (ω) =

T∫
0

ψ(t, ω)g(t)dt.

tu

We now introduce the following norm, ‖ · ‖1,2, on D1,2:

(4.18) ‖F‖1,2 = ‖F‖L2(Ω) + ‖DtF‖L2([0,T ]×Ω); F ∈ D1,2 .

Unfortunately, it is not clear if D1,2 is closed under this norm, i.e. if any ‖ · ‖1,2-Cauchy
sequence in D1,2 converges to an element of D1,2. To avoid this difficulty we work with
the following family:
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DEFINITION 4.10. We define D1,2 to be the closure of the family P with respect to
the norm ‖ · ‖1,2.

Thus D1,2 consists of all F ∈ L2(Ω) such that there exists Fn ∈ P with the property that

(4.19) Fn → F in L2(Ω) as n→∞

and

(4.20) {DtFn}∞n=1 is convergent in L2([0, T ]× Ω).

If this is the case, it is tempting to define

DtF : = lim
n→∞

DtFn .

However, for this to work we need to know that this defines DtF uniquely. In other words,
if there is another sequence Gn ∈ P such that

(4.21) Gn → F in L2(Ω) as n→∞

and

(4.22) {DtGn}∞n=1 is convergent in L2([0, T ]× Ω),

does it follow that

(4.23) lim
n→∞

DtFn = lim
n→∞

DtGn ?

By considering the difference Hn = Fn − Gn we see that the answer to this question is
yes, in virtue of the following theorem:

THEOREM 4.11. (Closability of the operator Dt)
Suppose {Hn}∞n=1 ⊂ P has the properties

(4.26) Hn → 0 in L2(Ω) as n→∞

and

(4.27) {DtHn}∞n=1 converges in L2([0, T ]× Ω) as n→∞

Then
lim
n→∞

DtHn = 0.

The proof is based on the following useful result:
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LEMMA 4.12. (Integration by parts)

Suppose F ∈ D1,2, ϕ ∈ D1,2 and γ(t) =
t∫

0
g(s)ds with g ∈ L2([0, T ]). Then

(4.28) E[DγF · ϕ] = E[F · ϕ ·
T∫

0

gdW ]− E[F ·Dγϕ]

Proof. By the Girsanov theorem we have

E[F (ω + εη) · ϕ(ω)] = E[F (ω)ϕ(ω − εγ) · exp(ε

T∫
0

gdW − 1

2
ε2

T∫
0

g2ds)]

and this gives

E[DγF (ω) · ϕ(ω) = E[lim
ε→0

1

ε
[F (ω + εγ)− F (ω)] · ϕ(ω)]

= lim
ε→0

1

ε
E[F (ω + εγ)ϕ(ω)− F (ω)ϕ(ω)]

= lim
ε→0

1

ε
E[F (ω)[ϕ(ω − εγ) exp(ε

T∫
0

gdW − 1

2
ε2

T∫
0

g2ds)− ϕ(ω)]]

= E[F (ω) · d
dε

[ϕ(ω − εγ) exp(ε

T∫
0

gdW − 1

2
ε2

T∫
0

g2ds)]ε=0]

= E[F (ω)ϕ(ω) ·
T∫

0

gdW ]− E[F (ω)Dγϕ(ω)].

tu

Proof of Theorem 4.11. By Lemma 4.12 we get

E[DγHn · ϕ] = E[Hnϕ ·
T∫

0

gdW ]− E[Hn ·Dγϕ]

→ 0 as n→∞ for all ϕ ∈ P.

Since {DγHn}∞n=1 converges in L2(Ω) and P is dense in L2(Ω) we conclude that DγHn → 0

in L2(Ω) as n → ∞. Since this holds for all γ =
·∫

0
gds, we obtain that DtHn → 0 in

L2([0, T ]× Ω). tu

In view of Theorem 4.11 and the discussion preceding it, we can now make the following
(unambiguous) definition:

DEFINITION 4.13. Let F ∈ D1,2, so that there exists {Fn} ⊂ P such that

Fn → F in L2(Ω)

and
{DtFn}∞n=1 is convergent in L2([0, T ]× Ω).
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Then we define

(4.29) DtF = lim
n→∞

DtFn

and

DγF =

T∫
0

DtF · g(t)dt

for all γ(t) =

t∫
0

g(s)ds with g ∈ L2([0, T ]).

We will call DtF the Malliavin derivative of F .

REMARK Strictly speaking we now have two apparently different definitions of the
derivative of F :

1) The derivative DtF of F ∈ D1,2 given by Definition 4.7.

2) The Malliavin derivative DtF of F ∈ D1,2 given by Definition 4.13.

However, the next result shows that if F ∈ D1,2 ∩ D1,2 then the two derivatives coincide:

LEMMA 4.14. Let F ∈ D1,2 ∩ D1,2 and suppose that {Fn} ⊂ P has the properties

(4.30) Fn → F in L2(Ω) and DtFn converges in L2([0, T ]× Ω).

Then

(4.31) DtF = lim
n→∞

DtFn .

Hence

(4.32) DtF = DtF for F ∈ D1,2 ∩ D1,2.

Proof. By (4.30) we get that DγFn converges in L2(Ω) for each γ(t) =
t∫

0
g(s)ds;

g ∈ L2([0, T ]). By Lemma 4.12 we get

E[(DγFn −DγF ) · ϕ]

= E[(Fn − F ) · ϕ ·
t∫

0

gdW ]− E[(Fn − F ) ·Dγϕ]

→ 0 for all ϕ ∈ P by (4.30).

Hence DγFn → DγF in L2(Ω) and (4.31) follows. tu
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In view of Lemma 4.14 we will now use the same symbol DtF and DγF for the derivative
and directional derivative, respectively, of elements F ∈ D1,2 ∪ D1,2.

REMARK 4.15. Note that it follows from the definition of D1,2 that if Fn ∈ D1,2 for
n = 1, 2, . . . and Fn → F in L2(Ω) and

{DtFn}n is convergent in L2([0, T ]× Ω)

then
F ∈ D1,2 and DtF = lim

n→∞
DtFn .

Since an arbitrary F ∈ L2(Ω) can be represented by its chaos expansion

F (ω) =
∞∑
n=0

In(fn); fn ∈ L̂2([0, T ]n)

it is natural to ask if we can express the derivative of F (if it exists) by means of this.
We first consider a special case:

LEMMA 4.16. Suppose F (ω) = In(fn) for some fn ∈ L̂2([0, T ]n). Then F ∈ D1,2 and

(4.33) DtF (ω) = nIn−1(fn(·, t)),

where the notation In−1(fn(·, t)) means that the (n−1)-iterated Ito integral is taken with
respect to the n− 1 first variables t1, . . . , tn−1 of fn(t1, . . . , tn−1, t) (i.e. t is fixed and kept
outside the integration).

Proof. First consider the special case when

fn = f⊗n

for some f ∈ L2([0, T ]), i.e. when

fn(t1, . . . , tn) = f(t1) . . . f(tn); (t1, . . . , tn) ∈ [0, T ]n.

Then by (1.14)

(4.34) In(fn) = ‖f‖nhn(
θ

‖f‖),

where θ =
T∫
0
fdW and hn is the Hermite polynomial of order n.

Hence by the chain rule

DtIn(fn) = ‖f‖nh′n(
θ

‖f‖) · f(t)

‖f‖
A basic property of the Hermite polynomials is that

(4.35) h′n(x) = nhn−1(x).
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This gives, again by (1.14),

DtIn(fn) = n‖f‖n−1hn−1(
θ

‖f‖)f(t) = nIn−1(f⊗(n−1))f(t) = nIn−1(fn(·, t)).

Next, suppose fn has the form

(4.36) fn = η⊗̂n1
1 ⊗̂ η⊗̂n2

2 ⊗̂ · · · ⊗̂ η⊗̂nkk ; n1 + · · ·+ nk = n

where ⊗̂ denotes symmetrized tensor product and {ηj} is an orthonormal basis for
L2([0, T ]). Then by an extension of (1.14) we have (see [I])

(4.37) In(fn) = hn1(θ1) · · ·hnk(θk)

with

θj =

T∫
0

ηjdW

and again (4.33) follows by the chain rule. Since any fn ∈ L̂2([0, T ]n) can be approximated
in L2([0, T ]n) by linear combinations of functions of the form given by the right hand side
of (4.36), the general result follows. tu

LEMMA 4.17 Let P0 denote the set of Wiener polynomials of the form

pk(

T∫
0

e1dW, . . . ,

T∫
0

ekdW )

where pk(x1, . . . , xk) is an arbitrary polynomial in k variables and {e1, e2, . . .} is a given
orthonormal basis for L2([0, T ]). Then P0 is dense in P in the norm ‖ · ‖1,2.

Proof. If q: = p(
T∫
0
f1dW, . . . ,

T∫
0
fkdW ) ∈ P we approximate q by

q(m): = p(

T∫
0

m∑
j=0

(f1, ej)ejdW, . . . ,

T∫
0

m∑
j=0

(fk, ej)ejdW )

Then q(m) → q in L2(Ω) and

Dtq
(m) =

k∑
i=1

∂p

∂xi
·
m∑
j=1

(fi, ej)ej(t)→
k∑
i=1

∂p

∂xi
· fi(t)

in L2([0, T ]× Ω) as m→∞. tu

THEOREM 4.18. Let F =
∞∑
n=0

In(fn) ∈ L2(Ω). Then F ∈ D1,2 if and only if

(4.38)
∞∑
n=1

nn!‖fn‖2
L2([0,T ]n) <∞
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and if this is the case we have

(4.39) DtF =
∞∑
n=0

nIn−1(fn(·, t)).

Proof. Define Fm =
m∑
n=0

In(fn). Then Fm ∈ D1,2 and Fm → F in L2(Ω). Moreover, if

m > k we have by Lemma 4.15,

‖DtFm −DtFk‖2
L2([0,T ]×Ω) = ‖

m∑
n=k+1

nIn−1(fn(·, t))‖2
L2([0,T ]×Ω)

=

T∫
0

E[{
m∑

n=k+1

nIn−1(fn(·, t))}2]dt

=
∫ T

0

m∑
n=k+1

n2(n− 1)!‖fn(·, t)‖2
L2([0,T ]n−1)dt

=
m∑

n=k+1

nn!‖fn‖2
L2([0,T ]n) .(4.40)

Hence if (4.38) holds then {DtFn}∞n=1 is convergent in L2([0, T ]× Ω) and hence F ∈ D1,2

and

DtF = lim
m→∞

DtFm =
∞∑
n=0

nIn−1(fn(·, t)).

Conversely, if F ∈D1,2 then there exist polynomials pk(x1, . . . , xnk) of degree k and η1, . . .,

ηnk ≥ 0 as in (4.36) such that if we put Fk = pk(θ1, . . . , θnk) =
∑

mi:
∑

mi≤k
am1,...,mnk

nk∏
i=1

hmi(θi)

(for some am1,...,mnk
∈ R) then Fk ∈ P and Fk → F in L2(Ω) and

DtFk → DtF in L2([0, T ]× Ω), as k →∞.

By applying (4.37) we see that there exist f
(k)
j ∈ L̂2([0, T ]j); 1 ≤ j ≤ k such that

Fk =
k∑
j=0

Ij(f
(k)
j ).

Since Fk → F in L2(Ω) we have

k∑
j=0

j!‖f (k)
j − fj‖2

L2([0,T ]j) ≤ ‖Fk − F‖2
L2(Ω) → 0 as k →∞.

Therefore ‖f (k)
j − fj‖L2([0,T ]j) → 0 as k →∞, for all j. This implies that

(4.41) ‖f (k)
j ‖L2([0,T ]j) → ‖fj‖L2([0,T ]j) as k →∞, for all j.

Similarly, since DtFk → DtF in L2([0, T ]×Ω) we get by the Fatou lemma combined with
the calculation leading to (4.40) that

∞∑
j=0

j · j!‖fj‖2
L2([0,T ]j) =

∞∑
j=0

lim
k→∞

(j · j!‖f (k)
j ‖2

L2([0,T ]j))

4.12



      

≤ lim
k→∞

∞∑
j=0

j · j!‖f (k)
j ‖2

L2([0,T ]j)

= lim
k→∞
‖DtFk‖2

L2([0,T ]×Ω) = ‖DtF‖2
L2([0,T ]×Ω) <∞ ,

where we have put f
(k)
j = 0 for j > k. Hence (4.38) holds and the proof is complete. tu

Exercises

4.1 Find the Malliavin derivative DtF (ω) of the following random variables:

a) F (ω) = W (T )

b) F (ω) = exp(W (t0)) (t0 ∈ [0, T ])

c) F (ω) =
T∫
0
s2dW (s)

d) F (ω) =
T∫
0
(
t2∫
0

cos(t1 + t2)dW (t1))dW (t2)

e) F (ω) = 3W (s0)W 2(t0) + ln(1 +W 2(s0)) (s0, t0 ∈ [0, T ])

f) F (ω) =
T∫
0
W (t0)δW (t) (t0 ∈ [0, T ])

(Hint: Use Exercise 2.1b).)

4.2 a) Find the Malliavin derivative DtF (ω) when

F (ω) = exp(

T∫
0

g(s)dW (s)) (g ∈ L2([0, T ]))

by using that (see Exercise 1.2d))

F (ω) =
∞∑
n=0

In[fn],

with

fn(t1, . . . , tn) =
1

n!
exp(

1

2
‖g‖2

L2([0,T ]))g(t1) . . . g(tn)

b) Verify the result by using the chain rule.

4.3 Verify the integration by parts formula (4.28) in the following case:

F (ω) =

T∫
0

ψ(s)dW (s) with ψ ∈ L2([0, T ]) deterministic,

ϕ ≡ 1.
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5 The Clark-Ocone formula and its generalization.

Application to finance

In this section we look at the connection between differentiation D and Skorohod inte-
gration δ and apply this to prove the Clark-Ocone formula and its generalization needed
for e.g. portfolio applications.

First we establish some useful results about conditional expectation:

DEFINITION 5.1. Let G be a Borel subset of [0, T ]. Then we define FG to be the
σ-algebra generated by all random variables of the form

∫
A

dW (t): =

T∫
0

XA(t)dW (t); A ⊂ G Borel set (5.1)

Thus if G = [0, t] we have, with this notation

F[0,t] = Ft for t ≥ 0.

LEMMA 5.2. Let g ∈ L2([0, T ]) be deterministic. Then

E[
∫ T

0
g(t)dW (t)|FG] =

T∫
0

XG(t)g(t)dW (t).

Proof. By definition of conditional expectation, it suffices to verify that

(5.2)

T∫
0

XG(t)g(t)dW (t) is FG-measurable

and

(5.3) E[F (ω)

T∫
0

g(t)dW (t) = E[F (ω)

T∫
0

XG(t)g(t)dW (t)]

for all bounded FG-measurable random variables F .

To prove (5.2) we may assume that g is continuous, because the continuous functions are
dense in L2([0, T ]). If g is continuous, then

T∫
0

XG(t)g(t)dW (t) = lim
∆ti→0

∑
i

g(ti)

ti+1∫
ti

XG(t)dW (t)

(limit in L2(Ω)) and since each term in the sum is FG-measurable the sum and its limit
is.
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To prove (5.2) we may assume that

F (ω) =

T∫
0

XA(t)dW (t) for some A ⊂ G.

This gives that the left hand side of (5.3) becomes

E[

T∫
0

XA(t)dW (t) ·
T∫

0

g(t)dW (t)] = E[

T∫
0

XA(t)g(t)dt],

by the Ito isometry. Similarly, the right hand side becomes

E[

T∫
0

XA(t)dW (t) ·
T∫

0

XG(t)g(t)dW (t)] = E[

T∫
0

XA(t)XG(t)g(t)dt]

= E[

T∫
0

XA(t)g(t)dt] since A ⊂ G.

tu

LEMMA 5.3. Let v(t, ω) ∈ R be a stochastic process such that

(i) v(t, ·) is Ft ∩ FG-measurable for all t and

(ii) E[
T∫
0
v2(t, ω)dt] <∞ .

Then ∫
G
v(t, ω)dW (t) is FG-measurable.

Proof. By a standard approximation procedure we see that we may assume that v(t, ω)
is an elementary process of the form

v(t, ω) =
∑
i

vi(ω)X[ti,ti+1)(t)

where 0 = t0 < t1 < · · · < tn = T and vi(·) is Fti ∩ FG-measurable. For such v we have∫
G

v(t, ω)dW (t) =
∑
i

vi(ω)
∫

G∩[ti,ti+1)

dW (t),

which is a sum of products of FG-measurable functions and hence FG-measurable. tu

LEMMA 5.4. Let u(t, ω) be an Ft-adapted process such that

E[

T∫
0

u2(t, ω)dt] <∞ .
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Then

E[

T∫
0

u(t, ω)dW (t)|FG] =
∫
G

E[u(t, ω)|FG]dW (t)

Proof. By Lemma 5.3 it suffices to verify that

(5.4) E[f(ω)

T∫
0

u(t, ω)dW (t)] = E[f(ω)
∫
G

E[u(t, ω)|FG]dW (t)]

for all f(ω) of the form

f(ω) =
∫
A

dW (t); A ⊂ G

For such f we obtain by the Ito isometry that the left hand side of (5.4) is equal to

E[

T∫
0

XA(t)u(t, ω)dt] =
∫
A

E[u(t, ω)]dt

while the right hand side is equal to

E[

T∫
0

XA(t)XG(t)E[u(t, ω)|FG]dt] =

T∫
0

XA(t)E[E[u(t, ω)|FG]]dt

=
∫
A

E[u(t, ω)]dt .

tu

PROPOSITION 5.5. Let fn ∈ L̂2([0, T ]n). Then

(5.5) E[In(fn)|FG] = In[fnX⊗nG ],

where
(fnX⊗nG )(t1, . . . , tn) = fn(t1, . . . , tn)XG(t1) · · · XG(tn).

Proof. We proceed by induction on n. For n = 1 we have by Lemma 5.4

E[I1(f1)|FG] = E[

T∫
0

f1(t1)dW (t1)|FG] =

T∫
0

f1(t1)XG(t1)dW (t).

Assume that (5.5) holds for n = k. Then by Lemma 5.4

E[Ik+1(fk+1)|FG]

= (k + 1)!E[

T∫
0

{
tk∫

0

· · ·
t2∫

0

fk+1(t1, . . . , tk+1)dW (t1) · · ·}dW (tk+1)|FG]

= (k + 1)!

T∫
0

E[

tk∫
0

· · ·
t2∫

0

fk+1(t1, . . . , tk+1)dW (t1) · · · dW (tk)|FG] · XG(tk+1)dW (tk+1)
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= (k + 1)!

T∫
0

tk∫
0

· · ·
t2∫

0

fk+1(t1, . . . , tk+1)XG(t1) · · · XG(tk+1)dW (t1) · · · dW (tk+1)

= Ik+1[fk+1X⊗(k+1)
G ],

and the proof is complete. tu

PROPOSITION 5.6. If F ∈ D1,2 then E[F |FG] ∈ D1,2 and

Dt(E[F |FG]) = E[DtF |FG] · XG(t).

Proof. First asume that F = In(fn) for some fn ∈ L̂2([0, T ]n). Then by Proposition 5.5

Dt(E[F |FG]) = DtE[In(fn)|FG]

= Dt[In(fn · X⊗nG )] = nIn−1[fn(·, t)X⊗(n−1)
G (·) · XG(t)]

= nIn−1[fn(·, t)X⊗(n−1)
G (·)] · XG(t)

= E[DtF |FG] · XG(t).(5.6)

Next, suppose F ∈ D1,2 is arbitrary. Then as in the proof of Theorem 4.16 we see that we
can find Fk ∈ P such that

Fk → F in L2(Ω) and DtFk → DtF in L2(Ω× [0, T ])

as k →∞, and there exists f
(k)
j ∈ L̂2([0, T ]j) such that

Fk =
k∑
j=0

Ij(f
(k)
j ) for all k.

By (5.6) we have

Dt(E[Fk|FG]) = E[DtFk|FG] · XG(t) for all k

and taking the limit of this as k →∞ we obtain the result. tu

COROLLARY 5.7. Let u(s, ω) be an Fs-adapted stochastic process and assume that
u(s, ·) ∈ D1,2 for all s. Then

(i) Dtu(s, ω) is Fs-adapted for all t

and

(ii) Dtu(s, ω) = 0 for t > s.

Proof. By Proposition 5.6 we have that

Dtu(s, ω) = Dt(E[u(s, ω)|Fs]) = E[Dtu(s, ω)|Fs] · X[0,s](t),

from which (i) and (ii) follow immediately. tu

We now have all the necessary ingredients for our first main result in this section:
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THEOREM 5.8. (The Clark-Ocone formula) Let F ∈ D1,2 be FT -measurable.
Then

(5.7) F (ω) = E[F ] +

T∫
0

E[DtF |Ft](ω)dW (t).

Proof. Write F =
∞∑
n=0

In(fn) with fn ∈ L̂2([0, T ]n). Then by Theorem 4.16, Proposition

5.5 and Definition 2.2
T∫

0

E[DtF |Ft]dW (t) =

T∫
0

E[
∞∑
n=1

nIn−1(fn(·, t))|Ft]dW (t) =

T∫
0

∞∑
n=1

nE[In−1(fn(·, t))|Ft]dW (t)

=

T∫
0

∞∑
n=1

nIn−1[fn(·, t) · X⊗(n−1)
[0,t] (·)]dW (t) =

T∫
0

∞∑
n=1

n(n− 1)!Jn−1[fn(·, t)X⊗(n−1)
[0,t] ]dW (t)

=
∞∑
n=1

n!Jn[fn(·)] =
∞∑
n=1

In[fn] =
∞∑
n=0

In[fn]− I0[f0] = F − E[F ]. tu

The generalized Clark-Ocone formula

We proceed to prove the generalized Clark-Ocone formula. This formula expresses an
FT -measurable random variable F (ω) as a stochastic integral with respect to a process of
the form

(5.8) W̃ (t, ω) =

t∫
0

θ(s, ω)ds+W (t, ω); 0 ≤ t ≤ T

where θ(s, ω) is a given Fs-adapted stochastic process satisfying some additional condi-
tions. By the Girsanov theorem (see Exercise 5.1) the process W̃ (t) = W̃ (t, ω) is a Wiener
process under the new probability measure Q defined on FT by

(5.9) dQ(ω) = Z(T, ω)dP (ω)

where

(5.10) Z(t) = Z(t, ω) = exp{−
t∫

0

θ(s, ω)dW (s)− 1

2

t∫
0

θ2(s, ω)ds}; 0 ≤ t ≤ T

We let EQ denote expectation w.r.t. Q, while EP = E denotes expectation w.r.t. P .

THEOREM 5.9. (The generalized Clark-Ocone formula [KO])
Suppose F ∈ D1,2 is Ft-measurable and that

EQ[|F |] <∞(5.11)

EQ[

T∫
0

|DtF |2dt] <∞(5.12)

EQ[|F | ·
T∫

0

(

T∫
0

Dtθ(s, ω)dW (s) +

T∫
0

Dtθ(s, ω)θ(s, ω)ds)2dt] <∞(5.13)
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Then

F (ω) = EQ[F ] +

T∫
0

EQ[(DtF − F
T∫
t

Dtθ(s, ω)dW̃ (s))|Ft]dW̃ (t).(5.14)

Remark. Note that we cannot obtain a representation as an integral w.r.t. W̃ simply by
applying the Clark-Ocone formula to our new Wiener process (W̃ (t), Q), because F is only
assumed to be FT -measurable, not F̃T -measurable, where F̃T is the σ-algebra generated
by W̃ (t, ·); t ≤ T . In general we have F̃T ⊆ FT and usually F̃T 6= FT . Nevertheless, the
Ito integral w.r.t. W̃ in (5.14) does make sense, because W̃ (t) is a martingale w.r.t. Ft
and Q (see Exercise 5.1)).

The proof of Theorem 5.9 is split up into several useful results of independent interest:

LEMMA 5.10. Let µ and ν be two probability measures on a measurable space (Ω,G)
such that dν(ω) = f(ω)dµ(ω) for some f ∈ L1(µ). Let X be a random variable on (Ω,G)
such that X ∈ L1(ν). Let H ⊂ G be a σ-algebra. Then

(5.15) Eν [X|H] · Eµ[f |H] = Eµ[fX|H]

Proof. See e.g. [Ø, Lemma 8.24].

COROLLARY 5.11. Suppose G ∈ L1(Q). Then

(5.16) EQ[G|Ft] =
E[Z(T )G|Ft]

Z(t)

The next result gives a useful connection between differentiation and Skorohod integration:

THEOREM 5.12. Let u(s, ω) be a stochastic process such that

(5.17) E[

T∫
0

u2(s, ω)ds] <∞

and assume that u(s, ·) ∈ D1,2 for all s ∈ [0, T ], that Dtu ∈ Dom(δ) for all t ∈ [0, T ], and
that

(5.18) E[

T∫
0

(δ(Dtu))2dt] <∞

Then
T∫
0
u(s, ω)δW (s) ∈ D1,2 and

(5.19) Dt(
∫ T

0
u(s, ω)δW (s)) =

T∫
0

Dtu(s, ω)δW (s) + u(t, ω).

Proof. First assume that
u(s, ω) = In(fn(·, s)),
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where fn(t1, . . . , tn, s) is symmetric with respect to t1, . . . , tn. Then

T∫
0

u(s, ω)δW (s) = In+1[f̃n],

where

f̃n(x1, . . . , xn+1) =
1

n+ 1
[fn(·, x1) + · · ·+ fn(·, xn+1)]

is the symmetrization of fn as a function of all its n+ 1 variables. Hence

(5.20) Dt(

T∫
0

u(s, ω)δW (s)) = (n+ 1)In[f̃n(·, t)],

where

(5.21) f̃n(·, t) =
1

n+ 1
[fn(t,·, x1) + · · ·+ fn(t, ·, xn) + fn(·, t)]

(since fn is symmetric w.r.t. its first n variables, we may choose t to be the first of them,
in the first n terms on the right hand side). Combining (5.20) with (5.21) we get

(5.22) Dt(

T∫
0

u(s, ω)δW (s)) = In[fn(t, ·, x1) + · · ·+ fn(t, ·, xn) + fn(·, t)]

(integration in In is w.r.t. x1, . . . , xn).

To compare this with the right hand side of (5.19) we consider

(5.23) δ(Dtu) =

T∫
0

Dtu(s, ω)δW (S) =

T∫
0

nIn−1[fn(·, t, s)]δW (s) = nIn[f̂n(·, t, ·)],

where

(5.24) f̂n(x1, . . . , xn−1, t, xn) =
1

n
[fn(t, ·, x1) + · · ·+ fn(t, ·, xn)]

is the symmetrization of fn(x1, . . . , xn−1, t, xn) w.r.t. x1, . . . , xn.

From (5.23) and (5.24) we get

(5.25)

T∫
0

Dtu(s, ω)δW (s) = In[fn(t, ·, x1) + · · ·+ fn(t, ·, xn)].

Comparing (5.22) and (5.25) we obtain (5.19).

Next, consider the general case when

u(s, ω) =
∞∑
n=0

In[fn(·, s)].
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Define

(5.26) um(s, ω) =
m∑
n=0

In[fn(·, s)]; m = 1, 2, . . .

Then by the above we have

(5.27) Dt(δ(um)) = δ(Dtum) + um(t) for all m.

By (5.23) we see that (5.18) is equivalent to saying that

E[

T∫
0

(δ(Dtu))2dt] =
∞∑
n=0

n2n!

T∫
0

‖f̂n(·, t, ·)‖2
L2([0,T ]n)dt

=
∞∑
n=0

n2n!‖f̂n‖2
L2([0,T ]n+1) <∞ since Dtu ∈ Dom(δ).(5.28)

Hence

(5.29) ‖δ(Dtum)− δ(Dtu)‖2
L2([0,T ]×Ω) =

∞∑
n=m+1

n2n!‖f̂n‖2
L2([0,T ]n+1) → 0 as m→∞.

Therefore, by (5.27)

(5.30) Dt(δ(um))→ δ(Dtu) + u(t) in L2([0, T ]× Ω)

as m→∞. Note that from (5.21) and (5.24) we have

(n+ 1)f̃n(·, t) = nf̂n(·, t, ·) + fn(·, t)

and hence

(n+ 1)!‖f̃n‖2
L2([0,T ]n+1) ≤

2n2n!

n+ 1
‖f̂n‖2

L2([0,T ]n+1) +
2n!

n+ 1
‖fn‖2

L2([0,T ]n+1)

Therefore,

(5.31) E[(δ(um)− δ(u))2] =
∞∑

n=m+1

(n+ 1)!‖f̃n‖2
L2([0,T ]n+1) → 0

as m→∞. From (5.30) and (5.31) we conclude that δ(u) ∈ D1,2 and that

Dt(δ(u)) = δ(Dtu) + u(t), which is (5.19). tu

COROLLARY 5.13. Let u(s, ω) be as in Theorem 5.12 and assume in addition that

u(s, ω) is Fs-adapted.

Then

(5.32) Dt(

T∫
0

u(s, ω)dW (s)) =

T∫
t

Dtu(s, ω)dW (s) + u(t, ω).
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Proof. This is an immediate consequence of Theorem 5.12 and Corollary 5.7. tu

LEMMA 5.14. Let F, θ be as in Theorem 5.9 and let Q and Z(t) be as in (5.9), (5.10).
Then

(5.33) Dt(Z(T )F ) = Z(T )[DtF − F{θ(t, ω) +

T∫
t

Dtθ(s, ω)dW̃ (s)}].

Proof. By the chain rule we have, using Corollary 5.13,
Dt(Z(T )F ) = Z(T )DtF + F DtZ(T ) and

DtZ(T ) = Z(T ){−Dt(

T∫
0

θ(s, ω)dW (s))− 1

2
Dt(

T∫
0

θ2(s, ω)ds)}

= Z(T ){−
T∫
t

Dtθ(s, ω)dW (s)− θ(t, ω)−
T∫

0

θ(s, ω)Dtθ(s, ω)ds}

= Z(T ){−
T∫
t

Dtθ(s, ω)dW̃ (s)− θ(t, ω)}.
tu

Proof of Theorem 5.9: Suppose that (5.11)–(5.13) hold and put

(5.34) Y (t) = EQ[F |Ft]

and

(5.35) Λ(t) = Z−1(t) = exp{
t∫

0

θ(s, ω)dW (s) +
1

2

t∫
0

θ2(s, ω)ds}.

Note that

(5.36) Λ(t) = exp{
t∫

0

θ(s, ω)dW̃ (s)− 1

2

t∫
0

θ2(s, ω)ds}.

By Corollary 5.11, Theorem 5.8 and Corollary 5.7 we can write

Yt = Λ(t)E[Z(T )F |Ft]

= Λ(t){E[E[Z(T )F |Ft]] +

T∫
0

E[DsE[Z(T )F |Ft]|Fs]dW (s)}

= Λ(t){E[Z(T )F ] +

t∫
0

E[Ds(Z(T )F )|Fs]dW (s)}

=: Λ(t)U(t).(5.37)

By (5.36) and the Ito formula we have

dΛ(t) = Λ(t)θ(t)dW̃ (t)(5.38)
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Combining (5.37), (5.38) and (5.33) we get

dY (t) = Λ(t) · E[Dt(Z(T )F )|Ft]dW (t)

+Λ(t)θ(t)U(t)dW̃ (t)

+Λ(t)θ(t)E[Dt(Z(T )F )|Ft]dW (t)dW̃ (t)

= Λ(t)E[Dt(Z(T )F )|Ft]dW̃ (t) + θ(t)Y (t)dW̃ (t)

= Λ(t){E[Z(T )DtF |Ft]− E[Z(T )Fθ(t)|Ft]

−E[Z(T )F

T∫
t

Dtθ(s)dW̃ (s)|Ft]}dW̃ (t) + θ(t)Y (t)dW̃ (t)

Hence

dY (t) = {EQ[DtF |Ft]− EQ[Fθ(t)|Ft]− EQ[F

T∫
t

Dtθ(s)dW̃ (s)|Ft]}dW̃ (t)

+θ(t)EQ[F |Ft]dW̃ (t)

= EQ[(DtF − F
T∫
t

Dtθ(s)dW̃ (s))|Ft]dW̃ (t).(5.39)

Since
Y (T ) = EQ[F |FT ] = F

and
Y (0) = EQ[F |F0] = EQ[F ],

we see that Theorem 5.9 follows from (5.39). The conditions (5.11)–(5.13) are needed to
make all the above operations valid. We omit the details. tu

Application to finance

We end this section by explaining how the generalized Clark-Ocone theorem can be applied
in portfolio analysis:

Suppose we have two possible investments:

a) A safe investment (e.g. a bond), with price dynamics

(5.40) dA(t) = ρ(t) · A(t)dt

b) A risky investment (e.g. a stock), with price dynamics

(5.41) dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t)
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Here ρ(t) = ρ(t, ω), µ(t) = µ(t, ω) and σ(t) = σ(t, ω) are Ft-adapted processes. In the
following we will not specify further conditions, but simply assume that these processes
are sufficiently nice to make the operations convergent and well-defined.

Let ξ(t) = ξ(t, ω), η(t) = η(t, ω) denote the number of units invested at time t in in-
vestments a), b), respectively. Then the value at time t, V (t) = V (t, ω), of this portfolio
(ξ(t), η(t)) is given by

(5.42) V (t) = ξ(t)A(t) + η(t)S(t)

The portfolio (ξ(t), η(t) is called self-financing if

(5.43) dV (t) = ξ(t)dA(t) + η(t)dS(t).

Assume from now on that (ξ(t), η(t)) is self-financing. Then by substituting

(5.44) ξ(t) =
V (t)− η(t)S(t)

A(t)

from (5.42) in (5.43) and using (5.40) we get

(5.45) dV (t) = ρ(t)(V (t)− η(t)S(t))dt+ η(t)dS(t).

Then by (5.41) this can be written

(5.46) dV (t) = [ρ(t)V (t) + (µ(t)− ρ(t))η(t)S(t)]dt+ σ(t)η(t)S(t)dW (t)

Suppose now that we are required to find a portfolio (ξ(t), η(t)) which leads to a given
value

(5.47) V (T, ω) = F (ω) a.s.

at a given (deterministic) future time T , where the given F (ω) is FT -measurable. Then
the problem is:

What initial fortune V (0) is needed to achieve this, and what portfolio (ξ(t), η(t)) should
we use? Is V (0) and (ξ(t), η(t)) unique?

This type of question appears in option pricing.

For example, in the classical Black-Scholes model we have

F (ω) = (S(T, ω)−K)+

where K is the exercise price and then V (0) is the price of the option.

Because of the relation (5.44) we see that we might as well consider (V (t), η(t)) to be
the unknown Ft-adapted processes. Then (5.46)–(5.47) constitutes what is known as a
stochastic backward differential equation (SBDE): The final value V (T, ω) is given and
one seeks the value of V (t), η(t) for 0 ≤ t ≤ T . Note that since V (t) is Ft-adapted, we
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have that V (0) is F0-measurable and therefore a constant. The general theory of SBDE
gives that (under reasonable conditions on F, ρ, µ and σ) equation (5.46)–(5.47) has a
unique solution of Ft-adapted processe V (t), η(t). See e.g. [PP]. However, this general
theory says little about how to find this solution explicitly. This is where the generalized
Clark-Ocone theorem enters the scene:

Define

(5.48) θ(t) = θ(t, ω) =
µ(t)− ρ(t)

σ(t)

and put

(5.49) W̃ (t) =
∫ t

0
θ(s)ds+W (t).

Then W̃ (t) is a Wiener process w.r.t. the measure Q defined by (5.9), (5.10). In terms of
W̃ (t) equation (5.46) gets the form

dV (t) = [ρ(t)V (t) + (µ(t)− ρ(t))η(t)S(t)]dt+ σ(t)η(t)S(t)dW̃ (t)

−σ(t)η(t)S(t)σ−1(t)(µ(t)− ρ(t))dt

i.e.

(5.50) dV (t) = ρ(t)V (t)dt+ σ(t)η(t)S(t)dW̃ (t).

Define

(5.51) U(t) = e
−
∫ t

0
ρ(s,ω)ds

V (t).

Then, substituting in (5.50), we get

(5.52) dU(t) = e
−
∫ t

0
ρds
σ(t)η(t)S(t)dW̃ (t)

or

(5.53) e
−
∫ T

0
ρds
V (T ) = V (0) +

T∫
0

e
−
∫ t

0
ρds
σ(t)η(t)S(t)dW̃ (t).

By the generalized Clark-Ocone theorem applied to

(5.54) G(ω): = e
−
∫ T

0
ρ(s,ω)ds

F (ω)

we get

(5.55) G(ω) = EQ[G] +

T∫
0

EQ[(DtG−G
T∫
t

Dtθ(s, ω)dW̃ (s))|Ft]dW̃ ,

By uniqueness we conclude from (5.53) and (5.55) that

(5.56) V (0) = EQ[G]
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and the required risky investment at time t is

(5.57) η(t) = e
∫ t

0
ρds
σ−1(t)S−1(t)EQ[(DtG−G

T∫
t

Dtθ(s)dW̃ (s))|Ft].

EXAMPLE 5.14. Suppose ρ(t, ω) = ρ, µ(t, ω) = µ and σ(t, ω) = σ 6= 0 are constants.
Then

θ(t, ω) = θ =
µ− ρ
σ

is constant also and hence Dtθ = 0. Therefore by (5.57)

η(t) = eρ(t−T )σ−1S−1(t)EQ[DtF |Ft].

For example, if the payoff function is

F (ω) = exp(αW (T )) (α 6= 0 constant)

then by the chain rule we get

η(t) = eρ(t−T )σ−1S−1(t)EQ[α exp(αW (T ))|Ft]
= eρ(t−T )ασ−1S−1(t)Z−1(t)E[Z(T ) exp(αW (T ))|Ft].(5.58)

Note that

Z(T ) exp(αW (T )) = M(T ) exp(
1

2
(α− θ)2T )

where M(t): = exp{(α− θ)W (t)− 1
2
(α− θ)2t)} is a martingale. This gives

η(t) = eρ(t−T )ασ−1S−1(t)Z−1(t)M(t) exp(
1

2
(α− θ)2T )

= eρ(t−T )ασ−1 exp{(α− σ)W (t) + (
1

2
σ2 +

1

2
θ2 − µ)t+

1

2
(α− θ)2(T − t)}.

EXAMPLE 5.15 (The Black and Scholes formula)

Finally, let us illustrate the method above by using it to prove the celebrated Black and
Scholes formula (see e.g. [Du]). As in Example 5.14 let us assume that ρ(t, ω) = ρ,
µ(t, ω) = µ and σ(t, ω) = σ 6= 0 are constants. Then

θ =
µ− ρ
σ

is constant and hence Dtθ = 0. Hence

(5.59) η(t) = eρ(t−T )σ−1S−1(t)EQ[DtF | Ft]

as in Example 5.14. However, in this case F (ω) represents the payoff at time T (fixed)
of a (European call) option which gives the owner the right to buy the stock with value
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S(T, ω) at a fixed exercise price K, say. Thus if S(T, ω) > K the owner of the option gets
the profit S(T, ω)−K and if S(T, ω) ≤ K the owner does not exercise the option and the
profit is 0. Hence in this case

(5.60) F (ω) = (S(T, ω)−K)+.

Thus we may write

(5.61) F (ω) = f(S(T, ω))

where

(5.62) f(x) = (x−K)+.

The function f is not differentiable at x = K, so we cannot use the chain rule directly to
evaluate DtG from (5.61). However, we can approximate f by C1 functions fn with the
property that

(5.63) fn(x) = f(x) for |x−K| ≥ 1

n

and

(5.64) 0 ≤ f ′n(x) ≤ 1 for all x.

Putting
Fn(ω) = fn(S(T, ω))

we then see that

DtF (ω) = lim
n→∞

DtFn(ω) = X[K,∞](S(T, ω))DtS(T, ω)

= X[K,∞](S(T, ω)) · S(T, ω) · σ(5.65)

Hence by (5.59)

(5.66) η(t) = eρ(t−T )S−1(t)EQ[S(T ) · X[K,∞](S(T ))|Ft]

By the Markov property of S(t) this is the same as

(5.66) η(t) = eρ(t−T )S−1(t)Ey
Q[S(T − t) · X[K,∞](S(T − t))]y=S(t)

where Ey
Q is the expectation when S(0) = y. Since

dS(t) = µS(t)dt+ σS(t)dW (t)

= (µ− σθ)S(t)dt+ σS(t)dW̃ (t)

= ρS(t)dt+ σS(t)dW̃ (t),

we have

(5.67) S(t) = S(0) exp((ρ− 1

2
σ2)t+ σW̃ (t))
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and hence

(5.68) η(t) = eρ(t−T )S−1(t)Ey[Y (T − t)X[K,∞](Y (T − t))]y=S(t) ,

where

(5.69) Y (t) = S(0) exp((ρ− 1
2
σ2)t+ σW (t)) .

Since the distribution of W (t) is well-known, we can express the solution (5.68) explicitly
in terms of quantities involving S(t) and the normal distribution function.

In this model η(t) represents the number of units we must invest in the risky investment
at times t ≤ T in order to be guaranteed to get the payoff F (ω) = (S(T, ω)−K)+ (a.s.) at
time T . The constant V (0) represents the corresponding initial fortune needed to achieve
this. Thus V (0) is the (unique) initial fortune which makes it possible to establish a
(self-financing) portfolio with the same payoff at time T as the option gives. Hence V (0)
deserves to be called the right price for such an option. By (5.56) this is given by

V (0) = EQ[e−ρTF (ω)] = e−ρTEQ[(S(T )−K)+]

= e−ρTE[(Y (T )−K)+] ,(5.70)

which again can be expressed explicitly by the normal distribution function.

Final remarks In the Markovian case, i.e. when the price S(t) is given by a stochastic
differential equation of the form

dS(t) = µ(S(t))S(t)dt+ σ(S(t))S(t)dW (t)

where µ: R→ R and σ: R→ R are given functions, then there is a well-known alternative
method for finding the option price V (0) and the corresponding replicating portfolio η(t):
One assumes that the value process has the form

V (t, ω) = f(t, S(t, ω))

for some function f : R2 → R and deduces a (deterministic) partial differential equation
which determines f . Then η is given by

η(t, ω) =

[
∂f(t, x)

∂x

]
x=S(t,ω)

.

However, the method does not work in the non-markovian case. The method based on the
Clark-Ocone formula has the advantage that it does not depend on a Markovian setup.

Exercises

5.1 Recall the Girsanov theorem (see e.g. [Ø1], Th. 8.26): Let Y (t) ∈ Rn be an Ito
process of the form

(5.71) dY (t) = β(t, ω)dt+ γ(t, ω)dW (t); t ≤ T
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where β(t, ω) ∈ Rn, γ(t, ω) ∈ Rn×m are Ft-adapted and W (t) is m-dimensional. Suppose
there exist Ft-adapted processes θ(t, ω) ∈ Rm and α(t, ω) ∈ Rn such that

(5.72) γ(t, ω)θ(t, ω) = β(t, ω)− α(t, ω)

and such that Novikov’s condition

(5.73) E[exp(1
2

T∫
0

θ2(s, ω)ds)] <∞

holds. Put

(5.74) Z(t, ω) = exp(−
t∫

0

θ(s, ω)dW (s)− 1
2

t∫
0

θ2(s, ω)ds); t ≤ T

and define a measure Q on FT by

(5.75) dQ(ω) = Z(T, ω)dP (ω) on FT

Then

(5.76) W̃ (t, ω): =

t∫
0

θ(s, ω) +W (t, ω); 0 ≤ t ≤ T

is a Wiener process w.r.t. Q, and in terms of W̃ (t, ω) the process Y (t, ω) has the stochastic
integral representation

(5.77) dY (t) = α(t, ω)dt+ γ(t, ω)dW̃ (t).

a) Show that W̃ (t) is an Ft-martingale w.r.t. Q.

(Hint: Apply Ito’s formula to Y (t): = Z(t)W̃ (t).)

b) Suppose X(t) = at + W (t) ∈ R, t ≤ T , where a ∈ R is a constant. Find a
probability measure Q on FT such that X(t) is a Wiener process w.r.t. Q.

c) Let a, b, c 6= 0 be real constants and define

dY (t) = bY (t)dt+ cY (t)dW (t).

Find a probability measure Q and a Wiener process W̃ (t) w.r.t. Q such that

dY (t) = aY (t)dt+ cY (t)dW̃ (t).

5.2 Verify the Clark-Ocone formula

F (ω) = E[F ] +

T∫
0

E[DtF | Ft]dW (t)

for the following FT -measurable random variables F

5.16



    

a) F (ω) = W (T )

b) F (ω) =
T∫
0
W (s)ds

c) F (ω) = W 2(T )

d) F (ω) = W 3(T )

e) F (ω) = expW (T )

f) F (ω) = (W (T ) + T ) exp(−W (T )− 1
2
T )

5.3 Let W̃ (t) =
t∫

0
θ(s, ω)ds + W (t) and Q be as in Exercise 5.1. Use the generalized

Clark-Ocone formula to find the Ft-adapted process ϕ̃(t, ω) such that

F (ω) = EQ[F ] +

T∫
0

ϕ̃(t, ω)dW̃ (t)

in the following cases:

a) F (ω) = W 2(T ), θ(s, ω) = θ(s) is deterministic

b) F (ω) = exp(
T∫
0
λ(s)dW (s)), λ(s) and θ(s) are deterministic.

c) F (ω) like in b), θ(s, ω) = W (s).

5.4 Suppose we have the choice between the investments (5.40), (5.41). Find the initial
fortune V (0) and the number of units η(t, ω) which must be invested at time t in the
risky investment in order to produce the terminal value V (T, ω) = F (ω) = W (T, ω) when
ρ(t, ω) = ρ > 0 (constant) and the price S(t) of the risky investment is given by

a) dS(t) = µS(t)dt+ σS(t)dW (t); µ, σ constants (σ 6= 0)

b) dS(t) = cdW (t); c 6= 0 constant

c) dS(t) = µS(t)dt+ cdW (t); µ, c constants (the Ornstein-Uhlenbeck process).
Hint:

S(t) = eµtS(s) + c

T∫
0

eµ(t−s)dW (s).
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6 Solutions to the exercises

1.1. a) exp(tx− t2

2
) = exp(

1

2
x2) · exp(−1

2
(x− t)2)

= exp(
1

2
x2) ·

∞∑
n=0

{ 1

n!

dn

dtn
(exp(−1

2
(x− t)2))t=0t

n}

(u = x− t) = exp(
1

2
x2) ·

∞∑
n=0

{ 1

n!

dn

dun
(exp(−1

2
u2))u=x(−1)ntn}

= exp(
1

2
x2)

∞∑
n=0

{ 1

n!
(−1)n

dn

dxn
(exp(−1

2
x2))tn}

=
∞∑
n=0

tn

n!
hn(x).

1.1. b) u = t
√
λ gives

exp(tx− t2λ

2
) = exp(u

x√
λ
− u2

2
)

(by a)) =
∞∑
n=0

un

n!
hn(

x√
λ

) =
∞∑
n=0

tnλn/2

n!
hn(

x√
λ

).

1.1. c) If we choose x = θ, λ = ‖g‖2 and t = 1 in b), we get

exp(

T∫
0

gdW − 1

2
‖g‖2) =

∞∑
n=0

‖g‖n
n!

hn(
θ

‖g‖).

1.1. d) In particular, if we choose g(s) = X[0,t](s), we get

exp(W (t)− 1

2
t) =

∞∑
n=0

tn/2

n!
hn(

W (t)√
t

).

1.2. a) ϕ(ω) = W (t, ω) =
T∫
0
X[0,t](s)dW (s), so f0 = 0, f1 = X[0,t] and fn = 0 for n ≥ 2.

1.2. b) ϕ(ω) =
T∫
0
g(s)dW (s)⇒ f0 = 0, f1 = g, fn = 0 for n ≥ 2

1.2. c) Since

t∫
0

(

t2∫
0

1 dW (t1))dW (t2) =

t∫
0

W (t2)dW (t2) =
1

2
W 2(t)− 1

2
t ,
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we get that

W 2(t) = t+ 2

t∫
0

t2∫
0

dW (t1)dW (t2)

= t+ 2

T∫
0

t2∫
0

X[0,t](t1)X[0,t](t2)dW (t1)dW (t2) = t+ I2[f2],

where
f2(t1, t2) = X[0,t](t1)X[0,t](t2) = X⊗2

[0,t].

So f0 = t and fn = 0 for n 6= 2.

1.2. d) By Exercise 1.1c) and (1.14) we have

ϕ(ω) = exp(

T∫
0

g(s)dW (s))

= exp(
1

2
‖g‖2)

∞∑
n=0

‖g‖n
n!

hn(
θ

‖g‖)

= exp(
1

2
‖g‖2)

∞∑
n=0

Jn[g⊗n] =
∞∑
n=0

1

n!
exp(

1

2
‖g‖2)In[g⊗n].

Hence

fn =
1

n!
exp(

1

2
‖g‖2)g⊗n ; n = 0, 1, 2, . . .

where
g⊗n(x1, . . . , xn) = g(x1)g(x2) · · · g(xn).

1.3. a) Since
T∫
0
W (t)dW (t) = 1

2
W 2(T )− 1

2
T , we have

F (ω) = W 2(T ) = T + 2

T∫
0

W (t)dW (t).

Hence
E[F ] = T and ϕ(t, ω) = 2W (t).

1.3. b) Define M(t) = exp(W (t)− 1
2
t). Then by the Ito formula

dM(t) = M(t)dW (t)

and therefore

M(T ) = 1 +

T∫
0

M(t)dW (t)
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or

F (ω) = expW (T ) = exp
1

2
T + exp(

1

2
T ) ·

T∫
0

exp(W (t)− 1

2
t)dW (t).

Hence

E[F ] = exp(
1

2
T ) and ϕ(t, ω) = exp(W (t) +

1

2
(T − t)).

1.3. c) Integration by parts gives

F (ω) =

T∫
0

W (t)dt = TW (T )−
T∫

0

tdW (t) =

T∫
0

(T − t)dW (t).

Hence E[F ] = 0 and ϕ(t, ω) = T − t.

1.3. d) By the Ito formula

d(W 3(t)) = 3W 2(t)dW (t) + 3W (t)dt

Hence

F (ω) = W 3(T ) = 3

T∫
0

W 2(t)dW (t) + 3

T∫
0

W (t)dt

Therefore, by 1.3.c) we get

E[F ] = 0 and ϕ(t, ω) = 3W 2(t) + 3T (1− t).

1.3. e) Put X(t) = e
1
2
t, Y (t) = cosW (t), N(t) = X(t)Y (t). Then

dN(t) = X(t)dY (t) + Y (t)dX(t) + dX(t)dY (t)

= e
1
2
t[− sinW (t)dW (t)− 1

2
cosW (t)dt] + cosW (t) · e 1

2
t · 1

2
dt

= −e 1
2
t sinW (t)dW (t).

Hence

e
1
2
T cosW (T ) = 1−

T∫
0

e
1
2
t sinW (t)dW (t)

or

F (ω) = cosW (T ) = e−
1
2
T − e− 1

2
T

T∫
0

e
1
2
t sinW (t)dW (t).

Hence E[F ] = e−
1
2
T and ϕ(t, ω) = −e 1

2
(t−T ) sinW (t).
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1.4. a) By Ito’s formula and Kolmogorov’s backward equation we have

dY (t) =
∂g

∂t
(t,X(t))dt+

∂g

∂x
(t,X(t))dX(t) +

1

2

∂2g

∂x2
(t,X(t))(dX(t))2

=
∂

∂t
[PT−tf(ξ)]ξ=X(t)dt+ σ(X(t))

∂

∂ξ
[PT−tf(ξ)]ξ=X(t)dW (t)

+{b(X(t))
∂

∂ξ
[PT−tf(ξ)]ξ=X(t) +

1

2
σ2(X(t))

∂2

∂ξ2
[PT−tf(ξ)]ξ=X(t)}dt

=
∂

∂t
[PT−tf(ξ)]ξ=X(t)dt+ σ(X(t))

∂

∂ξ
[PT−tf(ξ)]ξ=X(t)dW (t)

+
∂

∂u
[Puf(ξ)] ξ=X(t)

u=T−t
dt

= σ(X(t))
∂

∂ξ
[PT−tf(ξ)]ξ=X(t)dW (t).

Hence

Y (T ) = Y (0) +

T∫
0

[σ(x)
∂

∂ξ
PT−tf(ξ)]ξ=X(t)dW (t).

Since Y (T ) = g(T,X(T )) = [P0f(ξ)]ξ=X(T ) = f(X(T )) and Y (0) = g(0, X(0)) = PTf(X),
(1.48) follows.

1.4. b) If F (ω) = W 2(T ) we apply a) to the case when f(ξ) = ξ2 and X(t) = x+W (t)
(assuming W (0) = 0 as before). This gives

Psf(ξ) = Eξ[f(X(x))] = Eξ[X2(s)] = ξ2 + s

and hence
E[F ] = PTf(x) = x2 + T

and

ϕ(t, ω) = [
∂

∂ξ
(ξ2 + s)]ξ=x+W (t) = 2W (t) + 2x.

1.4. c) If F (ω) = W 3(T ) we choose f(ξ) = ξ3 and X(t) = x+W (t) and get

Psf(ξ) = Eξ[X3(s)] = ξ3 + 3sξ .

Hence
E[F ] = PTf(x) = x3 + 3Tx

and

ϕ(t, ω) = [
∂

∂ξ
(ξ3 + 3(T − t)ξ)]ξ=x+W (t) = 3(x+W (t))2 + 3(T − t)
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1.4. d) In this case f(ξ) = ξ so

Psf(ξ) = Eξ[X(s)] = ξ exp(ρs)

so
E[F ] = PTf(x) = x exp(ρT )

and

ϕ(t, ω) = [αξ
∂

∂ξ
{ξ exp(ρ(T − t))}]ξ=X(t)

= αX(t) exp(ρ(T − t)) = αx exp(ρT − 1

2
α2t+ αW (t)).

1.4. e) We proceed as in a) and put

Y (t) = g(t,X(t)) with g(t, x) = PT−tf(x)

and
dX(t) = b(X(t))dt+ σ(X(t))dW (t) ; X0 = x ∈ Rn

where
b: Rn → Rn, σ: Rn → Rn×m and W (t) = (W1(t), . . . ,Wm(t))

is the m-dimensional Wiener process.

Then by Ito’s formula and (1.50) we have

dY (t) =
∂g

∂t
(t,X(t))dt+

n∑
i=1

∂g

∂xi
(t,X(t))dXi(t)

+
1

2

∑
i,j

∂2g

∂xi∂xj
(t,X(t))dXi(t)dXj(t)

=
∂

∂t
[PT−tf(ξ)]ξ=X(t)dt+ [σT (ξ)∇ξ(PT−tf(ξ))]ξ=X(t)dW (t)

+[Lξ(PT−tf(ξ))]ξ=X(t)dt

where

Lξ =
n∑
i=1

bi(ξ)
∂

∂ξi
+

1

2

n∑
i,j=1

(σσT )ij(ξ)
∂2

∂ξi∂ξj

is the generator of the Ito diffusion X(t). So by the Kolmogorov backward equation we
get

dY (t) = [σT (ξ)∇ξ(PT−tf(ξ)]ξ=X(t)dW (t)

and hence, as in a),

Y (T ) = f(X(T )) = PTf(x) +

T∫
0

[σT (ξ)∇ξ(PT−tf(ξ))]ξ=X(t)dW (t),

which gives, with F = f(X(T )),

E[F ] = PTf(x) and ϕ(t, ω) = [σT (ξ)∇ξ(PT−tf(ξ))]ξ=X(t).
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2.1. a) Since W (t) is Ft-adapted, we have

T∫
0

W (t)δW (t) =

T∫
0

W (t)dW (t) =
1

2
W 2(T )− 1

2
T .

2.1. b)

T∫
0

(

T∫
0

gdW )δ(W ) =

T∫
0

I1[f1(t1, t)]δW (t1) = I2[f̃1] where

f1(t1, t) = g(t1).

This gives

f̃1(t1, t) =
1

2
(g(t1) + g(t))

and hence

I2[f̃1] = 2

T∫
0

t2∫
0

f̃1(t1, t2)dW (t1)dW (t2)

=

T∫
0

t2∫
0

g(t1)dW (t1)dW (t2) +

T∫
0

t2∫
0

g(t2)dW (t1)dW (t2).(6.1)

Using integration by parts (i.e. the Ito formula) we see that

T∫
0

t2∫
0

g(t1)dW (t1)dW (t2) =

= (

T∫
0

gdW )W (T )−
T∫

0

g(t)W (t)dW (t)−
T∫

0

g(t)dt.(6.2)

Combining (6.1) and (6.2) we get

T∫
0

(

T∫
0

gdW )δW = (

T∫
0

gdW ) ·W (T )−
T∫

0

g(s)ds.

2.1. c) By Exercise 1.2. c) we have

T∫
0

W 2(t0)σW (t) =

T∫
0

(t0 + I2[f2])δW (t),(6.3)

where
f2(t1, t2, t) = X[0,t0](t1)X[0,t0](t2).
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Now

f̃2(t1, t2, t) =
1

3
[f2(t1, t2, t) + f2(t, t2, t1) + f2(t1, t, t2)]

=
1

3
[X[0,t0](t1)X[0,t0](t2) + X[0,t0](t)X[0,t0](t2) + X[0,t0](t1)X[0,t0](t)]

=
1

3
[X{t1,t2<t0} + X{t,t2<t0} + X{t1,t<t0}]

= X{t,t1,t2<t0} +
1

3
X{t1,t2<t0<t} +

1

3
X{t,t2<t0<t1} +

1

3
X{t,t1<t0<t2}(6.4)

and hence, using (1.14),

T∫
0

W 2(t0)δW (t) = t0W (T ) +

T∫
0

I2[f2]δW (t)

= t0W (T ) + I3[f̃2]

= t0W (T ) + 6J3[f̃2]

= t0W (T ) + 6

T∫
0

t3∫
0

t2∫
0

X⊗3
[0,t0](t1, t2, t3)dW (t1)dW (t2)dW (t3)

+6

T∫
0

t3∫
0

t2∫
0

1

3
X{t1,t2<t0<t3}dW (t1)dW (t2)dW (t3)

= t0W (T ) + t
3/2
0 h3(

W (t0)√
t0

) + 2

T∫
t0

t0∫
0

t2∫
0

dW (t1)dW (t2)dW (t3)

= t0W (T ) + t
3/2
0 (

W 3(t0)

t
3/2
0

− 3
W (t0)√

t0
) + 2

T∫
t0

(
1

2
W 2(t0)− 1

2
t0)dW (t3)

= t0W (T ) +W 3(t0)− 3t0W (t0) + (W 2(t0)− t0)(W (T )−W (t0))

= W 2(t0)W (T )− 2t0W (t0).

2.1. d) By Exercise 1.2. d) and (1.14) we get

T∫
0

exp(W (T ))δW (t) =

T∫
0

(
∞∑
n=0

1

n!
exp(

1

2
T )In[1])δW (t)

=
∞∑
n=0

1

n!
exp(

1

2
T )In+1[1] = exp(

1

2
T )

∞∑
n=0

1

n!
T
n+1

2 hn+1(
W (T )√

T
)

3.1. a)

T∫
0

W (T )δW (t) =

T∫
0

W (T ) ¦
•
W (t)dt = W (T ) ¦

T∫
0

•
W (t)dt = W (T ) ¦ W (T ) =

W 2(T )− T , by (3.58).
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3.1. b)

T∫
0

(

T∫
0

gdW ) ¦
•
W (t)dt = (

T∫
0

gdW ) ¦
T∫

0

•
W (t)dt = (

T∫
0

gdW ) ¦W (T )

= (

T∫
0

gdW )W (T )−
T∫

0

g(s)ds, by (3.45).

3.1. c)

T∫
0

W 2(t0)δW (t) =

T∫
0

(W ¦2(t0) + t0)δW (t)

= W ¦2(t0) ¦W (T ) + t0W (T )

= W ¦2(t0 ¦ (W (T )−W (t0)) +W ¦2(t0) ¦W (t0) + t0W (T )

= W ¦2(t0) · (W (T )−W (t0)) +W ¦3(t0) + t0W (T )

= (W 2(t0)− t0) · (W (T )−W (t0)) +W 3(t0)− 3t0W (t0) + t0W (T )

= W 2(t0)W (T )− 2t0W (t0),

where we have used (3.55) and (3.58).

3.1. d)

T∫
0

exp(W (T ))δW (t) = exp(W (T )) ¦
T∫

0

•
W (t)dt = exp(W (T )) ¦W (T ) =

exp¦(W (T ) + 1
2
T ) ¦W (T ) = exp(1

2
T )

∞∑
n=0

1
n!
W (T )¦(n+1) = exp(1

2
T )

∞∑
n=0

T
n+1

2

n!
hn+1

(
W (T )√

T

)
.

4.1. a) DtW (T ) = X[0,T ](t) = 1 (for t ∈ [0, T ]), by (4.16).

4.1. b) By the chain rule (Lemma 4.9) we get

Dt(expW (t0)) = expW (t0) · X[0,t0](t).

4.1. c) By (4.15) we get

Dt(

T∫
0

s2dW (s)) = t2.

4.1. d) By Theorem 4.16 we have

Dt(

T∫
0

(

t2∫
0

cos(t1 + t2)dW (t1))dW (t2)) = Dt(
1

2
I2[cos(t1 + t2)])

=
1

2
· 2 · I1[cos(·+ t)] =

T∫
0

cos(t1 + t)dW (t1).
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4.1. e) Dt(3W (s0)W 2(t0) + ln(1 +W 2(s0)))

= [3W 2(t0) +
2W (s0)

1 +W 2(s0)
] · X[0,s0](t)

+6W (s0)W (t0)X[0,t0](t)

4.1. f) By Exercise 2.1. b) we have

Dt(

T∫
0

W (t0)δW (t)) = Dt(W (t0)W (T )− t0)

= W (t0) · X[0,T ](t) +W (T )X[0,t0](t) = W (t0) +W (T )X[0,t0](t).

4.2. a) Dt(exp(

T∫
0

g(s)dW (s))) = Dt(
∞∑
n=0

In[fn])

=
∞∑
n=1

nIn−1[fn(·, t)]

=
∞∑
n=1

n · 1

n!
exp(

1

2
‖g‖2)In−1[g(t1) . . . g(tn−1)g(t)]

= g(t)
∞∑
n=1

1

(n− 1)!
exp(

1

2
‖g‖2)In−1[g⊗(n−1)]

= g(t) exp(

T∫
0

g(s)dW (s)),

where we have used Theorem 4.16.

4.2. b) The chain rule gives

Dt(exp(

T∫
0

g(s)dW (s))) = exp(

T∫
0

g(s)dW (s))Dt(

T∫
0

g(s)dW (t))

= g(t) exp(

T∫
0

g(s)dW (s)) by (4.15).

4.3 With the given F and ϕ the left hand side of (4.28) becomes

E[DγF · ϕ] = E[DγF ] = E[

T∫
0

DtF · g(t)dt] =

T∫
0

ψ(t)g(t)dt,
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while the right hand side becomes

E[F · ϕ ·
T∫

0

gdW ]− E[F ·Dγϕ]

= E[(

T∫
0

ψdW ) · (
T∫

0

gdW )],

which is the same as the left hand side by the Ito isometry.

5.1. a) If s > t we have

EQ[W̃ (s)|Ft] =
E[Z(T )W̃ (s)|Ft]
E[Z(T )|Ft]

=
E[Z(T )W̃ (s)|Ft]

Z(t)
= Z−1(t)E[E[Z(T )W̃ (s)|Fs]|Ft]

= Z−1(t)E[W̃ (s)E[Z(T )|Fs]|Ft]
= Z−1(t)E[W̃ (s)Z(s)|Ft].(6.5)

Applying Ito’s formula to Y (t): = Z(t)W̃ (t) we get

dY (t) = Z(t)dW̃ (t) + W̃ (t)dZ(t) + dW̃ (t)dZ(t)

= Z(t)[θ(t)dt+ dW (t)] + W̃ (t)[−θ(t)Z(t)dW (t)]− θ(t)Z(t)dt

= Z(t)[1− θ(t)W̃ (t)]dW (t),

and hence Y (t) is an Ft-martingale (w.r.t. P ). Therefore, by (6.5),

EQ[W̃ (s)|Ft] = Z−1(t)E[Y (s)|Ft] = Z−1(t)Y (t) = W̃ (t).
¤

5.1. b) We apply the Girsanov theorem to the case with θ(t, ω) = a. Then X(t) is a
Wiener process w.r.t. the measure Q defined by

dQ(ω) = Z(T, ω)dP (ω) on FT ,

where

Z(t) = exp(−aW (t)− 1

2
a2t) ; 0 ≤ t ≤ T.

5.1. c) In this case we have

β(t, ω) = bY (t, ω), α(t, ω) = aY (t, ω), γ(t, ω) = cY (t, ω)

and hence we put

θ =
β(t, ω)− α(t, ω)

γ(t, ω)
=
b− a
c
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and

Z(t) = exp(−θW (t)− 1

2
θ2t); 0 ≤ t ≤ T.

Then
W̃ (t): = θt+W (t)

is a Wiener process w.r.t. the measure Q defined by dQ(ω) = Z(T, ω)dP (ω) on FT and

dY (t) = bY (t)dt+ cY (t)[dW̃ (t)− θdt] = aY (t)dt+ cY (t)dW̃ (t).

¤

5.2. a) F (ω) = W (T )⇒ DtF (ω) = X[0,T ](t) = 1 for t ∈ [0, T ] and hence

E[F ] +

T∫
0

E[DtF |Ft]dW (t) =

T∫
0

1 · dW (t) = W (T ) = F.

¤

5.2. b) F (ω) =

T∫
0

W (s)ds⇒ DtF (ω) =

T∫
0

DtW (s)ds =

T∫
0

X[0,s](t)ds =

T∫
t

ds = T − t,

which gives

E[F ] +

T∫
0

E[DtF |Ft]dW (t) =

T∫
0

(T − t)dW (t)

=

T∫
0

W (s)dW (s) = F,

using integration by parts. ¤

5.2. c) F (ω) = W 2(T )⇒ DtF (ω) = 2W (T ) ·DtW (T ) = 2W (T ). Hence

E[F ] +

T∫
0

E[DtF |Ft]dW (t) = T +

T∫
0

E[2W (T )|Ft]dW (t)

= T + 2

T∫
0

W (t)dW (t) = T +W 2(T )− T = W 2(T ) = F.

¤

5.2. d) F (ω) = W 3(T )⇒ DtF (ω) = 2W 2(T ). Hence

E[F ] +

T∫
0

E[DtF |Ft]dW (t) =

T∫
0

E[3W 2(T )|Ft]dW (t)
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= 3

T∫
9

E[(W (T )−W (t))2 + 2W (t)W (T )−W 2(t)|Ft]dW (t)

= 3

T∫
0

(T − t)dW (t) + 6

T∫
0

W 2(t)dW (t)− 3

T∫
0

W 2(t)dW (t)

= 3

T∫
0

W 2(t)dW (t)− 3

T∫
0

W (t)dt = W 3(T ),

by Ito’s formula. ¤

5.2. e) F (ω) = expW (T )⇒ DtF (ω) = expW (T ). Hence

RHS = E[F ] +

T∫
0

E[DtF |Ft]dW (t)

= exp(
1

2
T ) +

T∫
0

E[expW (T )|Ft]dW (t)

= exp(
1

2
T ) +

T∫
0

E[exp(W (T )− 1

2
T ) · exp(

1

2
T )|Ft]dW (t)

= exp(
1

2
T ) + exp(

1

2
T )

T∫
0

exp(W (t)− 1

2
t)dW (t).(6.6)

Here we have used that

M(t): = exp(W (t)− 1

2
t)

is a martingale. In fact, by Ito’s formula we have dM(t) = M(t)dW (t). Combined with
(6.6) this gives

RHS = exp(
1

2
T ) + exp(

1

2
T )(M(T )−M(0)) = expW (T ) = F .

¤

5.2. f) F (ω) = (W (T ) + T ) exp(−W (T )− 1
2
T )

⇒ DtF = exp(−W (T )− 1
2
T )[1− W (T )− T ]. Note that

Y (t): = (W (t) + t)N(t), with N(t) = exp(−W (t)− 1

2
t)

is a martingale, since

dY (t) = (W (t)+t)N(t)(−dW (t))+N(t)(dW (t)+dt)−N(t)dt = N(t)[1−t−W (t)]dW (t)
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Therefore

E[F ] +

T∫
0

E[DtF |Ft]dW (t)

=

T∫
0

E[N(T )(1− (W (T ) + T ))|Ft]dW (t)

=

T∫
0

N(t)(1− (W (t) + t))dW (t) =

T∫
0

dY (t) = Y (T )− Y (0)

= (W (T ) + T ) exp(−W (T )− 1

2
T ) = F.

¤

5.3. a) ϕ̃(t, ω) = EQ[DtF − F
T∫
t

Dtθ(s, ω)dW̃ (s)|Ft]

If θ(s, ω) = θ(s) is deterministic, then Dtθ = 0 and hence

ϕ̃(t, ω) = EQ[DtF |Ft] = EQ[2W (T )|Ft]

= EQ[2W̃ (T )− 2

T∫
0

θ(s)ds|Ft] = 2W̃ (t)− 2

T∫
0

θ(s)ds = 2W (t)− 2

T∫
t

θ(s)ds.

5.3. b) ϕ̃(t, ω) = EQ[DtF |Ft]

= EQ[exp(

T∫
0

λ(s)dW (s))λ(t)|Ft]

= λ(t)EQ[exp(

T∫
0

λ(s)dW̃ (s)−
T∫

0

λ(s)θ(s)ds)|Ft]

= λ(t) exp(

T∫
0

(
1

2
λ2(s)− λ(s)θ(s))ds)EQ[exp(

T∫
0

λ(s)dW̃ (s)− 1

2

T∫
0

λ2(s)ds)|Ft]

= λ(t) exp(

T∫
0

λ(s)(
1

2
λ(s)− θ(s))ds) exp(

t∫
0

λ(s)dW̃ (s)− 1

2

t∫
0

λ2(s)ds)

= λ(t) exp(

t∫
0

λ(s)dW (s) +

T∫
t

λ(s)(
1

2
λ(s)− θ(s))ds).

5.3. c) ϕ̃(t, ω) = EQ[DtF − F
T∫
t

Dtθ(s, ω)dW̃ (s)|Ft]

= EQ[λ(t)F |Ft]− EQ[F

T∫
t

dW̃ (s)|Ft]
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= A−B , say.(6.7)

Now W̃ (t) = W (t) +

t∫
0

θ(s, ω)ds = W (t) +

t∫
0

W (s)ds or

dW (t) +W (t)dt = dW̃ (t).

We solve this equation for W (t) by multiplying by the “integrating factor” et and get

d(etW (t)) = etdW̃ (t)

Hence

W (u) = e−u
u∫

0

esdW̃ (s).(6.8)

or

dW (u) = −e−u
u∫

0

esdW̃ (s)du+ dW̃ (u)(6.9)

Using (6.9) we may rewrite F (ω) as follows:

F (ω) = exp(

T∫
0

λ(s)dW (s))

= exp(

T∫
0

λ(s)dW̃ (s)−
T∫

0

λ(u)e−u(

u∫
0

esdW̃ (s))du)

= exp(

T∫
0

λ(s)dW̃ (s)−
T∫

0

(

T∫
0

λ(u)e−udu)esdW̃ (s))

= K(T ) · exp(
1

2

T∫
0

ξ2(s)ds),

where

ξ(s) = λ(s)− es
T∫
s

λ(u)e−udu(6.10)

and

K(t) = exp(

t∫
0

ξ(s)dW̃ (s)− 1

2

t∫
0

ξ2(s)ds); 0 ≤ t ≤ T.(6.11)

Hence

A = EQ[λ(t)F |Ft] = λ(t) exp(
1

2

T∫
0

ξ2(s)ds)E[K(T )|Ft]

= λ(t) exp(
1

2

T∫
0

ξ2(s)ds)K(t).(6.12)
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Moreover, if we put

H = exp(
1

2

T∫
0

ξ2(s)ds),(6.13)

we get

B = EQ[F (W̃ (T )− W̃ (t))|Ft]
= H · EQ[K(T )(W̃ (T )− W̃ (t))|Ft]

= H · EQ[K(t) · exp(

T∫
t

ξ(s)dW̃ (s)− 1

2

T∫
t

ξ2(s)ds)(W̃ (T )− W̃ (t))|Ft]

= H ·K(t)EQ[exp(

T∫
t

ξ(s)dW̃ (s)− 1

2

T∫
t

ξ2(s)ds)(W̃ (T )− W̃ (t))]

= H ·K(t)E[exp(

T∫
t

ξ(s)dW (s)− 1

2

T∫
t

ξ2(s)ds)(W (T )−W (t))].(6.14)

This last expectation can be evaluated by using Ito’s formula: Put

X(t) = exp(

t∫
t0

ξ(s)dW (s)− 1

2

t∫
t0

ξ2(s)ds)

and
Y (t) = X(t) · (W (t)−W (t0)).

Then

dY (t) = X(t)dW (t) + (W (t)−W (t0))dX(t) + dX(t)dW (t)

= X(t)[1 + (W (t)−W (t0))ξ(t)]dW (t) + ξ(t)X(t)dt

and hence

E[Y (T )] = E[Y (t0)] + E[

T∫
t0

ξ(s)X(s)ds]

=

T∫
t0

ξ(s)E[X(s)]ds =

T∫
t0

ξ(s)ds(6.15)

Combining (6.7), (6.10)–(6.15) we conclude that

ϕ̃(t, ω) = λ(t)HK(t)−HK(t)

T∫
t

ξ(s)ds

= exp(
1

2

T∫
0

ξ2(s)ds) · exp(

t∫
0

ξ(s)dW̃ (s)− 1

2

t∫
0

ξ2(s)ds)[λ(t)−
T∫
t

ξ(s)ds]
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5.4. a) Since θ = µ−ρ
σ

is constant we get by (5.57)

η(t) = eρtσ−1S−1(t)EQ[e−ρTDtW (T )|Ft] = eρ(t−T )σ−1S−1(t).

5.4. b) Here µ = 0, σ(s, ω) = c S−1(s) and hence

θ(s, ω) =
µ− ρ
σ

= −ρ
c
S(s) = −ρ(W (s) + S(0)).

Hence
T∫
t

Dtθ(s, ω)dW̃ (s) = ρ[W̃ (t)− W̃ (T )].

Therefore

B: = EQ[F

T∫
t

Dtθ(s)dW̃ (s)|Ft] = ρEQ[e−ρTW (T )(W̃ (t)− W̃ (T ))|Ft].(6.16)

To proceed further, we need to express W (t) in terms of W̃ (t): Since

W̃ (t) = W (t) +

t∫
0

θ(s, ω)ds = W (t)− ρS(0)t− ρ
t∫

0

W (s)ds

we have
dW̃ (t) = dW (t)− ρW (t)dt− ρS(0)dt

or
e−ρtdW (t)− e−ρtρW (t)dt = e−ρt(dW̃ (t) + ρS(0)dt)

or
d(e−ρtW (t)) = e−ρtdW̃ (t) + ρe−ρtS(0)dt

Hence

W (t) = S(0)[eρt − 1] + eρt
t∫

0

e−ρsdW̃ (s).(6.17)

Substituting this into (6.16) we get

B = ρEQ[

T∫
0

e−ρsdW̃ (s) · (W̃ (t)− W̃ (T ))|Ft]

= ρEQ[

t∫
0

e−ρsdW̃ (s) · (W̃ (t)− W̃ (T ))|Ft]

+ρEQ[

T∫
t

e−ρsdW̃ (s) · (W̃ (t)− W̃ (T ))|Ft]

= ρEQ[

T∫
t

e−ρsdW̃ (s) · (W̃ (t)− W̃ (T ))]

= ρ

T∫
t

e−ρs(−1)ds = e−ρT − e−ρt.
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Hence

η(t) = eρtc−1(EQ[Dt(e
−ρTW (T ))|Ft]−B)

= eρtc−1(e−ρT − e−ρT + e−ρt) = c−1 (as expected).

5.4. c) Here σ = c S−1(t) and hence

θ(s, ω) =
µ− ρ
c

S(s) =
µ− ρ
c

[eµsS(0) + c

s∫
0

eµ(s−r)dW (r)]

So
Dtθ(s, ω) = (µ− ρ)eµ(s−t)X[0,s](t)

Hence

η(t, ω) = eρtc−1EQ[(Dt(e
−ρTW (T ))− e−ρTW (T )

T∫
t

Dtθ(s, ω)dW̃ (s)|Ft]

= eρ(t−T )c−1(1− (µ− ρ)EQ[W (T )

T∫
t

eµ(s−t)dW̃ (s)|Ft]).(6.18)

Again we try to express W (t) in terms of W̃ (t): Since

dW̃ (t) = dW (t) + θ(t, ω)dt

= dW (t) +
µ− ρ
c

[eµtS(0) + c

t∫
0

eµ(t−r)dW (r)]dt

we have

e−µtdW̃ (t) = e−µtdW (t) + [
µ− ρ
c

S(0) + (µ− ρ)

t∫
0

e−µrdW (r)]dt(6.19)

If we put

X(t) =

t∫
0

e−µrdW (r), X̃(t) =

t∫
0

e−µrdW̃ (r),

(6.19) can be written

dX̃(t) = dX(t) +
µ− ρ
c

S(0)dt+ (µ− ρ)X(t)dt

or

d(e(µ−ρ)tX(t)) = e(µ−ρ)tdX̃(t) +
µ− ρ
c

S(0)e[µ−ρ)tdt

or

X(t) = e(ρ−µ)t

t∫
0

e−ρsdW̃ (s) +
µ− ρ
c

S(0)e(ρ−µ)t

t∫
0

e(µ−ρ)sds

= e(ρ−µ)t

t∫
0

e−ρsdW̃ (s) +
S(0)

c
[1− e(ρ−µ)t]
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From this we get

e−µtdW (t) = e(ρ−µ)te−ρtdW̃ (t) + (ρ− µ)e(ρ−µ)t(

t∫
0

e−ρsdW̃ (s))dt

−S(0)

c
(ρ− µ)e(ρ−µ)tdt

or

dW (t) = dW̃ (t) + (ρ− µ)eρt(

t∫
0

e−ρsdW̃ (s))dt− S(0)

c
(ρ− µ)eρtdt

In particular,

W (T ) = W̃ (T ) + (ρ− µ)

T∫
0

eρs(

s∫
0

e−ρrdW̃ (r))ds− S(0)

ρc
(ρ− µ)(eρT − 1)(6.20)

Substituted in (6.18) this gives

η(t, ω) = eρ(t−T )c−1{1− (µ− ρ)EQ[W̃ (T ) ·
T∫
t

eµ(s−t)dW̃ (s)|Ft]

+(µ− ρ)2EQ[

T∫
0

eρs(

s∫
0

e−ρrdW̃ (r))ds ·
T∫
t

eµ(s−t)dW̃ (s)|Ft]}

= eρ(t−T )c−1{1− (µ− ρ)

T∫
t

eµ(s−t)ds

+(µ− ρ)2

T∫
t

eρsEQ[(

s∫
t

e−ρrdW̃ (r)) · (
T∫
t

eµ(r−t)dW̃ (r))|Ft]ds}

= eρ(t−T )c−1{1− µ− ρ
µ

(eµ(T−t) − 1) + (µ− ρ)2

T∫
t

eρr(

s∫
t

e−ρr · eµ(r−t)dr)ds}

= eρ(t−T )c−1{1− µ− ρ
ρ

(eρ(T−t) − 1)}.
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